Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking

. 2012 Aug 24 ; 17 (9) : 10142-58. [epub] 20120824

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22922284

A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.). Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(₃,₄) of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(₄) exhibited slightly more effective AChE inhibitors than in C'(₃). Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.

Zobrazit více v PubMed

Roth H.J., Fenner H. Arzneistoffe. 3rd. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000.

Vinsova J., Imramovsky A. Salicylanilides: Still a topical potential antibacterially active group. Ces. Slov. Farm. 2004;53:294–299. PubMed

Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide acetates: Synthesis and antibacterial evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC

Imramovsky A., Vinsova J., Ferriz J.M., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Imramovsky A., Vinsova J., Ferriz J.M., Buchta V., Jampilek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. PubMed

Ferriz J.M., Vavrova K., Kunc F., Imramovsky A., Stolarikova J., Vavrikova E., Vinsova J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. PubMed

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. PubMed PMC

Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Rao V.S. Principles of Weed Science. 2nd. Science Publishers; Enfield, New Hampshire, UK: 2000.

Metcalf R.L. Structure-Activity relationships for insecticidal carbamates. Bull. World Health Org. 1971;44:43–54. PubMed PMC

Zhao Q., Yang G., Mei X., Yuan H., Ning J. Design of novel carbamate acetylcholinesterase inhibitors based on the multiple binding sites of acetylcholinesterase. J. Pestic. Sci. 2008;34:371–375.

Pejchal V., Stepankova S., Drabina P. Synthesis of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J. Het. Chem. 2011;48:57–62.

Pejchal V., Stepankova S., Padelkova Z., Imramovsky A., Jampilek J. 1,3-Substituted imidazolidine-2,4,5-triones: Synthesis and inhibition of cholinergic enzymes. Molecules. 2011;16:7565–7582. PubMed PMC

Sundberg R.J., Dalvie D., Cordero J., Sabat M., Musallam H.A. Carbamates of (hydroxyphenoxy)methyl heteroaromatic salts as acetylcholinesterase inhibitors and protective agents against organophosphorus compounds. Chem. Res. Toxicol. 1993;6:500–505. doi: 10.1021/tx00034a017. PubMed DOI

Lin G., Liao W.C., Chan C.H., Wu Y.H., Tsai H.J., Hsieh C.W. Quantitative structure-activity relationships for the pre-steady state acetylcholinesterase inhibition by carbamates. J. Biochem. Mol. Toxic. 2004;18:353–360. PubMed

Groner E., Ashani Y., Schorer-Apelbaum D., Sterling J., Herzig Y., Weinstock M. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by two series of novel carbamates. Mol. Pharmacol. 2007;71:1610–1617. doi: 10.1124/mol.107.033928. PubMed DOI

Roy K.K., Dixit A., Saxena A.K. An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis. J. Mol. Graph. Model. 2008;27:197–208. doi: 10.1016/j.jmgm.2008.04.006. PubMed DOI

Chiou S.Y., Huang C.F., Hwang M.T., Lin G. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates. J. Biochem. Mol. Toxic. 2009;23:303–308. doi: 10.1002/jbt.20286. PubMed DOI

Chaudhaery S.S., Roy K.K., Shakya N., Saxena G., Sammi S.R., Nazir A., Nath C., Saxena A.K. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem. 2010;53:6490–6505. PubMed

Greenblatt H.M., Dvir H., Silman I., Sussman J.L. Acetylcholinesterase: A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J. Mol. Neurosci. 2003;20:369–383. doi: 10.1385/JMN:20:3:369. PubMed DOI

Soukup J.E. Alzheimer’s Disease: A Guide to Diagnosis, Treatment, and Management. Greenwood Publishing Group; Westport, CT, USA: 1996.

Lu L.C., Bludau J. Alzheimer’s Disease. Greenwood Publishing Group; Santa Barbara, CA, USA: 2011.

Contestabile A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011;221:334–340. doi: 10.1016/j.bbr.2009.12.044. PubMed DOI

Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry. 1999;66:137–147. PubMed PMC

Imramovsky A., Vinsova J., Ferriz J.M., Kunes J., Pour M., Dolezal M. Salicylanilide esterification: Unexpected formation of novel seven-membered rings. Tetrahedron Lett. 2006;47:5007–5011.

Erkell L., Walum E. Differentiation of cultured neuro-blastoma cells by urea derivates. FEBS Lett. 1979;104:401–404. doi: 10.1016/0014-5793(79)80862-5. PubMed DOI

Ellgehausen H., D’Hondt C., Fuerer R. Reversed-phase chromatography as a general-method for determing octanol-water partition-coefficients. Pestic. Sci. 1981;12:219–227. doi: 10.1002/ps.2780120216. DOI

Briggs G.J. Theoretical and experimental relationships between soil adsorption, octanol-water partition-coefficients, water solubilities, bioconcentartion factors, and the parachor. Agric. Food Chem. 1981;29:1050–1059. doi: 10.1021/jf00107a040. DOI

Ghose A.K., Crippen G.M. Atomic physicochemical parameters for 3-dimensional-structure-directed quantitative structure-activity-relationships. 2. Modelling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 1987;27:21–35. doi: 10.1021/ci00053a005. PubMed DOI

Viswanadhan V.N., Ghose A.K., Revankar G.R., Robins R.K. Atomic physicochemical parameters for 3-dimensional-structure-directed quantitative structure-activity-relationships. 2. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturely-occuring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 1989;29:163–172. doi: 10.1021/ci00063a006. DOI

Broto P., Moreau G., Vandycke C. Molecular structures–Perception, auto-correlation descriptor and SAR studies–System of atomic contributions for the calculation of the normal-octanol water partition-coefficients. Eur. J. Med. Chem. Chim. Theor. 1984;19:71–78.

Hansch C., Leo A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley-Interscience; New York, NY, USA: 1979.

Davies J.H., Campbell W.R., Kearns C.W. Inhibition of fly head acetylcholinesterase by bis-(meta-hydroxphenyl)-trimethylammonium iodide! Esters of polymethylenedicarbamic acid. Biochem. J. 1970;117:221–227. PubMed PMC

Voss G. Effect of N-alkyl Groups of substituted phenyl-N-alkyl carbamates on inhibition of human-plasma cholinesterase. Arch. Toxicol. 1976;36:117–120. PubMed

Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI

Lin M.C., Lin G.Z., Shen Y.F., Jian S.Y., Hsieh D.K., Lin J., Lin G. Synthesis and evaluation of a new series of tri-, di-, and mono-N-alkylcarbamylphloroglucinols as bulky inhibitors of acetylcholinesterase. Chem. Res. Toxicol. 2012;25:1462–1471. PubMed

Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic-structure of acetylcholinesterase from Torpedo california: A prototypic acetylcholine-binding protein. Science. 1991;253:872–879. PubMed

Lin G., Liu Y.C., Lin Y.F., Wu Y.G. Ortho effects in quantitative structure-activity relationships for acetylcholinesterase inhibition by aryl carbamates. J. Enzym. Inh. Med. Chem. 2004;19:395–401. doi: 10.1080/14756360410001733694. PubMed DOI

Lin G., Lee Y.R., Liu Y.C., Wu Y.G. Ortho effects for inhibition mechanisms of butyrylcholinesterase by o-substituted phenyl N-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and lipase. Chem. Res. Toxicol. 2005;18:1124–1131. doi: 10.1021/tx050014o. PubMed DOI

Kryger G., Silman I., Sussman J. Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure. 1999;7:297–307. doi: 10.1016/S0969-2126(99)80040-9. PubMed DOI

Alonso I., Dorronsoro L., Rubio P., Munoz E., Garcia-Palomero M., del Monte A., Bidon-Chanal M., Orozco F.J., Luque A., Castro M., et al. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem. 2005;13:6588–6597. doi: 10.1016/j.bmc.2005.09.029. PubMed DOI

Lin G., Chen G.H., Lu C.P., Yeh S.C. QSARs for peripheral anionic site of butyrylcholinesterasewith inhibitions by 4-acyloxy-biphenyl-4′-N-butylcarbamates. QSAR Comb. Sci. 2005;24:943–952.

Lin G., Chen G.H., Yeh S.C., Lu C.P. Probing the peripheral anionic site of acetylcholinesterase with quantitative structure activity relationships for inhibition by biphenyl-4-acyoxylate-4′-N-butylcarbamates. J. Biochem. Mol. Toxicol. 2005;19:234–243. doi: 10.1002/jbt.20087. PubMed DOI

Rampa A., Bisi A., Valenti P., Recanatini M., Cavalli A., Andrisano V., Cavrini V., Fin L., Buriani A., Giusti P. Acetylcholinesterase inhibitors: Synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyhetero aryl derivatives. J. Med. Chem. 1998;41:3976–3986. PubMed

Rampa A., Piazzi L., Belluti F., Gobbi S., Bisi A., Bartolini M., Andrisano V., Cavrini V., Cavalli A., Recanatini M., et al. Acetylcholinesterase inhibitors: SAR and kinetic studies on omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl derivatives. J. Med. Chem. 2001;44:3810–3820. doi: 10.1021/jm010914b. PubMed DOI

Paz A., Xie Q., Greenblatt H.M., Fu W., Tang Y., Silman I., Qiu Z., Sussman J.L. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime. J. Med. Chem. 2009;52:7593–7603. doi: 10.1021/jm900433t. PubMed DOI

Kwok S.O., Wang K.C., Kwok H.B. An improved method to determine SH and -S-S- group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI

Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. 2004;59:293–296. PubMed

Ekstrom F., Hornberg A., Artursson E., Hammarstrom L.G., Schneider G., Pang Y.P. Structure of HI-6 center dot sarin-acetylcholinesterase determined by X-ray crystallography and molecular dynamics simulation: Reactivator mechanism and design. PLoS One. 2009;4:e5957. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes

. 2024 Apr 15 ; 10 (7) : e29051. [epub] 20240402

Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics

. 2022 Oct 01 ; 23 (19) : . [epub] 20221001

Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides

. 2022 Mar 15 ; 23 (6) : . [epub] 20220315

Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE

. 2021 Aug 31 ; 22 (17) : . [epub] 20210831

Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors

. 2021 Mar 26 ; 22 (7) : . [epub] 20210326

N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity

. 2020 May 12 ; 25 (10) : . [epub] 20200512

Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study

. 2019 Mar 27 ; 20 (7) : . [epub] 20190327

Proline-Based Carbamates as Cholinesterase Inhibitors

. 2017 Nov 14 ; 22 (11) : . [epub] 20171114

Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates

. 2016 Feb 11 ; 21 (2) : . [epub] 20160211

In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA

. 2015 ; 2015 () : 349534. [epub] 20150115

Diethyl 2-(phenylcarbamoyl)phenyl phosphorothioates: synthesis, antimycobacterial activity and cholinesterase inhibition

. 2014 May 30 ; 19 (6) : 7152-68. [epub] 20140530

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...