Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-17-0373
Slovak Research and Development Agency
1/0116/22
VEGA
CZ.02.1.01/0.0/0.0/15_003/0000495
FIT
CEP Register
RO0518
Czech Ministry of Agriculture
LM2018123
CzeCOS
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES
PubMed
36499415
PubMed Central
PMC9737391
DOI
10.3390/ijms232315090
PII: ijms232315090
Knihovny.cz E-resources
- Keywords
- Michael acceptors, antimicrobial activity, cinnamamides, cytotoxicity, docking study, lipophilicity, structure–activity relationships,
- MeSH
- Anti-Bacterial Agents pharmacology chemistry MeSH
- Cinnamates pharmacology chemistry MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * MeSH
- Microbial Sensitivity Tests MeSH
- Staphylococcal Infections * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Cinnamates MeSH
- cinnamic acid MeSH Browser
A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o) and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococcal (MICs/MBCs 0.15-5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34-44.5 µM) activity. The growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29 to 2.34 µM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36 to 51.7 µM). The performed docking study demonstrated the ability of the compounds to bind to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most interesting purely antibacterial compounds within the prepared molecules.
Global Change Research Institute CAS Belidla 986 4a 603 00 Brno Czech Republic
Institute of Chemistry University of Silesia in Katowice 40 007 Katowice Poland
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska cesta 9 845 10 Bratislava Slovakia
See more in PubMed
Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
WHO Antimicrobial Resistence. [(accessed on 15 September 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
Jampilek J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem. 2018;25:4972–5006. doi: 10.2174/0929867324666170918122633. PubMed DOI
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov. Today. 2022;27:2028–2041. doi: 10.1016/j.drudis.2022.05.006. PubMed DOI
Thomford N.E., Senthebane D.A., Rowe A., Munro D., Seele P., Maroyi A., Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018;19:1578. doi: 10.3390/ijms19061578. PubMed DOI PMC
Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI
Atanasov A.G., Zotchev S.B., Dirsch V.M., The International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Saldivar-Gonzalez F.I., Aldas-Bulos V.D., Medina-Franco J.L., Plisson F. Natural product drug discovery in the artificial intelligence era. Chem. Sci. 2022;13:1526–1546. doi: 10.1039/D1SC04471K. PubMed DOI PMC
Hoskins J.A. The occurrence, metabolism and toxicity of cinnamic acid and related compounds. J. Appl. Toxicol. 1984;4:283–292. doi: 10.1002/jat.2550040602. PubMed DOI
Vogt T. Phenylpropanoid biosynthesis. Mol. Plant. 2010;3:2–20. doi: 10.1093/mp/ssp106. PubMed DOI
Shuab R., Lone R., Koul K.K. Cinnamate and cinnamate derivatives in plants. Acta Physiol. Plant. 2016;38:64. doi: 10.1007/s11738-016-2076-z. DOI
Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI
Ruwizhi N., Aderibigbe B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC
Teixeira C., Ventura C., Gomes J.R.B., Gomes P., Martins F. Cinnamic derivatives as antitubercular agents: Characterization by quantitative structure–activity relationship studies. Molecules. 2020;25:456. doi: 10.3390/molecules25030456. PubMed DOI PMC
Sabbah M., Mendes V., Vistal R.G., Dias D.M.G., Zahorszka M., Mikusova K., Kordulakova J., Coyne A.G., Blundell T.L., Abell C. Fragment-based design of Mycobacterium tuberculosis InhA inhibitors. J. Med. Chem. 2020;63:4749–4761. doi: 10.1021/acs.jmedchem.0c00007. PubMed DOI PMC
Alves do Vale J., Rodrigues M.P., Lima A.M.A., Santiago S.S., de Almeida Lima G.D., Andrade Almeida A., Licursi de Oliveira L., Bressan G.C., Teixeira R.R., Machado-Neves M. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed. Pharmacother. 2022;148:112689. doi: 10.1016/j.biopha.2022.112689. PubMed DOI
Bunse M., Daniels R., Grundemann C., Heilmann J., Kammerer D.R., Keusgen M., Lindequist U., Melzig M.F., Morlock G.E., Schulz H., et al. Essential oils as multicomponent mixtures and their potential for human health and well-being. Front. Pharmacol. 2022;13:956541. doi: 10.3389/fphar.2022.956541. PubMed DOI PMC
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O’Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC
Vinsova J., Cermakova K., Tomeckova A., Ceckova M., Jampilek J., Cermak P., Kunes J., Dolezal M., Staud F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem. 2006;14:5850–5865. doi: 10.1016/j.bmc.2006.05.030. PubMed DOI
Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., et al. Anti-Infective and Herbicidal Activity of N-Substituted 2-Aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O’Mahony J., Liptaj T., et al. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI
Kushkevych I., Vitezova M., Kos J., Kollar P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC
Strharsky T., Pindjakova D., Kos J., Vrablova L., Michnova H., Hosek J., Strakova N., Lelakova V., Leva L., Kavanova L., et al. Study of biological activities and ADMET-related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022;23:3159. doi: 10.3390/ijms23063159. PubMed DOI PMC
Allgauer D.S., Jangra H., Asahara H., Li Z., Chen Q., Zipse H., Ofial A.R., Mayr H. Quantification and theoretical analysis of the electrophilicities of michael acceptors. J. Am. Chem. Soc. 2017;139:13318–13329. doi: 10.1021/jacs.7b05106. PubMed DOI
Liang S.T., Chen C., Chen R.X., Li R., Chen W.L., Jiang G.H., Du L.L. Michael acceptor molecules in natural products and their mechanism of action. Front. Pharmacol. 2022;13:1033003. doi: 10.3389/fphar.2022.1033003. PubMed DOI PMC
Chollet A., Maveyraud L., Lherbet C., Bernardes-Genisson V. An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur. J. Med. Chem. 2018;146:318–343. doi: 10.1016/j.ejmech.2018.01.047. PubMed DOI
Pan P., Knudson S.E., Bommineni G.R., Li H.J., Lai C.T., Liu N., Garcia-Diaz M., Simmerling C., Patil S.S., Slayden R.A., et al. Time-dependent diaryl ether inhibitors of InhA: Structure–activity relationship studies of enzyme inhibition, antibacterial activity, and in vivo efficacy. ChemMedChem. 2014;9:776–791. doi: 10.1002/cmdc.201300429. PubMed DOI PMC
Li H.J., Lai C.T., Pan P., Yu W., Liu N., Bommineni G.R., Garcia-Diaz M., Simmerling C., Tonge P.J. A structural and energetic model for the slow-onset inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA. ACS Chem. Biol. 2014;9:986–993. doi: 10.1021/cb400896g. PubMed DOI PMC
Pliska V., Testa B., van der Waterbeemd H. Lipophilicity in Drug Action and Toxicology. Wiley-VCH; Weinheim, Germany: 1996.
Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Inf. Public. Health. 2020;13:1255–1264. PubMed
Luukinen H., Hammaren M.M., Vanha-Aho L.M., Parikka M. Modeling tuberculosis in Mycobacterium marinum infected adult Zebrafish. J. Vis. Exp. 2018;140:58299. doi: 10.3791/58299. PubMed DOI PMC
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC
Portela C.A., Smart K.F., Tumanov S., Cook G.M., Villas-Boas S.G. Global metabolic response of Enterococcus faecalis to oxygen. J. Bacteriol. 2014;196:2012–2022. doi: 10.1128/JB.01354-13. PubMed DOI PMC
Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary; Boston, MA, USA: 2014. [(accessed on 15 September 2022)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ PubMed
Ramos S., Silva V., Dapkevicius M.d.L.E., Igrejas G., Poeta P. Enterococci, from harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC
Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11:e02962-20. doi: 10.1128/mBio.02962-20. PubMed DOI PMC
Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. [(accessed on 15 September 2022)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Pindjakova D., Pilarova E., Pauk K., Michnova H., Hosek J., Magar P., Cizek A., Imramovsky A., Jampilek J. Study of biological activities and ADMET-related properties of salicylanilide-based peptidomimetics. Int. J. Mol. Sci. 2022;23:11648. doi: 10.3390/ijms231911648. PubMed DOI PMC
Pospisilova S., Kos J., Michnova H., Strharsky T., Cizek A., Jampilek J. N-Arylcinnamamides as antistaphylococcal agents; Proceedings of the 4th International Electronic Conference on Medicinal Chemistry, ECMC-4; 1–30 November 2018; [(accessed on 16 November 2022)]. p. 5576. Available online: https://sciforum.net/manuscripts/5576/slides.pdf.
