Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22922284
PubMed Central
PMC6268027
DOI
10.3390/molecules170910142
PII: molecules170910142
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Electrophorus metabolismus MeSH
- fenylkarbamáty metabolismus MeSH
- galantamin metabolismus MeSH
- karbamáty chemie farmakologie MeSH
- katalytická doména MeSH
- molekulární modely MeSH
- rivastigmin MeSH
- salicylanilidy chemie farmakologie MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- fenylkarbamáty MeSH
- galantamin MeSH
- karbamáty MeSH
- rivastigmin MeSH
- salicylanilide MeSH Prohlížeč
- salicylanilidy MeSH
A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.). Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(₃,₄) of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(₄) exhibited slightly more effective AChE inhibitors than in C'(₃). Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.
Zobrazit více v PubMed
Roth H.J., Fenner H. Arzneistoffe. 3rd. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000.
Vinsova J., Imramovsky A. Salicylanilides: Still a topical potential antibacterially active group. Ces. Slov. Farm. 2004;53:294–299. PubMed
Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide acetates: Synthesis and antibacterial evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC
Imramovsky A., Vinsova J., Ferriz J.M., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Imramovsky A., Vinsova J., Ferriz J.M., Buchta V., Jampilek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. PubMed
Ferriz J.M., Vavrova K., Kunc F., Imramovsky A., Stolarikova J., Vavrikova E., Vinsova J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. PubMed
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. PubMed PMC
Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Rao V.S. Principles of Weed Science. 2nd. Science Publishers; Enfield, New Hampshire, UK: 2000.
Metcalf R.L. Structure-Activity relationships for insecticidal carbamates. Bull. World Health Org. 1971;44:43–54. PubMed PMC
Zhao Q., Yang G., Mei X., Yuan H., Ning J. Design of novel carbamate acetylcholinesterase inhibitors based on the multiple binding sites of acetylcholinesterase. J. Pestic. Sci. 2008;34:371–375.
Pejchal V., Stepankova S., Drabina P. Synthesis of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J. Het. Chem. 2011;48:57–62.
Pejchal V., Stepankova S., Padelkova Z., Imramovsky A., Jampilek J. 1,3-Substituted imidazolidine-2,4,5-triones: Synthesis and inhibition of cholinergic enzymes. Molecules. 2011;16:7565–7582. PubMed PMC
Sundberg R.J., Dalvie D., Cordero J., Sabat M., Musallam H.A. Carbamates of (hydroxyphenoxy)methyl heteroaromatic salts as acetylcholinesterase inhibitors and protective agents against organophosphorus compounds. Chem. Res. Toxicol. 1993;6:500–505. doi: 10.1021/tx00034a017. PubMed DOI
Lin G., Liao W.C., Chan C.H., Wu Y.H., Tsai H.J., Hsieh C.W. Quantitative structure-activity relationships for the pre-steady state acetylcholinesterase inhibition by carbamates. J. Biochem. Mol. Toxic. 2004;18:353–360. PubMed
Groner E., Ashani Y., Schorer-Apelbaum D., Sterling J., Herzig Y., Weinstock M. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by two series of novel carbamates. Mol. Pharmacol. 2007;71:1610–1617. doi: 10.1124/mol.107.033928. PubMed DOI
Roy K.K., Dixit A., Saxena A.K. An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis. J. Mol. Graph. Model. 2008;27:197–208. doi: 10.1016/j.jmgm.2008.04.006. PubMed DOI
Chiou S.Y., Huang C.F., Hwang M.T., Lin G. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates. J. Biochem. Mol. Toxic. 2009;23:303–308. doi: 10.1002/jbt.20286. PubMed DOI
Chaudhaery S.S., Roy K.K., Shakya N., Saxena G., Sammi S.R., Nazir A., Nath C., Saxena A.K. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem. 2010;53:6490–6505. PubMed
Greenblatt H.M., Dvir H., Silman I., Sussman J.L. Acetylcholinesterase: A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J. Mol. Neurosci. 2003;20:369–383. doi: 10.1385/JMN:20:3:369. PubMed DOI
Soukup J.E. Alzheimer’s Disease: A Guide to Diagnosis, Treatment, and Management. Greenwood Publishing Group; Westport, CT, USA: 1996.
Lu L.C., Bludau J. Alzheimer’s Disease. Greenwood Publishing Group; Santa Barbara, CA, USA: 2011.
Contestabile A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011;221:334–340. doi: 10.1016/j.bbr.2009.12.044. PubMed DOI
Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry. 1999;66:137–147. PubMed PMC
Imramovsky A., Vinsova J., Ferriz J.M., Kunes J., Pour M., Dolezal M. Salicylanilide esterification: Unexpected formation of novel seven-membered rings. Tetrahedron Lett. 2006;47:5007–5011.
Erkell L., Walum E. Differentiation of cultured neuro-blastoma cells by urea derivates. FEBS Lett. 1979;104:401–404. doi: 10.1016/0014-5793(79)80862-5. PubMed DOI
Ellgehausen H., D’Hondt C., Fuerer R. Reversed-phase chromatography as a general-method for determing octanol-water partition-coefficients. Pestic. Sci. 1981;12:219–227. doi: 10.1002/ps.2780120216. DOI
Briggs G.J. Theoretical and experimental relationships between soil adsorption, octanol-water partition-coefficients, water solubilities, bioconcentartion factors, and the parachor. Agric. Food Chem. 1981;29:1050–1059. doi: 10.1021/jf00107a040. DOI
Ghose A.K., Crippen G.M. Atomic physicochemical parameters for 3-dimensional-structure-directed quantitative structure-activity-relationships. 2. Modelling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 1987;27:21–35. doi: 10.1021/ci00053a005. PubMed DOI
Viswanadhan V.N., Ghose A.K., Revankar G.R., Robins R.K. Atomic physicochemical parameters for 3-dimensional-structure-directed quantitative structure-activity-relationships. 2. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturely-occuring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 1989;29:163–172. doi: 10.1021/ci00063a006. DOI
Broto P., Moreau G., Vandycke C. Molecular structures–Perception, auto-correlation descriptor and SAR studies–System of atomic contributions for the calculation of the normal-octanol water partition-coefficients. Eur. J. Med. Chem. Chim. Theor. 1984;19:71–78.
Hansch C., Leo A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley-Interscience; New York, NY, USA: 1979.
Davies J.H., Campbell W.R., Kearns C.W. Inhibition of fly head acetylcholinesterase by bis-(meta-hydroxphenyl)-trimethylammonium iodide! Esters of polymethylenedicarbamic acid. Biochem. J. 1970;117:221–227. PubMed PMC
Voss G. Effect of N-alkyl Groups of substituted phenyl-N-alkyl carbamates on inhibition of human-plasma cholinesterase. Arch. Toxicol. 1976;36:117–120. PubMed
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI
Lin M.C., Lin G.Z., Shen Y.F., Jian S.Y., Hsieh D.K., Lin J., Lin G. Synthesis and evaluation of a new series of tri-, di-, and mono-N-alkylcarbamylphloroglucinols as bulky inhibitors of acetylcholinesterase. Chem. Res. Toxicol. 2012;25:1462–1471. PubMed
Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic-structure of acetylcholinesterase from Torpedo california: A prototypic acetylcholine-binding protein. Science. 1991;253:872–879. PubMed
Lin G., Liu Y.C., Lin Y.F., Wu Y.G. Ortho effects in quantitative structure-activity relationships for acetylcholinesterase inhibition by aryl carbamates. J. Enzym. Inh. Med. Chem. 2004;19:395–401. doi: 10.1080/14756360410001733694. PubMed DOI
Lin G., Lee Y.R., Liu Y.C., Wu Y.G. Ortho effects for inhibition mechanisms of butyrylcholinesterase by o-substituted phenyl N-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and lipase. Chem. Res. Toxicol. 2005;18:1124–1131. doi: 10.1021/tx050014o. PubMed DOI
Kryger G., Silman I., Sussman J. Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure. 1999;7:297–307. doi: 10.1016/S0969-2126(99)80040-9. PubMed DOI
Alonso I., Dorronsoro L., Rubio P., Munoz E., Garcia-Palomero M., del Monte A., Bidon-Chanal M., Orozco F.J., Luque A., Castro M., et al. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem. 2005;13:6588–6597. doi: 10.1016/j.bmc.2005.09.029. PubMed DOI
Lin G., Chen G.H., Lu C.P., Yeh S.C. QSARs for peripheral anionic site of butyrylcholinesterasewith inhibitions by 4-acyloxy-biphenyl-4′-N-butylcarbamates. QSAR Comb. Sci. 2005;24:943–952.
Lin G., Chen G.H., Yeh S.C., Lu C.P. Probing the peripheral anionic site of acetylcholinesterase with quantitative structure activity relationships for inhibition by biphenyl-4-acyoxylate-4′-N-butylcarbamates. J. Biochem. Mol. Toxicol. 2005;19:234–243. doi: 10.1002/jbt.20087. PubMed DOI
Rampa A., Bisi A., Valenti P., Recanatini M., Cavalli A., Andrisano V., Cavrini V., Fin L., Buriani A., Giusti P. Acetylcholinesterase inhibitors: Synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyhetero aryl derivatives. J. Med. Chem. 1998;41:3976–3986. PubMed
Rampa A., Piazzi L., Belluti F., Gobbi S., Bisi A., Bartolini M., Andrisano V., Cavrini V., Cavalli A., Recanatini M., et al. Acetylcholinesterase inhibitors: SAR and kinetic studies on omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl derivatives. J. Med. Chem. 2001;44:3810–3820. doi: 10.1021/jm010914b. PubMed DOI
Paz A., Xie Q., Greenblatt H.M., Fu W., Tang Y., Silman I., Qiu Z., Sussman J.L. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime. J. Med. Chem. 2009;52:7593–7603. doi: 10.1021/jm900433t. PubMed DOI
Kwok S.O., Wang K.C., Kwok H.B. An improved method to determine SH and -S-S- group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. 2004;59:293–296. PubMed
Ekstrom F., Hornberg A., Artursson E., Hammarstrom L.G., Schneider G., Pang Y.P. Structure of HI-6 center dot sarin-acetylcholinesterase determined by X-ray crystallography and molecular dynamics simulation: Reactivator mechanism and design. PLoS One. 2009;4:e5957. PubMed PMC
Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics
Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE
Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors
Proline-Based Carbamates as Cholinesterase Inhibitors
Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates