Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
LO1305
Ministry of Education, Youth and Sports of the Czech Republic
APVV-0516-12
Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES
PubMed
32916979
PubMed Central
PMC7570544
DOI
10.3390/molecules25184121
PII: molecules25184121
Knihovny.cz E-zdroje
- Klíčová slova
- IVE-PLS, MTT assay, PCA, antistaphylococcal activity, cinnamamides, cytotoxicity, lipophilicity, quantitative structure-property relationships, synthesis,
- MeSH
- ampicilin farmakologie MeSH
- analýza hlavních komponent MeSH
- antiflogistika farmakologie MeSH
- cinnamáty chemická syntéza MeSH
- inhibiční koncentrace 50 MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- mikrovlny MeSH
- molekulární modely MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- NF-kappa B metabolismus MeSH
- Staphylococcus aureus účinky léků MeSH
- THP-1 buňky MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampicilin MeSH
- antiflogistika MeSH
- cinnamamide MeSH Prohlížeč
- cinnamáty MeSH
- NF-kappa B MeSH
A series of nineteen novel ring-substituted N-arylcinnamanilides was synthesized and characterized. All investigated compounds were tested against Staphylococcus aureus as the reference strain, two clinical isolates of methicillin-resistant S. aureus (MRSA), and Mycobacterium tuberculosis. (2E)-N-[3-Fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide showed even better activity (minimum inhibitory concentration (MIC) 25.9 and 12.9 µM) against MRSA isolates than the commonly used ampicillin (MIC 45.8 µM). The screening of the cell viability was performed using THP1-Blue™ NF-κB cells and, except for (2E)-N-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (IC50 6.5 µM), none of the discussed compounds showed any significant cytotoxic effect up to 20 μM. Moreover, all compounds were tested for their anti-inflammatory potential; several compounds attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. The lipophilicity values were specified experimentally as well. In addition, in silico approximation of the lipophilicity values was performed employing a set of free/commercial clogP estimators, corrected afterwards by the corresponding pKa calculated at physiological pH and subsequently cross-compared with the experimental parameters. The similarity-driven property space evaluation of structural analogs was carried out using the principal component analysis, Tanimoto metrics, and Kohonen mapping.
Central Mining Institute Pl Gwarkow 1 40166 Katowice Poland
Department of Chemistry University of Silesia Szkolna 9 40007 Katowice Poland
Faculty of Pharmacy Comenius University Odbojarov 10 83232 Bratislava Slovakia
Global Change Research Institute CAS Belidla 986 4a 60300 Brno Czech Republic
Zobrazit více v PubMed
Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201. PubMed DOI
Oehling A.K. Bacterial infection as an important triggering factor in bronchial asthma. J. Investig. Allergol. Clin. Immunol. 1999;9:6–13. PubMed
Sreenivasan P.K., Gaffar A. Antibacterials as anti-inflammatory agents: Dual action agents for oral health. Antonie Van Leeuwenhoek. 2008;93:227–239. doi: 10.1007/s10482-007-9197-8. PubMed DOI
Qiu C.C., Caricchio R., Gallucci S. Triggers of autoimmunity: The role of bacterial infections in the extracellular exposure of lupus nuclear autoantigens. Front. Immunol. 2019;10:2608. doi: 10.3389/fimmu.2019.02608. PubMed DOI PMC
Van Elsland D., Neefjes J. Bacterial infections and cancer. EMBO Rep. 2018;19:e46632. doi: 10.15252/embr.201846632. PubMed DOI PMC
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Vasaikar S., Bhatia P., Bhatia P.G., Yaiw K.C. Complementary approaches to existing target based drug discovery for identifying novel drug targets. Biomedicines. 2016;4:27. doi: 10.3390/biomedicines4040027. PubMed DOI PMC
Ul Islam N., Amin R., Shahid M., Amin M., Zaib S., Iqbal J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement. Altern. Med. 2017;17:276. doi: 10.1186/s12906-017-1791-3. PubMed DOI PMC
Brullo C., Massa M., Rapetti F., Alfei S., Bertolotto M.B., Montecucco F., Signorello M.G., Bruno O. New hybrid pyrazole and imidazopyrazole antinflammatory agents able to reduce ROS production in different biological targets. Molecules. 2020;25:899. doi: 10.3390/molecules25040899. PubMed DOI PMC
Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC
Bolognesi M.L. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 2013;20:1639–1645. doi: 10.2174/0929867311320130004. PubMed DOI
Talevi A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 2015;6:205. doi: 10.3389/fphar.2015.00205. PubMed DOI PMC
Bräse S. Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation. Royal Society of Chemistry; Cambridge, UK: 2016.
Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI
Das A.B., Goud V.V., Das C. Phenolic compounds as functional ingredients in beverages. In: Grumezescu A.M., Holban A.M., editors. Value-Added Ingredients and Enrichments of Beverages. Woodhead Publishing; Duxford, UK: Elsevier; Duxford, UK: 2019. pp. 285–323.
Sharma P. Cinnamic acid derivatives: A new chapter of various pharmacological activities. J. Chem. Pharm. Res. 2011;3:403–423.
Peperidou A., Kapoukranidou D., Kontogiorgis C., Hadjipavlou-Litina D. Multitarget molecular hybrids of cinnamic acids. Molecules. 2014;19:20197–20226. doi: 10.3390/molecules191220197. PubMed DOI PMC
Peperidou A., Pontiki E., Hadjipavlou-Litina D., Voulgari E., Avgoustakis K. Multifunctional cinnamic acid derivatives. Molecules. 2017;22:1247. doi: 10.3390/molecules22081247. PubMed DOI PMC
Guzman J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC
Lima T.C., Ferreira A.R., Silva D.F., Lima E.O., de Sousa D.P. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat. Prod. Res. 2018;32:572–575. doi: 10.1080/14786419.2017.1317776. PubMed DOI
Dolab J.G., Lima B., Spaczynska E., Kos J., Cano N.H., Feresin G., Tapia A., Garibotto F., Petenatti E., Olivella M., et al. Antimicrobial activity of Annona emarginata (Schltdl.) H. Rainer and most active isolated compound against clinically important bacteria. Molecules. 2018;23:1187. doi: 10.3390/molecules23051187. PubMed DOI PMC
Pontiki E., Peperidou A., Fotopoulos I., Hadjipavlou-Litina D. Cinnamate hybrids: A unique family of compounds with multiple biological activities. Curr. Pharm. Biotechnol. 2018;19:1019–1048. doi: 10.2174/1389201019666181112102702. PubMed DOI
Silva A.T., Bento C.M., Pena A.C., Figueiredo L.M., Prudencio C., Aguiar L., Silva T., Ferraz R., Gomes M.S., Teixeira C., et al. Cinnamic acid conjugates in the rescuing and repurposing of classical antimalarial drugs. Molecules. 2019;25:66. doi: 10.3390/molecules25010066. PubMed DOI PMC
Martinez M.D., Riva D.A., Garcia C., Duran F.J., Burton G. Synthesis and antibacterial activity of difluoromethyl cinnamoyl amides. Molecules. 2020;25:789. doi: 10.3390/molecules25040789. PubMed DOI PMC
Fungicide Resistance Action Committee . FRAC Code List© 2020: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. Fungicide Resistance Action Committee, Croplife International; Brussels, Belgium: 2020.
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Pospisilova S., Kos J., Michnova H., Strharsky T., Cizek A., Jampilek J. N-Arylcinnamamides as Antistaphylococcal Agents; Proceedings of the 4th International Electronic Conference on Medicinal Chemistry, ECMC-4; 1–30 November 2018; [(accessed on 4 August 2020)]. p. 5576. Available online: https://sciforum.net/manuscripts/5576/slides.pdf.
Hosek J., Kos J., Strharsky T., Cerna L., Starha P., Vanco J., Travnicek Z., Devinsky F., Jampilek J. Investigation of anti-inflammatory potential of n-arylcinnamamide derivatives. Molecules. 2019;24:4531. doi: 10.3390/molecules24244531. PubMed DOI PMC
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Van de Waterbeemd H., Gifford E. ADMET in silico modeling: Towads prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI
Fukunishi Y., Nakamura H. Definition of drug-likeness for compound affinity. J. Chem. Inf. Model. 2011;51:1012–1016. doi: 10.1021/ci200035q. PubMed DOI
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Bak A., Kozik V., Smolinski A., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI
Arnott J.A., Planey S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012;7:863–875. doi: 10.1517/17460441.2012.714363. PubMed DOI
Efremov R.G., Chugunov A.O., Pyrkov T.V., Priestle J.P., Arseniev A.S., Jacoby E. Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 2007;14:393–415. doi: 10.2174/092986707779941050. PubMed DOI
Mannhold R., Poda G.I., Ostermann C., Tetko I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of logP methods on more than 96,000 compounds. J. Pharm. Sci. 2009;3:861–864. doi: 10.1002/jps.21494. PubMed DOI
Tetko I., Poda G.I. Application of ALOGPS 2.1 to predict logD distribution coefficient for Pfizer proprietary compounds. J. Med. Chem. 2004;47:5601–5604. PubMed
Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Kah M., Brown C.D. LogD: Lipophilicity for ionisable compounds. Chemosphere. 2008;72:1401–1408. doi: 10.1016/j.chemosphere.2008.04.074. PubMed DOI
Bhal S.K., Kassam K., Peirson I.G., Pearl G.M. The rule of five revisited: Applying logD in place of logP in drug-likeness filters. Mol. Pharm. 2007;40:556–560. doi: 10.1021/mp0700209. PubMed DOI
Xing L., Glen C. Novel methods for the predicition of logP, pKa and logD. J. Chem. Inf. Comput. Sci. 2002;42:796–805. doi: 10.1021/ci010315d. PubMed DOI
Rupp M., Körner R., Tetko I.V. Predicting the pKa of small molecules. Comb. Chem. High Throughput Screen. 2011;14:307–327. doi: 10.2174/138620711795508403. PubMed DOI
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
International Organization for Standardization . ISO 10993-5:2009 Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009. last revision 2017.
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI
Bender A., Scheiber J., Jenkins J.L., Sukuru S.C. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J. Chem. Inf. Model. 2009;49:108–119. doi: 10.1021/ci800249s. PubMed DOI
Fialkowski M., Bishop K.J.M., Chubukov V.A., Campbell C.J., Grzybowski B.A. Architecture and evolution of organic chemistry. Angew. Chem. Int. Ed. 2005;44:7263–7269. doi: 10.1002/anie.200502272. PubMed DOI
Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC
Bak A., Kozik V., Malik I., Jampilek J., Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR QSAR Environ. Res. 2018;29:801–821. doi: 10.1080/1062936X.2018.1517278. PubMed DOI
Pizova H., Havelkova M., Stepankova S., Bak A., Kauerova T., Kozik V., Oravec M., Imramovsky A., Kollar P., Bobal P., et al. Proline-based carbamates as cholinesterase inhibitors. Molecules. 2017;22:1969. doi: 10.3390/molecules22111969. PubMed DOI PMC
Martel S., Gillerat F., Carosati E., Maiarelli D., Tetko I.V., Mannhold R., Carrupt P.A. Large, chemically diverse dataset of logP measurements for benchmarking studies. Eur. J. Pharm. Sci. 2013;48:21–29. doi: 10.1016/j.ejps.2012.10.019. PubMed DOI
Tetko I.V. Computing chemistry on the web. Drug Discov. Today. 2005;10:1497–1500. doi: 10.1016/S1359-6446(05)03584-1. PubMed DOI
Peltason L., Bajorath J. Systematic computational analysis of structure-activity relationships: Concepts, challenges and recent advances. Future Med. Chem. 2009;1:451–466. doi: 10.4155/fmc.09.41. PubMed DOI
Maggiora G.M., Shanmugasundaram V. Molecular similarity measures. Methods Mol. Biol. 2011;672:39–100. PubMed
Holliday J.D., Salim N., Whittle M., Willett P. Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 2003;43:819–828. doi: 10.1021/ci034001x. PubMed DOI
Rozas I., Du Q., Arteca G.A. Interrelation between electrostatic and lipophilicity potentials on molecular surfaces. J. Mol. Graph. 1995;13:98–108. doi: 10.1016/0263-7855(94)00017-M. PubMed DOI
Zupan J., Gasteiger J. Neural Networks and Drug Design for Chemists. 2nd ed. Wiley-VCH; Weinheim, Germany: 1999.
Bak A., Wyszomirski M., Magdziarz T., Smolinski A., Polanski J. Structure-based modeling of dye-fiber affinity with SOM-4D-QSAR paradigm: Application to set of anthraquinone derivatives. Comb. Chem. High Throughput Screen. 2014;17:485–502. doi: 10.2174/1386207317666140205195252. PubMed DOI
Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC
Bak A., Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI
Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI
Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI
Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC
Xie X.Q., Chen J.Z. Data mining a small molecule drug screening representative subset from NIH PubChem. J. Chem. Inf. Model. 2008;48:465–475. doi: 10.1021/ci700193u. PubMed DOI
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Chemistry towards Biology-Instruct: Snapshot
Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides