Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ITMS2014+: 313021BUZ3
Operation Program of Integrated Infrastructure for the 290 project, UpScale of Comenius University Capacities and Competence in Research, Development 291 and Innovation
FC23283
FRS-FNRS
PubMed
36431900
PubMed Central
PMC9698057
DOI
10.3390/molecules27227799
PII: molecules27227799
Knihovny.cz E-zdroje
- Klíčová slova
- Plasmodium, antiplasmodial activity, cinnamanilides, structure-activity relationships,
- MeSH
- antagonisté kyseliny listové * MeSH
- antimalarika * farmakologie MeSH
- chlorochin farmakologie MeSH
- lidé MeSH
- tropická malárie * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonisté kyseliny listové * MeSH
- antimalarika * MeSH
- chlorochin MeSH
Due to the urgent need of innovation in the antimalarial therapeutic arsenal, a series of thirty-seven ring-substituted N-arylcinnamanilides prepared by microwave-assisted synthesis were subjected to primary screening against the chloroquine-sensitive strain of P. falciparum 3D7/MRA-102. The lipophilicity of all compounds was experimentally determined as the logarithm of the capacity factor k, and these data were subsequently used in the discussion of structure-activity relationships. Among the screened compounds, fourteen derivatives exhibited IC50 from 0.58 to 31 µM, whereas (2E)-N-(4-bromo-2-chlorophenyl)-3-phenylprop-2-enamide (24) was the most effective agent (IC50 = 0.58 µM). In addition, (2E)-N-[2,6-dibromo-4-(trifluoromethyl)- phenyl]-3-phenylprop-2-enamide (36), (2E)-N-[4-nitro-3-(trifluoromethyl)phenyl]-3-phenylprop- 2-enamide (18), (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide (23), and (2E)-3-phenyl-N-(3,4,5-trichlorophenyl)prop-2-enamide (33) demonstrated efficacy in the IC50 range from 2.0 to 4.3 µM, comparable to the clinically used standard chloroquine. The results of a cell viability screening performed using THP1-Blue™ NF-κB cells showed that none of these highly active compounds displayed any significant cytotoxic effect up to 20 μM, which makes them promising Plasmodium selective substances for further investigations.
Zobrazit více v PubMed
White N.J., Pukrittayakamee S., Hien T.T., Faiz M.A., Mokuolu O.A., Dondorp A.M. Malaria. Lancet. 2014;383:723–735. doi: 10.1016/S0140-6736(13)60024-0. PubMed DOI
Jampilek J. Design of antimalarial agents based on natural products. Curr. Org. Chem. 2017;21:1824–1846. doi: 10.2174/1385272821666161214121512. DOI
Nqoro X., Tobeka N., Aderibigbe B.A. Quinoline-based hybrid compounds with antimalarial activity. Molecules. 2017;22:2268. doi: 10.3390/molecules22122268. PubMed DOI PMC
Jampilek J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem. 2018;25:4972–5006. doi: 10.2174/0929867324666170918122633. PubMed DOI
WHO-Malaria. [(accessed on 1 October 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria.
Sidhu A.B., Verdier-Pinard D., Fidock D.A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science. 2002;298:210–213. doi: 10.1126/science.1074045. PubMed DOI PMC
Zhu L., van der Pluijm R.W., Kucharski M., Nayak S., Tripathi J., White N.J., Day N.P.J., Faiz A., Pyae Phyo A., Amaratunga C., et al. Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response. Commun. Biol. 2022;5:274. doi: 10.1038/s42003-022-03215-0. PubMed DOI PMC
Placha D., Jampilek J. Impact of nanoparticles on protozoa. In: Rai M., Patel M., Patel R., editors. Nanotechnology in Medicine: Toxicity and Safety. Wiley Blackwell; Hoboken, NJ, USA: 2022. pp. 67–108.
Jampilek J., Kralova K., Fedor P. Bioactivity of nanoformulated synthetic and natural insecticides and their impact on the environment. In: Fraceto L.F., de Castro V.L.S.S., Grillo R., Avila D., Oliveira H.C., de Lima R., editors. Nanopesticides—From Research and Development to Mechanisms of Action and Sustainable Use in Agriculture. Springer; Cham, Switzerland: 2020. pp. 165–225.
Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. doi: 10.2174/0929867321666141011194825. PubMed DOI
Thomford N.E., Senthebane D.A., Rowe A., Munro D., Seele P., Maroyi A., Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018;19:1578. doi: 10.3390/ijms19061578. PubMed DOI PMC
Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI
Atanasov A.G., Zotchev S.B., Dirsch V.M. The international natural product sciences taskforce. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI
Ruwizhi N., Aderibigbe B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC
Pavic K., Perkovic I., Gilja P., Kozlina F., Ester K., Kralj M., Schols D., Hadjipavlou-Litina D., Pontiki E., Zorc B. Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of the amide and acylsemicarbazide type. Molecules. 2016;21:1629. doi: 10.3390/molecules21121629. PubMed DOI PMC
Vandekerckhove S., D’Hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem. 2015;23:5098–5119. doi: 10.1016/j.bmc.2014.12.018. PubMed DOI
Wiesner J., Mitsch A., Wissner P., Jomaa H., Schlitzer M. Structure–activity relationships of novel anti-malarial agents. Part 2: Cinnamic acid derivatives. Bioorg. Med. Chem. Lett. 2001;11:423–424. doi: 10.1016/S0960-894X(00)00684-3. PubMed DOI
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O´Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC
Strharsky T., Pindjakova D., Kos J., Vrablova L., Michnova H., Hosek J., Strakova N., Lelakova V., Leva L., Kavanova L., et al. Study of biological activities and ADMET-related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022;23:3159. doi: 10.3390/ijms23063159. PubMed DOI PMC
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-alkoxyphenylhydroxynaphthalenecarboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI
Pesko M., Kos J., Kralova K., Jampilek J. Inhibition of photosynthetic electron transport by 6-Hydroxynaphthalene-2-carboxanilides. Indian J. Chem. B. 2015;54B:1511–1517.
McCracken S.T., Kaiser M., Boshoff H.I., Boyd P.D., Copp B.R. Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers. Bioorg. Med. Chem. 2012;20:1482–1493. doi: 10.1016/j.bmc.2011.12.053. PubMed DOI PMC
Yadav R.R., Khan S.I., Singh S., Khan I.A., Vishwakarma R.A., Bharate S.B. Synthesis, antimalarial and antitubercular activities of meridianin derivatives. Eur. J. Med. Chem. 2015;98:160–169. doi: 10.1016/j.ejmech.2015.05.020. PubMed DOI
Pavic K., Perkovic I., Pospisilova S., Machado M., Fontinha D., Prudencio M., Jampilek J., Coffey A., Endersen L., Rimac H., et al. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur. J. Med. Chem. 2018;143:769–779. doi: 10.1016/j.ejmech.2017.11.083. PubMed DOI
Chong S.M.S., Manimekalai M.S.S., Sarathy J.P., Williams Z.C., Harold L.K., Cook G.M., Dick T., Pethe K., Bates R.W., Gruber G. Antituberculosis activity of the antimalaria cytochrome bcc oxidase inhibitor SCR0911. ACS Infect. Dis. 2020;6:725–737. doi: 10.1021/acsinfecdis.9b00408. PubMed DOI
Patel A.J., Patel M.P., Dholakia A.B., Patel V.C., Patel D.S. Antitubercular, antimalarial activity and molecular docking study of new synthesized 7-chloroquinoline derivatives. Polycycl. Aromat. Compd. 2022;42:4717–4725. doi: 10.1080/10406638.2021.1909082. DOI
Hosek J., Kos J., Strharsky T., Cerna L., Starha P., Vanco J., Travnicek Z., Devinsky F., Jampilek J. Investigation of anti-inflammatory potential of N-arylcinnamamide derivatives. Molecules. 2019;24:4531. doi: 10.3390/molecules24244531. PubMed DOI PMC
Verma R.P., Hansch C. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem. 2004;5:1188–1195. doi: 10.1002/cbic.200400094. PubMed DOI
Sugiura M., Naito Y., Yamaura Y., Fukaya C., Yokoyama K. Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase. Chem. Pharm. Bull. 1989;37:1039–1043. doi: 10.1248/cpb.37.1039. PubMed DOI
Degotte G., Pirotte B., Francotte P., Frederich M. Potential of caffeic acid derivatives as antimalarial leads. Lett. Drug Des. Discov. 2022;19:823–836. doi: 10.2174/1570180819666220202160247. DOI
Alson S.G., Jansen O., Cieckiewicz E., Rakotoarimanana H., Rafatro H., Degotte G., Francotte P., Frederich M. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives. J. Pharm. Pharmacol. 2018;70:1349–1356. doi: 10.1111/jphp.12982. PubMed DOI
Schlitzer M., Sattler I., Dahse H.M. Different amino acid replacements in CAAX-tetrapeptide based peptidomimetic farnesyltransferase inhibitors. Arch. Pharm. 1999;332:124–132. doi: 10.1002/(SICI)1521-4184(19994)332:4<124::AID-ARDP124>3.0.CO;2-G. PubMed DOI
Schlitzer M., Sattler I. Non-thiol farnesyltransferase inhibitors: The concept of benzophenone-based bisubstrate analogue farnesyltransferase inhibitors. Eur. J. Med. Chem. 2000;35:721–726. doi: 10.1016/S0223-5234(00)00162-8. PubMed DOI
Wiesner J., Mitsch A., Wissner P., Jomaa H., Schlitzer M. Structure-activity relationships of novel anti-malarial agents: 1. Arylacyl and cyclohexylacyl derivatives of 5-amino-2-tolylacetylaminobenzophenone. Pharmazie. 2001;56:443–444. PubMed
Wiesner J., Kettler K., Jomaa H., Schlitzer M. Structure-activity relationships of novel anti-malarial agents. Part 3: N-(4-acylamino-3-benzoylphenyl)-4-propoxycinnamic acid amides. Bioorg. Med. Chem. Lett. 2002;12:543–545. doi: 10.1016/S0960-894X(01)00798-3. PubMed DOI
Wiesner J., Mitsch A., Altenkamper M., Ortmann R., Jomaa H., Schlitzer M. Structure-activity relationships of novel anti-malarial agents part 8. Effect of different central aryls in biarylacryloylaminobenzophenones on antimalarial activity. Pharmazie. 2003;58:854–856. PubMed
Trager W., Jensen J.B. Human malaria parasites in continuous culture. Science. 1976;193:673–675. doi: 10.1126/science.781840. PubMed DOI
Bero J., Herent M., Schmeda-Hirschmann G., Frederich M., Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J. Ethnopharmacol. 2013;149:176–183. doi: 10.1016/j.jep.2013.06.018. PubMed DOI
Murebwayire S., Frederich M., Hannaert V., Jonville M.C., Duez P. Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine. 2008;15:728–733. doi: 10.1016/j.phymed.2007.10.005. PubMed DOI
Makler M.T., Ries J.M., Williams J.A., Bancroft J.E., Piper R.C., Gibbins B.L., Hinrichs D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993;48:739–741. doi: 10.4269/ajtmh.1993.48.739. PubMed DOI
Jansen O., Tits M., Angenot L., Nicolas J.P., De Mol P., Nikiema J.B., Frederich M. Antiplasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar. J. 2012;11:289. doi: 10.1186/1475-2875-11-289. PubMed DOI PMC
da Silva E.R., Brogi S., Grillo A., Campiani G., Gemma S., Vieira P.C., do Carmo Maquiaveli C. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem. Biol. Drug Des. 2019;93:139–146. doi: 10.1111/cbdd.13391. PubMed DOI
da Silva E.R., Come J.A.A.d.S.S., Brogi S., Calderone V., Chemi G., Campiani G., Oliveira T.M.F.d.S., Pham T.N., Pudlo M., Girard C., et al. Cinnamides target Leishmania amazonensis arginase selectively. Molecules. 2020;25:5271. doi: 10.3390/molecules25225271. PubMed DOI PMC
Dowling D.P., Ilies M., Olszewski K.L., Portugal S., Mota M.M., Llinas M., Christianson D.W. Crystal structure of arginase from Plasmodium falciparum and implications for l-arginine depletion in malarial infection. Biochemistry. 2010;49:5600–5608. doi: 10.1021/bi100390z. PubMed DOI PMC
Meireles P., Mendes A.M., Aroeira R.I., Mounce B.C., Vignuzzi M., Staines H.M., Prudencio M. Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci. Rep. 2017;7:4072. doi: 10.1038/s41598-017-04424-y. PubMed DOI PMC
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections