Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36835023
PubMed Central
PMC9968098
DOI
10.3390/ijms24043611
PII: ijms24043611
Knihovny.cz E-zdroje
- Klíčová slova
- CoMSA, arginase inhibition, arylcinnamamides, lipophilicity, molecular docking, similarity-activity landscape index,
- MeSH
- antimalarika * farmakologie MeSH
- arginasa farmakologie MeSH
- chlorochin farmakologie MeSH
- Plasmodium falciparum MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimalarika * MeSH
- arginasa MeSH
- chlorochin MeSH
A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an 'averaged' selection-driven interaction pattern was produced based in namely 'pseudo-consensus' 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.
GiG Research Institute Pl Gwarkow 1 40 166 Katowice Poland
Institute of Chemistry University of Silesia Szkolna 9 40 007 Katowice Poland
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Greenwood B.M., Fidock D.A., Kyle D.E., Kappe S.H.I., Alonso P.L., Collins F.H., Duffy P.E. Malaria: Progress, perils, and prospects for eradication. J. Clin. Investig. 2008;118:1266–1276. doi: 10.1172/JCI33996. PubMed DOI PMC
Snow R.W., Guerra C.A., Noor A.M., Myint H.Y., Hay S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–217. doi: 10.1038/nature03342. PubMed DOI PMC
Cox-Singh J., Davis T.M.E., Lee K.-S., Shamsul S.S.G., Matusop A., Ratnam S., Rahman H.A., Conway D.J., Singh B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 2008;46:165–171. doi: 10.1086/524888. PubMed DOI PMC
Mackintosh C.L., Beeson J.G., Marsh K. Clinical features and pathogenesis of severe malaria. Trends Parasitol. 2004;20:597–603. doi: 10.1016/j.pt.2004.09.006. PubMed DOI
Prudencio M., Rodriguez A., Mota M.M. The silent path to thousands of merozoites: The Plasmodium liver stage. Nat. Rev. Microbiol. 2006;4:849–856. doi: 10.1038/nrmicro1529. PubMed DOI
Olszewski K.L., Morrisey J.M., Wilinski D., Burns J.M., Vaidya A.B., Rabinowitz J.D., Llinas M. Hostparasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009;5:191–199. doi: 10.1016/j.chom.2009.01.004. PubMed DOI PMC
Meireles P., Mendes A.M., Aroeira R.I., Mounce B.C., Vignuzzi M., Staines H.M., Prudencio M. Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci. Rep. 2017;7:4072. doi: 10.1038/s41598-017-04424-y. PubMed DOI PMC
Vincendeau P., Gobert A.P., Daulouede S., Moynet D., Mossalayi M.D. Arginases in parasitic diseases. Trends Parasitol. 2003;19:9–12. doi: 10.1016/S1471-4922(02)00010-7. PubMed DOI
Fairlamb A.H., Cerami A. Metabolism and functions of trypanothione in the kinetoplastida. Annu. Rev. Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. PubMed DOI
Bagnost T., Ma L., da Silva R.F., Rezakhaniha R., Houdayer C., Stergiopulos N., Andre C., Guillaume Y., Berthelot A., Demougeot C. Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc. Res. 2010;87:569–577. doi: 10.1093/cvr/cvq081. PubMed DOI
Singh R., Pervin S., Karimi A., Cederbaum S., Chaudhuri G. Arginase activity in human breast cancer cell lines: Nω -hydroxy-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 2000;60:3305–3312. PubMed
Boucher J.L., Custot J., Vadon S., Delaforge M., Lepoivre M., Tenu J.P., Yapo A., Mansuy D. Nω-hydroxy-l-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem. Biophys. Res. Commun. 1994;203:1614–1621. doi: 10.1006/bbrc.1994.2371. PubMed DOI
Ivanenkov Y.A., Chufarova N.V. Small-molecule arginase inhibitors. Pharm. Pat. Anal. 2013;3:65–85. doi: 10.4155/ppa.13.75. PubMed DOI
Morris S.M. Recent advances in arginine metabolism: Roles and regulation of the arginases. Br. J. Pharmacol. 2009;157:922–930. doi: 10.1111/j.1476-5381.2009.00278.x. PubMed DOI PMC
Montrieux E., Perera W.H., García M., Maes L., Cos P., Monzote L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res. 2014;113:2925–2932. doi: 10.1007/s00436-014-3954-1. PubMed DOI
da Silva E.R., Brogi S., Grillo A., Campiani G., Gemma S., Vieira P.C., Maquiaveli C.D.C. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem. Biol. Drug Des. 2018;93:139–146. doi: 10.1111/cbdd.13391. PubMed DOI
da Silva E.R., Come J.A.A.d.S.S., Brogi S., Calderone V., Chemi G., Campiani G., Oliveira T.M.F.d.S., Pham T.N., Pudlo M., Girard C., et al. Cinnamides target Leishmania amazonensis arginase selectively. Molecules. 2020;25:5271. doi: 10.3390/molecules25225271. PubMed DOI PMC
Come J.A.A.d.S.S., Zhuang Y., Li T., Brogi S., Gemma S., Liu T., da Silva E.R. In vitro and in silico analyses of new cinnamid and rosmarinic acid-derived compounds biosynthesized in Escherichia coli as Leishmania amazonensis arginase inhibitors. Pathogens. 2022;11:1020. doi: 10.3390/pathogens11091020. PubMed DOI PMC
Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI
Bunse M., Daniels R., Grundemann C., Heilmann J., Kammerer D.R., Keusgen M., Lindequist U., Melzig M.F., Morlock G.E., Schulz H., et al. Essential oils as multicomponent mixtures and their potential for human health and well-being. Front. Pharmacol. 2022;13:956541. doi: 10.3389/fphar.2022.956541. PubMed DOI PMC
Ruwizhi N., Aderibigbe B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC
Teixeira C., Ventura C., Gomes J.R.B., Gomes P., Martins F. Cinnamic derivatives as antitubercular agents: Characterization by quantitative structure–activity relationship studies. Molecules. 2020;25:456. doi: 10.3390/molecules25030456. PubMed DOI PMC
Ullah S., Park Y., Ikram M., Lee S., Park C., Kang D., Yang J., Akter J., Yoon S., Chun P., et al. Design, synthesis and anti-melanogenic effect of cinnamamide derivatives. Bioorg. Med. Chem. 2018;26:5672–5681. doi: 10.1016/j.bmc.2018.10.014. PubMed DOI
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC
Strharsky T., Pindjakova D., Kos J., Vrablova L., Michnova H., Hosek J., Strakova N., Lelakova V., Leva L., Kavanova L., et al. Study of biological activities and ADMET-related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022;23:3159. doi: 10.3390/ijms23063159. PubMed DOI PMC
Dowling D.P., Ilies M., Olszewski K.L., Portugal S., Mota M.M., Llinas M., Christianson D.W. Crystal structure of arginase from Plasmodium falciparum and implications for l-arginine depletion in malarial infection. Biochemistry. 2010;49:5600–5608. doi: 10.1021/bi100390z. PubMed DOI PMC
Muller I.B., Walter R.D., Wrenger C. Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum. Biol. Chem. 2005;386:117–126. doi: 10.1515/BC.2005.015. PubMed DOI
DePristo M.A., Zilversmit M.M., Hartl D.L. On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. Gene. 2006;378:19–30. doi: 10.1016/j.gene.2006.03.023. PubMed DOI
Di Costanzo L., Sabio G., Mora A., Rodriguez P.C., Ochoa A.C., Centeno F., Christianson D.W. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response. Proc. Natl. Acad. Sci. USA. 2005;102:13058–13063. doi: 10.1073/pnas.0504027102. PubMed DOI PMC
Van de Waterbeemd H., Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI
Bak A., Kozik V., Walczak M., Fraczyk J., Kaminski Z., Kolesinska B., Smolinski A., Jampilek J. Towards intelligent drug design system: Application of artificial dipeptide receptor library in QSAR-oriented studies. Molecules. 2018;23:1964. doi: 10.3390/molecules23081964. PubMed DOI PMC
Maggiora G.M., Shanmugasundaram V. Molecular similarity measures. Methods Mol. Biol. 2011;672:39–100. PubMed
Potemkin V., Grishina M. Principles for 3D/4D QSAR classification of drugs. Drug Discov. Today. 2008;13:952–959. doi: 10.1016/j.drudis.2008.07.006. PubMed DOI
Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC
Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC
Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC
Lopez-Lopez E., Prieto-Martinez F.D., Medina-Franco J.L. Activity landscape and molecular modeling to explore the SAR of dual epigenetic inhibitors: A focus on G9a and DNMT1. Molecules. 2018;23:3282. doi: 10.3390/molecules23123282. PubMed DOI PMC
Guha R., Van Drie J.H. Assessing how well a modeling protocol captures a structure—Activity landscape. J. Chem. Inf. Model. 2008;48:1716–1728. doi: 10.1021/ci8001414. PubMed DOI
Guha R., Van Drie J.H. Structure—Activity landscape index: Identifying and quantifying activity cliffs. J. Chem. Inf. Model. 2008;48:646–658. doi: 10.1021/ci7004093. PubMed DOI
Bajorath J., Peltason L., Wawer M., Guha R., Lajiness M.S., Van Drie J.H. Navigating structure—Activity landscapes. Drug Discov. Today. 2009;14:698–705. doi: 10.1016/j.drudis.2009.04.003. PubMed DOI
Holliday J.D., Salim N., Whittle M., Willett P. Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 2003;43:819–828. doi: 10.1021/ci034001x. PubMed DOI
Kolb P., Irwin J.J. Docking screens: Right for the right reasons? Curr. Top. Med. Chem. 2009;9:755–770. doi: 10.2174/156802609789207091. PubMed DOI PMC
Chrobak E., Marciniec K., Dabrowska A., Pecak P., Bebenek E., Kadela-Tomanek M., Bak A., Jastrzebska M., Boryczka S. New phosphorus analogs of bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study. Int. J. Mol. Sci. 2019;20:5209. doi: 10.3390/ijms20205209. PubMed DOI PMC
Verma R.P., Hansch C. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem. 2004;5:1188–1195. doi: 10.1002/cbic.200400094. PubMed DOI
Sugiura M., Naito Y., Yamaura Y., Fukaya C., Yokoyama K. Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase. Chem. Pharm. Bull. 1989;37:1039–1043. doi: 10.1248/cpb.37.1039. PubMed DOI
Degotte G., Pirotte B., Francotte P., Frederich M. Potential of caffeic acid derivatives as antimalarial leads. Lett. Drug Des. Discov. 2022;19:823–836. doi: 10.2174/1570180819666220202160247. DOI
Alson S.G., Jansen O., Cieckiewicz E., Rakotoarimanana H., Rafatro H., Degotte G., Francotte P., Frederich M. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives. J. Pharm. Pharmacol. 2018;70:1349–1356. doi: 10.1111/jphp.12982. PubMed DOI
Kos J., Degotte G., Pindjakova D., Strharsky T., Jankech T., Gonec T., Francotte P., Frederich M., Jampilek J. Insights into Antimalarial activity of N-phenyl-substituted cinnamanilides. Molecules. 2022;27:7799. doi: 10.3390/molecules27227799. PubMed DOI PMC
Bak A., Kozik V., Smolinski A., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI
Hann M., Oprea T. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 2004;8:255–263. doi: 10.1016/j.cbpa.2004.04.003. PubMed DOI
Bak A., Polanski J. Modeling Robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI
Vogt M., Huang Y., Bajorath J. From activity cliffs to activity ridges: Informative data structures for SAR analysis. J. Chem. Inf. Model. 2011;51:1848–1856. doi: 10.1021/ci2002473. PubMed DOI
Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC
Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC
Rykowski S., Gurda-Wozna D., Orlicka-Płocka M., Fedoruk-Wyszomirska A., Giel-Pietraszuk M., Wyszko E., Kowalczyk A., Stączek P., Bak A., Kiliszek A., et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 2021;22:2772. doi: 10.3390/ijms22052772. PubMed DOI PMC
Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI
Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin I.I., Cronin M., Dearden J., Gramatica P., Martin Y.C., Todeschini R., et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014;57:4977–5010. doi: 10.1021/jm4004285. PubMed DOI PMC
Polanski J., Bak A., Gieleciak R., Magdziarz T. Self-organizing neural networks for modeling robust 3D and 4D QSAR: Application to dihydrofolate reductase inhibitors. Molecules. 2004;9:1148–1159. doi: 10.3390/91201148. PubMed DOI PMC
Bak A., Kozik V., Malik I., Jampilek J., Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR QSAR Environ. Res. 2018;29:801–821. doi: 10.1080/1062936X.2018.1517278. PubMed DOI
Chen Y.C. Beware of docking. Trends Pharmacol. Sci. 2015;36:78–95. doi: 10.1016/j.tips.2014.12.001. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Pham T.N., Bordage S., Pudlo M., Demougeot C., Thai K.M., Girard-Thernier C. Cinnamide derivatives as mammalian arginase inhibitors: Synthesis, biological evaluation and molecular docking. Int. J. Mol. Sci. 2016;17:1656. doi: 10.3390/ijms17101656. PubMed DOI PMC
Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:443–447. doi: 10.1093/nar/gkv315. PubMed DOI PMC
Colotti G., Baiocco P., Fiorillo A., Boffi A., Poser E., Di Chiaro F., Ilari A. Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs. Future Med. Chem. 2013;5:1861–1875. doi: 10.4155/fmc.13.146. PubMed DOI
Auffinger P., Hays F.A., Westhof E., Shing Ho P. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA. 2004;101:16789–16794. doi: 10.1073/pnas.0407607101. PubMed DOI PMC
Scholfield M.R., Vander Zanden C.M., Shing Ho P. Halogen bonding (X-bonding): A biological perspective. Protein Sci. 2013;22:139–152. doi: 10.1002/pro.2201. PubMed DOI PMC
Trager W., Jensen J.B. Human malaria parasites in continuous culture. Science. 1976;193:673–675. doi: 10.1126/science.781840. PubMed DOI
Bero J., Herent M., Schmeda-Hirschmann G., Frederich M., Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J. Ethnopharmacol. 2013;149:176–183. doi: 10.1016/j.jep.2013.06.018. PubMed DOI
Murebwayire S., Frederich M., Hannaert V., Jonville M.C., Duez P. Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine. 2008;15:728–733. doi: 10.1016/j.phymed.2007.10.005. PubMed DOI
Makler M.T., Ries J.M., Williams J.A., Bancroft J.E., Piper R.C., Gibbins B.L., Hinrichs D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993;48:739–741. doi: 10.4269/ajtmh.1993.48.739. PubMed DOI
Jansen O., Tits M., Angenot L., Nicolas J.P., De Mol P., Nikiema J.B., Frederich M. Antiplasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar. J. 2012;11:289. doi: 10.1186/1475-2875-11-289. PubMed DOI PMC