Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
VEGA 1/0116/22
VEGA
LM2018123
CzeCOS
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES
CZ.02.1.01/0.0/0.0/15_003/0000495
FIT
CEP - Centrální evidence projektů
RO0518
Czech Ministry of Agriculture
PubMed
35328580
PubMed Central
PMC8951032
DOI
10.3390/ijms23063159
PII: ijms23063159
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, cinnamamides, cytotoxicity, lipophilicity, structure-activity relationships,
- MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- prasata MeSH
- savci MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampicilin MeSH
- antibakteriální látky MeSH
A series of eighteen 4-chlorocinnamanilides and eighteen 3,4-dichlorocinnamanilides were designed, prepared and characterized. All compounds were evaluated for their activity against gram-positive bacteria and against two mycobacterial strains. Viability on both cancer and primary mammalian cell lines was also assessed. The lipophilicity of the compounds was experimentally determined and correlated together with other physicochemical properties of the prepared derivatives with biological activity. 3,4-Dichlorocinnamanilides showed a broader spectrum of action and higher antibacterial efficacy than 4-chlorocinnamanilides; however, all compounds were more effective or comparable to clinically used drugs (ampicillin, isoniazid, rifampicin). Of the thirty-six compounds, six derivatives showed submicromolar activity against Staphylococcus aureus and clinical isolates of methicillin-resistant S. aureus (MRSA). (2E)-N-[3,5-bis(trifluoromethyl)phenyl]- 3-(4-chlorophenyl)prop-2-enamide was the most potent in series 1. (2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-enamide, (2E)-3-(3,4-dichlorophenyl)-N-[3-(trifluoromethyl)phenyl]prop-2-enamide, (2E)-3-(3,4-dichloro- phenyl)-N-[4-(trifluoromethyl)phenyl]prop-2-enamide and (2E)-3-(3,4-dichlorophenyl)- N-[4-(trifluoromethoxy)phenyl]prop-2-enamide were the most active in series 2 and in addition to activity against S. aureus and MRSA were highly active against Enterococcus faecalis and vancomycin-resistant E. faecalis isolates and against fast-growing Mycobacterium smegmatis and against slow-growing M. marinum, M. tuberculosis non-hazardous test models. In addition, the last three compounds of the above-mentioned showed insignificant cytotoxicity to primary porcine monocyte-derived macrophages.
Zobrazit více v PubMed
Atanasov A.G., Zotchev S.B., Dirsch V.M., The International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. doi: 10.2174/0929867321666141011194825. PubMed DOI
Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI
Goleniowski M., Bonfill M., Cusido R., Palazon J. Phenolic acids. In: Ramawat K., Merillon J.M., editors. Natural Products. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1951–1973.
Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. John Wiley & Sons; New York, NY, USA: 2009.
Shuab R., Lone R., Koul K.K. Cinnamate and cinnamate derivatives in plants. Acta Physiol. Plant. 2016;38:64. doi: 10.1007/s11738-016-2076-z. DOI
Ruwizhi N., Aderibigbe B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC
Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI
Gryko K., Kalinowska M., Ofman P., Choinska R., Swiderski G., Swislocka R., Lewandowski W. Natural cinnamic acid derivatives: A comprehensive study on structural, anti/pro-oxidant, and environmental impacts. Materials. 2021;14:6098. doi: 10.3390/ma14206098. PubMed DOI PMC
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Hosek J., Kos J., Strharsky T., Cerna L., Starha P., Vanco J., Travnicek Z., Devinsky F., Jampilek J. Investigation of anti-inflammatory potential of N-arylcinnamamide derivatives. Molecules. 2019;24:4531. doi: 10.3390/molecules24244531. PubMed DOI PMC
Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC
Kos J., Strharsky T., Stepankova S., Svrckova K., Oravec M., Hosek J., Imramovsky A., Jampilek J. Trimethoxycinnamates and their cholinesterase inhibitory activity. Appl. Sci. 2021;11:4691. doi: 10.3390/app11104691. DOI
WHO Antimicrobial Resistance. 2021. [(accessed on 10 February 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
WHO World Health Statistics. 2021. [(accessed on 10 February 2022)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf.
European Centre for Disease Prevention and Control. 2021. [(accessed on 10 February 2022)]. Available online: https://www.ecdc.europa.eu/en.
WHO Global Tuberculosis Report. 2021. [(accessed on 10 February 2022)]. Available online: File:///C:/Users/UIVATE~1/AppData/Local/Temp/9789240037021-eng.pdf.
Molchanova N., Nielsen J.E., Sorensen K.B., Prabhala B.K., Hansen P.R., Lund R., Barron A.E., Jenssen H. Halogenation as a tool to tune antimicrobial activity of peptoids. Sci. Rep. 2020;10:14805. doi: 10.1038/s41598-020-71771-8. PubMed DOI PMC
Huigens R.W. The path to new halogenated quinolines with enhanced activities against Staphylococcus epidermidis. Microbiol. Insights. 2018;11:1178636118808532. doi: 10.1177/1178636118808532. PubMed DOI PMC
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Pandi A., Kalappan V.M. Pharmacological and therapeutic applications of sinapic acid-an updated review. Mol. Biol. Rep. 2021;48:3733–3745. doi: 10.1007/s11033-021-06367-0. PubMed DOI
Mirzaei S., Gholami M.H., Zabolian A., Saleki H., Farahani M.V., Hamzehlou S., Far F.B., Sharifzadeh S.O., Samarghandian S., Khan H., et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021;171:105759. doi: 10.1016/j.phrs.2021.105759. PubMed DOI
Abu Almaaty A.H., Elgrahy N.A., Fayad E., Abu Ali O.A., Mahdy A.R.E., Barakat L.A.A., El Behery M. Design, synthesis and anticancer evaluation of substituted cinnamic acid bearing 2-quinolone hybrid derivatives. Molecules. 2021;26:4724. doi: 10.3390/molecules26164724. PubMed DOI PMC
Wang R., Yang W., Fan Y., Dehaen W., Li Y., Li H., Wang W., Zheng Q., Huai Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg. Chem. 2019;88:102951. doi: 10.1016/j.bioorg.2019.102951. PubMed DOI
Franca S.B., dos Santos Correia P.R., de Castro I.B.D., da Silva E.F., de Sa Barreto Barros M.E., da Paz Lima D.J. Synthesis, applications and structure-activity relationship (SAR) of cinnamic acid derivatives: A review. Res. Soc. Dev. 2021;10:e28010111691. doi: 10.33448/rsd-v10i1.11691. DOI
Kerns E.H., Di L. Drug-Like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.
