Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36835023

A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an 'averaged' selection-driven interaction pattern was produced based in namely 'pseudo-consensus' 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.

Zobrazit více v PubMed

Greenwood B.M., Fidock D.A., Kyle D.E., Kappe S.H.I., Alonso P.L., Collins F.H., Duffy P.E. Malaria: Progress, perils, and prospects for eradication. J. Clin. Investig. 2008;118:1266–1276. doi: 10.1172/JCI33996. PubMed DOI PMC

Snow R.W., Guerra C.A., Noor A.M., Myint H.Y., Hay S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–217. doi: 10.1038/nature03342. PubMed DOI PMC

Cox-Singh J., Davis T.M.E., Lee K.-S., Shamsul S.S.G., Matusop A., Ratnam S., Rahman H.A., Conway D.J., Singh B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 2008;46:165–171. doi: 10.1086/524888. PubMed DOI PMC

Mackintosh C.L., Beeson J.G., Marsh K. Clinical features and pathogenesis of severe malaria. Trends Parasitol. 2004;20:597–603. doi: 10.1016/j.pt.2004.09.006. PubMed DOI

Prudencio M., Rodriguez A., Mota M.M. The silent path to thousands of merozoites: The Plasmodium liver stage. Nat. Rev. Microbiol. 2006;4:849–856. doi: 10.1038/nrmicro1529. PubMed DOI

Olszewski K.L., Morrisey J.M., Wilinski D., Burns J.M., Vaidya A.B., Rabinowitz J.D., Llinas M. Hostparasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009;5:191–199. doi: 10.1016/j.chom.2009.01.004. PubMed DOI PMC

Meireles P., Mendes A.M., Aroeira R.I., Mounce B.C., Vignuzzi M., Staines H.M., Prudencio M. Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci. Rep. 2017;7:4072. doi: 10.1038/s41598-017-04424-y. PubMed DOI PMC

Vincendeau P., Gobert A.P., Daulouede S., Moynet D., Mossalayi M.D. Arginases in parasitic diseases. Trends Parasitol. 2003;19:9–12. doi: 10.1016/S1471-4922(02)00010-7. PubMed DOI

Fairlamb A.H., Cerami A. Metabolism and functions of trypanothione in the kinetoplastida. Annu. Rev. Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. PubMed DOI

Bagnost T., Ma L., da Silva R.F., Rezakhaniha R., Houdayer C., Stergiopulos N., Andre C., Guillaume Y., Berthelot A., Demougeot C. Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc. Res. 2010;87:569–577. doi: 10.1093/cvr/cvq081. PubMed DOI

Singh R., Pervin S., Karimi A., Cederbaum S., Chaudhuri G. Arginase activity in human breast cancer cell lines: Nω -hydroxy-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 2000;60:3305–3312. PubMed

Boucher J.L., Custot J., Vadon S., Delaforge M., Lepoivre M., Tenu J.P., Yapo A., Mansuy D. Nω-hydroxy-l-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem. Biophys. Res. Commun. 1994;203:1614–1621. doi: 10.1006/bbrc.1994.2371. PubMed DOI

Ivanenkov Y.A., Chufarova N.V. Small-molecule arginase inhibitors. Pharm. Pat. Anal. 2013;3:65–85. doi: 10.4155/ppa.13.75. PubMed DOI

Morris S.M. Recent advances in arginine metabolism: Roles and regulation of the arginases. Br. J. Pharmacol. 2009;157:922–930. doi: 10.1111/j.1476-5381.2009.00278.x. PubMed DOI PMC

Montrieux E., Perera W.H., García M., Maes L., Cos P., Monzote L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res. 2014;113:2925–2932. doi: 10.1007/s00436-014-3954-1. PubMed DOI

da Silva E.R., Brogi S., Grillo A., Campiani G., Gemma S., Vieira P.C., Maquiaveli C.D.C. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem. Biol. Drug Des. 2018;93:139–146. doi: 10.1111/cbdd.13391. PubMed DOI

da Silva E.R., Come J.A.A.d.S.S., Brogi S., Calderone V., Chemi G., Campiani G., Oliveira T.M.F.d.S., Pham T.N., Pudlo M., Girard C., et al. Cinnamides target Leishmania amazonensis arginase selectively. Molecules. 2020;25:5271. doi: 10.3390/molecules25225271. PubMed DOI PMC

Come J.A.A.d.S.S., Zhuang Y., Li T., Brogi S., Gemma S., Liu T., da Silva E.R. In vitro and in silico analyses of new cinnamid and rosmarinic acid-derived compounds biosynthesized in Escherichia coli as Leishmania amazonensis arginase inhibitors. Pathogens. 2022;11:1020. doi: 10.3390/pathogens11091020. PubMed DOI PMC

Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI

Bunse M., Daniels R., Grundemann C., Heilmann J., Kammerer D.R., Keusgen M., Lindequist U., Melzig M.F., Morlock G.E., Schulz H., et al. Essential oils as multicomponent mixtures and their potential for human health and well-being. Front. Pharmacol. 2022;13:956541. doi: 10.3389/fphar.2022.956541. PubMed DOI PMC

Ruwizhi N., Aderibigbe B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC

Teixeira C., Ventura C., Gomes J.R.B., Gomes P., Martins F. Cinnamic derivatives as antitubercular agents: Characterization by quantitative structure–activity relationship studies. Molecules. 2020;25:456. doi: 10.3390/molecules25030456. PubMed DOI PMC

Ullah S., Park Y., Ikram M., Lee S., Park C., Kang D., Yang J., Akter J., Yoon S., Chun P., et al. Design, synthesis and anti-melanogenic effect of cinnamamide derivatives. Bioorg. Med. Chem. 2018;26:5672–5681. doi: 10.1016/j.bmc.2018.10.014. PubMed DOI

Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC

Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC

Strharsky T., Pindjakova D., Kos J., Vrablova L., Michnova H., Hosek J., Strakova N., Lelakova V., Leva L., Kavanova L., et al. Study of biological activities and ADMET-related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022;23:3159. doi: 10.3390/ijms23063159. PubMed DOI PMC

Dowling D.P., Ilies M., Olszewski K.L., Portugal S., Mota M.M., Llinas M., Christianson D.W. Crystal structure of arginase from Plasmodium falciparum and implications for l-arginine depletion in malarial infection. Biochemistry. 2010;49:5600–5608. doi: 10.1021/bi100390z. PubMed DOI PMC

Muller I.B., Walter R.D., Wrenger C. Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum. Biol. Chem. 2005;386:117–126. doi: 10.1515/BC.2005.015. PubMed DOI

DePristo M.A., Zilversmit M.M., Hartl D.L. On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. Gene. 2006;378:19–30. doi: 10.1016/j.gene.2006.03.023. PubMed DOI

Di Costanzo L., Sabio G., Mora A., Rodriguez P.C., Ochoa A.C., Centeno F., Christianson D.W. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response. Proc. Natl. Acad. Sci. USA. 2005;102:13058–13063. doi: 10.1073/pnas.0504027102. PubMed DOI PMC

Van de Waterbeemd H., Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI

Bak A., Kozik V., Walczak M., Fraczyk J., Kaminski Z., Kolesinska B., Smolinski A., Jampilek J. Towards intelligent drug design system: Application of artificial dipeptide receptor library in QSAR-oriented studies. Molecules. 2018;23:1964. doi: 10.3390/molecules23081964. PubMed DOI PMC

Maggiora G.M., Shanmugasundaram V. Molecular similarity measures. Methods Mol. Biol. 2011;672:39–100. PubMed

Potemkin V., Grishina M. Principles for 3D/4D QSAR classification of drugs. Drug Discov. Today. 2008;13:952–959. doi: 10.1016/j.drudis.2008.07.006. PubMed DOI

Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC

Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC

Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI

Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC

Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC

Lopez-Lopez E., Prieto-Martinez F.D., Medina-Franco J.L. Activity landscape and molecular modeling to explore the SAR of dual epigenetic inhibitors: A focus on G9a and DNMT1. Molecules. 2018;23:3282. doi: 10.3390/molecules23123282. PubMed DOI PMC

Guha R., Van Drie J.H. Assessing how well a modeling protocol captures a structure—Activity landscape. J. Chem. Inf. Model. 2008;48:1716–1728. doi: 10.1021/ci8001414. PubMed DOI

Guha R., Van Drie J.H. Structure—Activity landscape index: Identifying and quantifying activity cliffs. J. Chem. Inf. Model. 2008;48:646–658. doi: 10.1021/ci7004093. PubMed DOI

Bajorath J., Peltason L., Wawer M., Guha R., Lajiness M.S., Van Drie J.H. Navigating structure—Activity landscapes. Drug Discov. Today. 2009;14:698–705. doi: 10.1016/j.drudis.2009.04.003. PubMed DOI

Holliday J.D., Salim N., Whittle M., Willett P. Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 2003;43:819–828. doi: 10.1021/ci034001x. PubMed DOI

Kolb P., Irwin J.J. Docking screens: Right for the right reasons? Curr. Top. Med. Chem. 2009;9:755–770. doi: 10.2174/156802609789207091. PubMed DOI PMC

Chrobak E., Marciniec K., Dabrowska A., Pecak P., Bebenek E., Kadela-Tomanek M., Bak A., Jastrzebska M., Boryczka S. New phosphorus analogs of bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study. Int. J. Mol. Sci. 2019;20:5209. doi: 10.3390/ijms20205209. PubMed DOI PMC

Verma R.P., Hansch C. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem. 2004;5:1188–1195. doi: 10.1002/cbic.200400094. PubMed DOI

Sugiura M., Naito Y., Yamaura Y., Fukaya C., Yokoyama K. Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase. Chem. Pharm. Bull. 1989;37:1039–1043. doi: 10.1248/cpb.37.1039. PubMed DOI

Degotte G., Pirotte B., Francotte P., Frederich M. Potential of caffeic acid derivatives as antimalarial leads. Lett. Drug Des. Discov. 2022;19:823–836. doi: 10.2174/1570180819666220202160247. DOI

Alson S.G., Jansen O., Cieckiewicz E., Rakotoarimanana H., Rafatro H., Degotte G., Francotte P., Frederich M. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives. J. Pharm. Pharmacol. 2018;70:1349–1356. doi: 10.1111/jphp.12982. PubMed DOI

Kos J., Degotte G., Pindjakova D., Strharsky T., Jankech T., Gonec T., Francotte P., Frederich M., Jampilek J. Insights into Antimalarial activity of N-phenyl-substituted cinnamanilides. Molecules. 2022;27:7799. doi: 10.3390/molecules27227799. PubMed DOI PMC

Bak A., Kozik V., Smolinski A., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI

Hann M., Oprea T. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 2004;8:255–263. doi: 10.1016/j.cbpa.2004.04.003. PubMed DOI

Bak A., Polanski J. Modeling Robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI

Vogt M., Huang Y., Bajorath J. From activity cliffs to activity ridges: Informative data structures for SAR analysis. J. Chem. Inf. Model. 2011;51:1848–1856. doi: 10.1021/ci2002473. PubMed DOI

Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC

Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC

Rykowski S., Gurda-Wozna D., Orlicka-Płocka M., Fedoruk-Wyszomirska A., Giel-Pietraszuk M., Wyszko E., Kowalczyk A., Stączek P., Bak A., Kiliszek A., et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 2021;22:2772. doi: 10.3390/ijms22052772. PubMed DOI PMC

Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI

Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin I.I., Cronin M., Dearden J., Gramatica P., Martin Y.C., Todeschini R., et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014;57:4977–5010. doi: 10.1021/jm4004285. PubMed DOI PMC

Polanski J., Bak A., Gieleciak R., Magdziarz T. Self-organizing neural networks for modeling robust 3D and 4D QSAR: Application to dihydrofolate reductase inhibitors. Molecules. 2004;9:1148–1159. doi: 10.3390/91201148. PubMed DOI PMC

Bak A., Kozik V., Malik I., Jampilek J., Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR QSAR Environ. Res. 2018;29:801–821. doi: 10.1080/1062936X.2018.1517278. PubMed DOI

Chen Y.C. Beware of docking. Trends Pharmacol. Sci. 2015;36:78–95. doi: 10.1016/j.tips.2014.12.001. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC

Pham T.N., Bordage S., Pudlo M., Demougeot C., Thai K.M., Girard-Thernier C. Cinnamide derivatives as mammalian arginase inhibitors: Synthesis, biological evaluation and molecular docking. Int. J. Mol. Sci. 2016;17:1656. doi: 10.3390/ijms17101656. PubMed DOI PMC

Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:443–447. doi: 10.1093/nar/gkv315. PubMed DOI PMC

Colotti G., Baiocco P., Fiorillo A., Boffi A., Poser E., Di Chiaro F., Ilari A. Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs. Future Med. Chem. 2013;5:1861–1875. doi: 10.4155/fmc.13.146. PubMed DOI

Auffinger P., Hays F.A., Westhof E., Shing Ho P. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA. 2004;101:16789–16794. doi: 10.1073/pnas.0407607101. PubMed DOI PMC

Scholfield M.R., Vander Zanden C.M., Shing Ho P. Halogen bonding (X-bonding): A biological perspective. Protein Sci. 2013;22:139–152. doi: 10.1002/pro.2201. PubMed DOI PMC

Trager W., Jensen J.B. Human malaria parasites in continuous culture. Science. 1976;193:673–675. doi: 10.1126/science.781840. PubMed DOI

Bero J., Herent M., Schmeda-Hirschmann G., Frederich M., Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J. Ethnopharmacol. 2013;149:176–183. doi: 10.1016/j.jep.2013.06.018. PubMed DOI

Murebwayire S., Frederich M., Hannaert V., Jonville M.C., Duez P. Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine. 2008;15:728–733. doi: 10.1016/j.phymed.2007.10.005. PubMed DOI

Makler M.T., Ries J.M., Williams J.A., Bancroft J.E., Piper R.C., Gibbins B.L., Hinrichs D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993;48:739–741. doi: 10.4269/ajtmh.1993.48.739. PubMed DOI

Jansen O., Tits M., Angenot L., Nicolas J.P., De Mol P., Nikiema J.B., Frederich M. Antiplasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar. J. 2012;11:289. doi: 10.1186/1475-2875-11-289. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...