Sundaramoorthy N.S., Mitra K., Ganesh J.S., Makala H., Lotha R., Bhanuvalli S.R., Ulaganathan V., Tiru V., Sivasubramanian A., Nagarajan S. Ferulic acid derivative inhibits NorA efflux and in combination with ciprofloxacin curtails growth of MRSA in vitro and in vivo. Microb. Pathog. 2018;124:54–62. doi: 10.1016/j.micpath.2018.08.022. PubMed DOI
Pinheiro P.G., Santiago G.M.P., da Silva F.E.F., de Araujo A.C.J., de Oliveira C.R.T., Freitas P.R., Rocha J.E., de Araujo Neto J.B., Costa da Silva M.M., Tintino S.R., et al. Antibacterial activity and inhibition against Staphylococcus aureus NorA efflux pump by ferulic acid and its esterified derivatives. Asian Pac. J. Trop. Biomed. 2021;11:405–413.
Hemaiswarya S., Doble M. Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J. Med. Microbiol. 2010;59:1469–1476. doi: 10.1099/jmm.0.022426-0. PubMed DOI
Sun L., Rogiers G., Michiels C.W. The natural antimicrobial trans-cinnamaldehyde interferes with UDP-N-acetylglucosamine biosynthesis and cell wall homeostasis in Listeria monocytogenes. Foods. 2021;10:1666. doi: 10.3390/foods10071666. PubMed DOI PMC
Jampilek J., Kos J., Strharsky T., Pindjakova D., Vrablova L., Jankech T., Gonec T., Cizek A. Investigation of novel halogenated cinnamanilides; Proceedings of the 11th International Conference on Biomedical Engineering and Biotechnology, ICBEB 2022; Shenzhen, China. 15–18 November 2022; p. 18.
Gill A.O., Holley R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 2006;3:170–174. doi: 10.1016/j.ijfoodmicro.2006.04.046. PubMed DOI
Kos J., Degotte G., Pindjakova D., Strharsky T., Jankech T., Gonec T., Francotte P., Frederich M., Jampilek J. Insights into antimalarial activity of N-phenyl-substituted cinnamanilides. Molecules. 2022;27:7799. doi: 10.3390/molecules27227799. PubMed DOI PMC
Hosek J., Kos J., Strharsky T., Cerna L., Starha P., Vanco J., Travnicek Z., Devinsky F., Jampilek J. Investigation of anti-inflammatory potential of N-arylcinnamamide derivatives. Molecules. 2019;24:4531. doi: 10.3390/molecules24244531. PubMed DOI PMC
Mayer R.J., Ofial A.R. Nucleophilicity of glutathione: A link to Michael acceptor reactivities. Angew. Chem. Int. Ed. Engl. 2019;58:17704–17708. doi: 10.1002/anie.201909803. PubMed DOI PMC
Hearn B.R., Fontaine S.D., Schneider E.L., Kraemer Y., Ashley G.W., Santi D.V. Attenuation of the reaction of Michael acceptors with biologically important nucleophiles. Bioconjug. Chem. 2021;32:794–800. doi: 10.1021/acs.bioconjchem.1c00075. PubMed DOI
Dinkova-Kostova A.T., Massiah M.A., Bozak R.E., Hicks R.J., Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA. 2001;98:3404–3409. doi: 10.1073/pnas.051632198. PubMed DOI PMC
Previti S., Ettari R., Di Chio C., Ravichandran R., Bogacz M., Hellmich U.A., Schirmeister T., Cosconati S., Zappala M. Development of reduced peptide bond pseudopeptide Michael acceptors for the treatment of human african Trypanosomiasis. Molecules. 2022;27:3765. doi: 10.3390/molecules27123765. PubMed DOI PMC
Chu H.W., Sethy B., Hsieh P.W., Horng J.T. Identification of potential drug targets of broad-spectrum inhibitors with a Michael acceptor moiety using shotgun proteomics. Viruses. 2021;13:1756. doi: 10.3390/v13091756. PubMed DOI PMC
Jackson P.A., Widen J.C., Harki D.A., Brummond K.M. Covalent modifiers: A chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-Michael addition reactions. J. Med. Chem. 2017;60:839–885. doi: 10.1021/acs.jmedchem.6b00788. PubMed DOI PMC
Steenackers W., El Houari I., Baekelandt A., Witvrouw K., Dhondt S., Leroux O., Gonzalez N., Corneillie S., Cesarino I., Inze D., et al. cis-Cinnamic acid is a natural plant growth-promoting compound. J. Exp. Bot. 2019;70:6293–6304. doi: 10.1093/jxb/erz392. PubMed DOI PMC
Yen G.C., Chen Y.L., Sun F.M., Chiang Y.L., Lu S.H., Weng C.J. A comparative study on the effectiveness of cis- and trans-form of cinnamic acid treatments for inhibiting invasive activity of human lung adenocarcinoma cells. Eur. J. Pharm. Sci. 2011;44:281–287. doi: 10.1016/j.ejps.2011.08.006. PubMed DOI
Chen Y.L., Huang S.T., Sun F.M., Chiang Y.L., Chiang C.J., Tsai C.M., Weng C.J. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur. J. Pharm. Sci. 2011;43:188–194. doi: 10.1016/j.ejps.2011.04.012. PubMed DOI
Zhang Y., Wei J., Qiu Y., Niu C., Song Z., Yuan Y., Yue T. Structure-dependent inhibition of Stenotrophomonas maltophilia by polyphenol and its impact on cell membrane. Front. Microbiol. 2019;10:2646. doi: 10.3389/fmicb.2019.02646. PubMed DOI PMC
Sullivan T.J., Truglio J.J., Boyne M.E., Novichenok P., Zhang X., Stratton C.F., Li H.J., Kaur T., Amin A., Johnson F., et al. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol. 2006;1:43–53. doi: 10.1021/cb0500042. PubMed DOI
Koul A., Dendouga N., Vergauwen K., Molenberghs B., Vranckx L., Willebrords R., Ristic Z., Lill H., Dorange I., Guillemont J., et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol. 2007;3:323–324. doi: 10.1038/nchembio884. PubMed DOI
Balemans W., Vranckx L., Lounis N., Pop O., Guillemont J., Vergauwen K., Mol S., Gilissen R., Motte M., Lancois D., et al. Novel antibiotics targeting respiratory atp synthesis in Gram-positive pathogenic bacteria. Antimicrob. Agents Chemother. 2012;56:4131–4139. doi: 10.1128/AAC.00273-12. PubMed DOI PMC
Qiu J., Zhang R. DDQ-Promoted direct transformation of benzyl hydrocarbons to amides via tandem reaction of the CDC reaction and Beckmann rearrangement. Org. Biomol. Chem. 2013;45:6008–6012. doi: 10.1039/c3ob41218k. PubMed DOI
Choi J.W., Jang B.K., Cho N., Park J.H., Yeon S.K., Ju E.J., Lee Y.S., Han G., Pae A.N., Kim D.J., et al. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg. Med. Chem. 2015;23:6486–6496. doi: 10.1016/j.bmc.2015.08.012. PubMed DOI
Qin C., Zhou W., Chen F., Ou Y., Jiao N. Iron-catalyzed C-H and C-C bond cleavage: A direct approach to amides from simple hydrocarbons. Angew. Chem. Int. Ed. Engl. 2011;50:12595–12599. doi: 10.1002/anie.201106112. PubMed DOI
Pandia B.K., Gunanathan C. Manganese(I) catalyzed α-alkenylation of amides using alcohols with liberation of hydrogen and water. J. Org. Chem. 2021;86:9994–10005. doi: 10.1021/acs.joc.1c00685. PubMed DOI
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC
Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Schrodinger . The PyMOL Molecular Graphics System. Schrodinger, LLC; New York, NY, USA: 2021. Version 2.5.
Case D.A., Aktulga H.M., Belfon K., Ben-Shalom I.Y., Berryman J.T., Brozell S.R., Cerutti D.S., Cheatham T.E., Cisneros G.A., Cruzeiro V.W.D., et al. Amber 2022, University of California: San Francisco, CA, USA. 2022. [(accessed on 20 October 2022)]. Available online: https://ambermd.org/index.php.
Liu T., Lin Y., Wen X., Jorissen R.N., Gilson M.K. BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;35:198–201. doi: 10.1093/nar/gkl999. PubMed DOI PMC
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC