Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides

. 2020 Sep 09 ; 25 (18) : . [epub] 20200909

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32916979

Grantová podpora
APVV-17-0373 Slovak Research and Development Agency
LO1305 Ministry of Education, Youth and Sports of the Czech Republic
APVV-0516-12 Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/16_019/0000797 SustES

A series of nineteen novel ring-substituted N-arylcinnamanilides was synthesized and characterized. All investigated compounds were tested against Staphylococcus aureus as the reference strain, two clinical isolates of methicillin-resistant S. aureus (MRSA), and Mycobacterium tuberculosis. (2E)-N-[3-Fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide showed even better activity (minimum inhibitory concentration (MIC) 25.9 and 12.9 µM) against MRSA isolates than the commonly used ampicillin (MIC 45.8 µM). The screening of the cell viability was performed using THP1-Blue™ NF-κB cells and, except for (2E)-N-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (IC50 6.5 µM), none of the discussed compounds showed any significant cytotoxic effect up to 20 μM. Moreover, all compounds were tested for their anti-inflammatory potential; several compounds attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. The lipophilicity values were specified experimentally as well. In addition, in silico approximation of the lipophilicity values was performed employing a set of free/commercial clogP estimators, corrected afterwards by the corresponding pKa calculated at physiological pH and subsequently cross-compared with the experimental parameters. The similarity-driven property space evaluation of structural analogs was carried out using the principal component analysis, Tanimoto metrics, and Kohonen mapping.

Zobrazit více v PubMed

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201. PubMed DOI

Oehling A.K. Bacterial infection as an important triggering factor in bronchial asthma. J. Investig. Allergol. Clin. Immunol. 1999;9:6–13. PubMed

Sreenivasan P.K., Gaffar A. Antibacterials as anti-inflammatory agents: Dual action agents for oral health. Antonie Van Leeuwenhoek. 2008;93:227–239. doi: 10.1007/s10482-007-9197-8. PubMed DOI

Qiu C.C., Caricchio R., Gallucci S. Triggers of autoimmunity: The role of bacterial infections in the extracellular exposure of lupus nuclear autoantigens. Front. Immunol. 2019;10:2608. doi: 10.3389/fimmu.2019.02608. PubMed DOI PMC

Van Elsland D., Neefjes J. Bacterial infections and cancer. EMBO Rep. 2018;19:e46632. doi: 10.15252/embr.201846632. PubMed DOI PMC

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC

Vasaikar S., Bhatia P., Bhatia P.G., Yaiw K.C. Complementary approaches to existing target based drug discovery for identifying novel drug targets. Biomedicines. 2016;4:27. doi: 10.3390/biomedicines4040027. PubMed DOI PMC

Ul Islam N., Amin R., Shahid M., Amin M., Zaib S., Iqbal J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement. Altern. Med. 2017;17:276. doi: 10.1186/s12906-017-1791-3. PubMed DOI PMC

Brullo C., Massa M., Rapetti F., Alfei S., Bertolotto M.B., Montecucco F., Signorello M.G., Bruno O. New hybrid pyrazole and imidazopyrazole antinflammatory agents able to reduce ROS production in different biological targets. Molecules. 2020;25:899. doi: 10.3390/molecules25040899. PubMed DOI PMC

Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC

Bolognesi M.L. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 2013;20:1639–1645. doi: 10.2174/0929867311320130004. PubMed DOI

Talevi A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 2015;6:205. doi: 10.3389/fphar.2015.00205. PubMed DOI PMC

Bräse S. Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation. Royal Society of Chemistry; Cambridge, UK: 2016.

Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI

Das A.B., Goud V.V., Das C. Phenolic compounds as functional ingredients in beverages. In: Grumezescu A.M., Holban A.M., editors. Value-Added Ingredients and Enrichments of Beverages. Woodhead Publishing; Duxford, UK: Elsevier; Duxford, UK: 2019. pp. 285–323.

Sharma P. Cinnamic acid derivatives: A new chapter of various pharmacological activities. J. Chem. Pharm. Res. 2011;3:403–423.

Peperidou A., Kapoukranidou D., Kontogiorgis C., Hadjipavlou-Litina D. Multitarget molecular hybrids of cinnamic acids. Molecules. 2014;19:20197–20226. doi: 10.3390/molecules191220197. PubMed DOI PMC

Peperidou A., Pontiki E., Hadjipavlou-Litina D., Voulgari E., Avgoustakis K. Multifunctional cinnamic acid derivatives. Molecules. 2017;22:1247. doi: 10.3390/molecules22081247. PubMed DOI PMC

Guzman J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC

Lima T.C., Ferreira A.R., Silva D.F., Lima E.O., de Sousa D.P. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat. Prod. Res. 2018;32:572–575. doi: 10.1080/14786419.2017.1317776. PubMed DOI

Dolab J.G., Lima B., Spaczynska E., Kos J., Cano N.H., Feresin G., Tapia A., Garibotto F., Petenatti E., Olivella M., et al. Antimicrobial activity of Annona emarginata (Schltdl.) H. Rainer and most active isolated compound against clinically important bacteria. Molecules. 2018;23:1187. doi: 10.3390/molecules23051187. PubMed DOI PMC

Pontiki E., Peperidou A., Fotopoulos I., Hadjipavlou-Litina D. Cinnamate hybrids: A unique family of compounds with multiple biological activities. Curr. Pharm. Biotechnol. 2018;19:1019–1048. doi: 10.2174/1389201019666181112102702. PubMed DOI

Silva A.T., Bento C.M., Pena A.C., Figueiredo L.M., Prudencio C., Aguiar L., Silva T., Ferraz R., Gomes M.S., Teixeira C., et al. Cinnamic acid conjugates in the rescuing and repurposing of classical antimalarial drugs. Molecules. 2019;25:66. doi: 10.3390/molecules25010066. PubMed DOI PMC

Martinez M.D., Riva D.A., Garcia C., Duran F.J., Burton G. Synthesis and antibacterial activity of difluoromethyl cinnamoyl amides. Molecules. 2020;25:789. doi: 10.3390/molecules25040789. PubMed DOI PMC

Fungicide Resistance Action Committee . FRAC Code List© 2020: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. Fungicide Resistance Action Committee, Croplife International; Brussels, Belgium: 2020.

Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC

Pospisilova S., Kos J., Michnova H., Strharsky T., Cizek A., Jampilek J. N-Arylcinnamamides as Antistaphylococcal Agents; Proceedings of the 4th International Electronic Conference on Medicinal Chemistry, ECMC-4; 1–30 November 2018; [(accessed on 4 August 2020)]. p. 5576. Available online: https://sciforum.net/manuscripts/5576/slides.pdf.

Hosek J., Kos J., Strharsky T., Cerna L., Starha P., Vanco J., Travnicek Z., Devinsky F., Jampilek J. Investigation of anti-inflammatory potential of n-arylcinnamamide derivatives. Molecules. 2019;24:4531. doi: 10.3390/molecules24244531. PubMed DOI PMC

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Van de Waterbeemd H., Gifford E. ADMET in silico modeling: Towads prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI

Fukunishi Y., Nakamura H. Definition of drug-likeness for compound affinity. J. Chem. Inf. Model. 2011;51:1012–1016. doi: 10.1021/ci200035q. PubMed DOI

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Bak A., Kozik V., Smolinski A., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI

Arnott J.A., Planey S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012;7:863–875. doi: 10.1517/17460441.2012.714363. PubMed DOI

Efremov R.G., Chugunov A.O., Pyrkov T.V., Priestle J.P., Arseniev A.S., Jacoby E. Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 2007;14:393–415. doi: 10.2174/092986707779941050. PubMed DOI

Mannhold R., Poda G.I., Ostermann C., Tetko I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of logP methods on more than 96,000 compounds. J. Pharm. Sci. 2009;3:861–864. doi: 10.1002/jps.21494. PubMed DOI

Tetko I., Poda G.I. Application of ALOGPS 2.1 to predict logD distribution coefficient for Pfizer proprietary compounds. J. Med. Chem. 2004;47:5601–5604. PubMed

Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Kah M., Brown C.D. LogD: Lipophilicity for ionisable compounds. Chemosphere. 2008;72:1401–1408. doi: 10.1016/j.chemosphere.2008.04.074. PubMed DOI

Bhal S.K., Kassam K., Peirson I.G., Pearl G.M. The rule of five revisited: Applying logD in place of logP in drug-likeness filters. Mol. Pharm. 2007;40:556–560. doi: 10.1021/mp0700209. PubMed DOI

Xing L., Glen C. Novel methods for the predicition of logP, pKa and logD. J. Chem. Inf. Comput. Sci. 2002;42:796–805. doi: 10.1021/ci010315d. PubMed DOI

Rupp M., Körner R., Tetko I.V. Predicting the pKa of small molecules. Comb. Chem. High Throughput Screen. 2011;14:307–327. doi: 10.2174/138620711795508403. PubMed DOI

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

International Organization for Standardization . ISO 10993-5:2009 Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009. last revision 2017.

Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI

Bender A., Scheiber J., Jenkins J.L., Sukuru S.C. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J. Chem. Inf. Model. 2009;49:108–119. doi: 10.1021/ci800249s. PubMed DOI

Fialkowski M., Bishop K.J.M., Chubukov V.A., Campbell C.J., Grzybowski B.A. Architecture and evolution of organic chemistry. Angew. Chem. Int. Ed. 2005;44:7263–7269. doi: 10.1002/anie.200502272. PubMed DOI

Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC

Bak A., Kozik V., Malik I., Jampilek J., Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR QSAR Environ. Res. 2018;29:801–821. doi: 10.1080/1062936X.2018.1517278. PubMed DOI

Pizova H., Havelkova M., Stepankova S., Bak A., Kauerova T., Kozik V., Oravec M., Imramovsky A., Kollar P., Bobal P., et al. Proline-based carbamates as cholinesterase inhibitors. Molecules. 2017;22:1969. doi: 10.3390/molecules22111969. PubMed DOI PMC

Martel S., Gillerat F., Carosati E., Maiarelli D., Tetko I.V., Mannhold R., Carrupt P.A. Large, chemically diverse dataset of logP measurements for benchmarking studies. Eur. J. Pharm. Sci. 2013;48:21–29. doi: 10.1016/j.ejps.2012.10.019. PubMed DOI

Tetko I.V. Computing chemistry on the web. Drug Discov. Today. 2005;10:1497–1500. doi: 10.1016/S1359-6446(05)03584-1. PubMed DOI

Peltason L., Bajorath J. Systematic computational analysis of structure-activity relationships: Concepts, challenges and recent advances. Future Med. Chem. 2009;1:451–466. doi: 10.4155/fmc.09.41. PubMed DOI

Maggiora G.M., Shanmugasundaram V. Molecular similarity measures. Methods Mol. Biol. 2011;672:39–100. PubMed

Holliday J.D., Salim N., Whittle M., Willett P. Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 2003;43:819–828. doi: 10.1021/ci034001x. PubMed DOI

Rozas I., Du Q., Arteca G.A. Interrelation between electrostatic and lipophilicity potentials on molecular surfaces. J. Mol. Graph. 1995;13:98–108. doi: 10.1016/0263-7855(94)00017-M. PubMed DOI

Zupan J., Gasteiger J. Neural Networks and Drug Design for Chemists. 2nd ed. Wiley-VCH; Weinheim, Germany: 1999.

Bak A., Wyszomirski M., Magdziarz T., Smolinski A., Polanski J. Structure-based modeling of dye-fiber affinity with SOM-4D-QSAR paradigm: Application to set of anthraquinone derivatives. Comb. Chem. High Throughput Screen. 2014;17:485–502. doi: 10.2174/1386207317666140205195252. PubMed DOI

Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC

Bak A., Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI

Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI

Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI

Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC

Xie X.Q., Chen J.Z. Data mining a small molecule drug screening representative subset from NIH PubChem. J. Chem. Inf. Model. 2008;48:465–475. doi: 10.1021/ci700193u. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...