Wermuth C., Aldous D., Raboisson P., Rognan D. The Practice of Medicinal Chemistry. 4th ed. Academic Press; San Diego, CA, USA: 2015.
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI
Pliska V., Testa B., van der Waterbeemd H. Lipophilicity in Drug Action and Toxicology. Wiley-VCH; Weinheim, Germany: 1996.
Urner L.M., Lee G.Y., Treacy J.W., Turlik A., Khan S.I., Houk K.N., Jung M.E. Intramolecular N−H⋯F hydrogen bonding interaction in a series of 4-anilino-5-fluoroquinazolines: Experimental and theoretical characterization of electronic and conformational effects. Chem. Eur. J. 2022;28:e202103135. doi: 10.1002/chem.202103135. PubMed DOI PMC
Pietrus W., Kafel R., Bojarski A.J., Kurczab R. Hydrogen bonds with fluorine in ligand–protein complexes-the PDB analysis and energy calculations. Molecules. 2022;27:1005. doi: 10.3390/molecules27031005. PubMed DOI PMC
Imramovsky A., Pejchal V., Stepankova S., Vorcakova K., Jampilek J., Vanco J., Simunek P., Kralovec K., Bruckova L., Mandikova J., et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI
Murray J.S., Seybold P.G., Politzer P. The many faces of fluorine: Some noncovalent interactions of fluorine compounds. J. Chem. Thermodyn. 2021;156:106382. doi: 10.1016/j.jct.2020.106382. DOI
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Inf. Public. Health. 2020;13:1255–1264. PubMed
Luukinen H., Hammaren M.M., Vanha-Aho L.M., Parikka M. Modeling tuberculosis in Mycobacterium marinum infected adult Zebrafish. J. Vis. Exp. 2018;140:58299. doi: 10.3791/58299. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC
Ertl P., Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 2009;1:8. doi: 10.1186/1758-2946-1-8. PubMed DOI PMC
Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O’Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI
Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC
Feng P., Lee K.N., Lee J.W., Zhan C., Ngai M.Y. Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines. Chem. Sci. 2016;7:424–429. doi: 10.1039/C5SC02983J. PubMed DOI PMC
Lee K.N., Lei Z., Morales-Rivera C.A., Liu P., Ngai M.Y. Mechanistic studies on intramolecular C-H trifluoromethoxylation of (hetero)arenes via OCF3-migration. Org. Biomol. Chem. 2016;14:5599–5605. doi: 10.1039/C6OB00132G. PubMed DOI PMC
Logvinenko I.G., Markushyna Y., Kondratov I.S., Vashchenko B.V., Kliachyna M., Tokaryeva Y., Pivnytska V., Grygorenko O.O., Haufe G. Synthesis, physico-chemical properties and microsomal stability of compounds bearing aliphatic trifluoromethoxy group. J. Fluor. Chem. 2020;231:109461. doi: 10.1016/j.jfluchem.2020.109461. DOI
Duhail T., Bortolato T., Mateos J., Anselmi E., Jelier B., Togni A., Magnier E., Dagousset G., Dell’Amico L. Radical α-trifluoromethoxylation of ketones under batch and flow conditions by means of organic photoredox catalysis. Org. Lett. 2021;23:7088–7093. doi: 10.1021/acs.orglett.1c02494. PubMed DOI PMC
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Wu X.-F., Chen B. Synthesis of linear α,β-unsaturated amides from isocyanates and alkenylaluminum reagents. Synlett. 2020;31:788–792. doi: 10.1055/s-0037-1610753. DOI
Zimmerman S.M., Lafontaine A.-A.J., Herrera C.M., Mclean A.B., Trent M.S. A whole-cell screen identifies small bioactives that synergize with polymyxin and exhibit antimicrobial activities against multidrug-resistant bacteria. Antimicrob. Agents Chemother. 2020;64:e01677-e19. doi: 10.1128/AAC.01677-19. PubMed DOI PMC
Liu F., Wu N., Cheng X. Chlorination reaction of aromatic compounds and unsaturated carbon–carbon bonds with chlorine on demand. Org. Lett. 2021;23:3015–3020. doi: 10.1021/acs.orglett.1c00704. PubMed DOI
Passos G.F.S., Gomes M.G.M., de Aquino T.M., de Araujo-Junior J.X., de Souza S.J.M., Cavalcante J.P.M., dos Santos E.C., Bassi E.J., da Silva-Junior E.F. Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of E3-E2-E1 glycoproteins complex from chikungunya virus. Pharmaceuticals. 2020;13:141. doi: 10.3390/ph13070141. PubMed DOI PMC
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Kavanova L., Matiaskova K., Leva L., Stepanova H., Nedbalcova K., Matiasovic J., Faldyna M., Salat J. Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: Apoptosis, production of ROS and formation of multinucleated giant cells. Vet. Res. 2017;48:28. doi: 10.1186/s13567-017-0433-6. PubMed DOI PMC
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides