1,3-substituted imidazolidine-2,4,5-triones: synthesis and inhibition of cholinergic enzymes

. 2011 Sep 05 ; 16 (9) : 7565-82. [epub] 20110905

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21894089

A series of novel and highly active acetylcholinesterase and butyrylcholinesterase inhibitors derived from substituted benzothiazoles containing an imidazolidine-2,4,5-trione moiety were synthesized and characterized. The molecular structure of 1-(2,6-diisopropyl-phenyl)-3-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-imidazolidine-2,4,5-trione (3g) was determined by single-crystal X-ray diffraction. Both optical isomers are present as two independent molecules in the triclinic crystal system. The lipophilicity of the compounds was determined as the partition coefficient log K(ow) using the traditional shake-flask method. The in vitro inhibitory activity on acetylcholinesterase from electric eel and butyrylcholinesterase isolated from equine serum was determined. The inhibitory activity on acetylcholinesterase was significantly higher than that of the standard drug rivastigmine. The discussed compounds are also promising inhibitors of butyrylcholinesterase, as some of the prepared compounds inhibit butyrylcholinesterase better than the internal standards rivastigmine and galanthamine. The highest inhibitory activity (IC₅₀ = 1.66 μmol/L) corresponds to the compound 1-(4-isopropylphenyl)-3-[(R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethyl]imidazolidine-2,4,5-trione (3d). For all the studied compounds, the relationships between the lipophilicity and the chemical structure as well as their structure-activity relationships are discussed.

Zobrazit více v PubMed

Abbs Fen Rejia T.F., Rajasekharan K.N. Synthesis of 2-[2,4-diaminothiazol-5-oyl]benzothiazoles. J. Het. Chem. 2010;47:994–997. doi: 10.1002/jhet.387. DOI

Huang W., Yang G. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. Bioorg. Med. Chem. 2006;14:8280–8285. doi: 10.1016/j.bmc.2006.09.016. PubMed DOI

Havrylyuk D., Mosula L., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 2010;45:5012–5021. doi: 10.1016/j.ejmech.2010.08.008. PubMed DOI

Bradshaw T.D., Westwell A.D. The development of the antitumour benzothiazole prodrug, phortress, as a clinical candidate. Curr. Med. Chem. 2004;11:1241–1253. PubMed

Song H., Oh S.R., Lee H.K., Han G., Kim J.H., Chang H.W., Don K.E., Rhee H.K., Choo H.Y.P. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg. Med. Chem. 2010;18:7580–7585. PubMed

Paramashivappa R., Kumar P.P., Rao P.V.S., Rao A.S. Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett. 2003;13:657–660. doi: 10.1016/S0960-894X(02)01006-5. PubMed DOI

Kotani T., Ishii A., Nagaki Y., Toyomaki Y., Yago H., Suehiro S., Okukado N., Okamoto K. Highly selective aldose reductase inhibitors. 2. Optimization of the aryl part of 3-(arylmethyl)-2,4,5-trioxoimidazolidine-1-acetic acids. Chem. Pharm. Bull. 1997;45:297–304. doi: 10.1248/cpb.45.297. PubMed DOI

Robin M., Mialhe S., Pique V., Faure R., Galy J.P. Synthesis of two novel classes of tetracycles bearing tetrahydro ring system from benzothiazole 7,8,9,10-tetrahydrothiazolo[5,4-a]acridine and 1,2,3,4-tetrahydro-12H-benzothiazolo[2,3-b]quinazolin-12-one. J. Het. Chem. 2002;39:295–298. doi: 10.1002/jhet.5570390208. DOI

Pejchal V., Stepankova S., Drabina P. Synthesis of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J. Heterocycl. Chem. 2011;48:57–62. doi: 10.1002/jhet.502. DOI

Costanzo M.J., Almond H.R., Hecker L.R., Schott M.R., Yabut S.C., Zhang H.C., Andrade-Gordon P., Corcoran T.W., Giardino E.C., Kauffman J.A. In-depth study of tripeptide-based α-ketoheterocycles as inhibitors of thrombin. Effective utilization of the S1' subsite and its implications to structure-based drug design. J. Med. Chem. 48;2005:1984–2008. PubMed

Cygler M., Schrag J.D., Sussman J.L., Harel M., Silman I., Gentry M.K., Doctor B.P. Relationship between sequence conservation and 3-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993;2:366–382. PubMed PMC

Groner E., Ashani Y., Schorer-Apelbaum D., Sterling J., Herzig Y., Weinstock M. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by two series of novel carbamates. Mol. Pharmacol. 2007;71:1610–1617. doi: 10.1124/mol.107.033928. PubMed DOI

Greenblatt H.M., Dvir H., Silman I., Sussman J.L. Acetylcholinesterase—A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s dinase. J. Mol. Neurosci. 2003;20:369–383. doi: 10.1385/JMN:20:3:369. PubMed DOI

Soukup J.E. Alzheimer’s Disease: A Guide to Diagnosis, Treatment, and Management. Greenwood Publishing Group; Westport, CT, USA: 1996.

Lu L.C., Bludau J. Alzheimer's Disease. Greenwood Publishing Group; Santa Barbara, CA, USA: 2011.

Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatr. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. PubMed DOI PMC

Patel N.B., Rathod R.D. Studies on synthesis and microbial activity of novel benzothiazoles containing 2-hydroxy benzoic acid. Int. J. Chem. Sci. 2006;4:569–575.

Menges M., Hamprecht G., Menke O., Reinhard R., Schafer P., Zagar C., Westphalen K.O., Otten M., Walter H., Basf A.G. Substituted 2-(benzoaryl)pyridines. WO/1999/006394 A1 (PCT/EP1998/003833) 1999 Feb 11;

Reuveni M. Activity of the new fungicide benthiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. Eur. J. Plant. Pathol. 2003;109:243–251. doi: 10.1023/A:1022836105688. DOI

Ishii A., Kotani T., Nagaki Y., Shibayama Y., Toyomaki Y., Okukado N., Ienaga K., Okamoto K. Highly selective aldose reductase inhibitors. 1. 3-(Arylalkyl)-2,4,5-trioxoimidazolidine-1-acetic acids. J. Med. Chem. 1996;39:1924–1927. doi: 10.1021/jm9508393. PubMed DOI

Hijikata C. (Ihara Chemical Industry Co., Ltd.). Process for producing benzothiazolylalkylamine derivatives. WO/2001/074794 A1 (PCT/JP2001/002848) 2001 Oct 11;

Allen F.H., Kennard O., Watson D.G., Brammer L., Orpen A.G., Taylor R. Tables of bond lenghts determined by X-ray and neutron-difraction. 1. Bond lenghts in organic-compounds. J. Chem. Soc. Perkin Trans. 2. 1987;2:1–19.

Yoshihara R., Hosomi H., Aoyama H., Ohba S. N-Propylimidazolidinetrione and N-methyl-N'-phenylethylimidazolidinetrione. Acta Crystallogr. C. 1999;55:594–596. doi: 10.1107/S0108270198017600. DOI

Rodriguez M.A., Andrews N.L., Boyle T.J., Frazer C.S. N-Methylimidazolidinetrione. Acta Crystallogr. E. 2005;61:o2288–o2290.

Davies D.R. The crystal structure of parabanic acid. Acta Crystallogr. 1955;8:129–136. doi: 10.1107/S0365110X5500056X. DOI

Craven B.M., McMullan R.K. Charge density in parabanic acid from X-ray and neutron diffraction. Acta Crystallogr. B. 1979;35:934–945. doi: 10.1107/S0567740879005203. DOI

He X.M., Swaminathan S., Craven B.M., McMullan R.K. Thermal vibrations and electrostatic properties of parabanic acid at 123 and 298 K. Acta Crystallogr. B. 1988;44:271–281. doi: 10.1107/S0108768187011108. PubMed DOI

Blackman A.G., Buckingham D.A., Simpson J. Reactions of coordinated imidazole. Oxidation products and ring cleavage in the reactions of RImH3+ (R = pentaamminecobalt) with acetyl hypobromite and hypobromous acid. Inorg. Chem. 1991;30:1635–1642. doi: 10.1021/ic00007a040. DOI

Weber H.P., Craven B.M. Structure and charge density of the 1:1 complex of thiourea with parabanic acid at 298 K. Acta Crystallogr. B. 1987;43:202–209. doi: 10.1107/S0108768187098069. DOI

Colman P.M., Medlin E.H. The crystal structure of thiourea parabanic acid. Acta Crystallogr. B. 1970;26:1553–1559. doi: 10.1107/S056774087000448X. DOI

Weber H.P., Ruble J.R., Craven B.M., McMullan R.K. The neutron structure at 116 K of the 1:1 complex of perdeuterated parabanic acid and urea. Acta Crystallogr. B. 1980;36:1121–1126. doi: 10.1107/S0567740880005420. DOI

Colman P.M., Medlin E.H. The crystal structure of urea parabanic acid. Acta Crystallogr. B. 1970;26:1547–1553. doi: 10.1107/S0567740870004478. DOI

Sarker S.R., Stone D.M., Evain E.J., Cooley J.H., Willett R.D. Reaction of oxalyl and malonyl chloride with 1,1-dimethyl-2-substituted hydrazides. J. Heterocycl. Chem. 1994;31:1535–1539. doi: 10.1002/jhet.5570310643. DOI

Volkova Y.A., Averina E.B., Rybakov V.B., Kuznetsova T.S. Private Communication. [(accessed on 20 August 2011)]. Available online: http://www.ccdc.cam.ac.uk/products/csd/deposit/communications.php/

Zarzyka-Niemiec I., Lubczak J., Ciunik Z., Wolowiec S., Ruman T. Bis(hydroxyalkylated) derivates of parabanic acid. Heterocycl. Commun. 2002;8:559–564.

Forrester A.R., Howie R.A., Stephen K. Structure of N,N'-diacetylparabanic acid. Acta Crystallogr. C. 1988:860–862.

Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.

Darvesh S., McDonald R.S., Darvesh K.V., Mataija D., Conrad S., Gomez G., Walsh R., Martin E. Selective reversible inhibition of human butyrylcholinesterase by aryl amide derivatives of phenotiazine. Bioorg. Med. Chem. 2007;15:6367–6378. doi: 10.1016/j.bmc.2007.06.060. PubMed DOI

Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI

Chiou S.Y., Huang C.F., Hwang M.T., Lin G. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates. J. Biochem. Mol. Tox. 2009;5:303–308. PubMed

Berger S., Braun S., Kalinowski H.O. NMR Spectroscopy of the Non-Metallic Elements. John Wiley; Chichester, UK: 1997.

Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzym. 1997;276:307–326. PubMed

Ahmed F.R., Hall S.R., Huber C.P. Crystallographic Computing. Munksgaard; Copenhagen, Denmark: 1970.

Altomare A., Cascarano G., Giacovazzo C., Guagliardi A. Completion and refinement of crystal structures with SIR92. J. Appl. Crystallogr. 1993;26:343–350. doi: 10.1107/S0021889892010331. DOI

Sheldrick G.M. SHELXL-97. University of Göttingen; Göttingen, Germany: 1997. PubMed

OECD guideline for the testing of chemicals 107—Partition coefficient (n-octanol/water): Shake Flask Method. [(accessed on 17 August 2011)]. Available online: http://www.oecd.org/

Kwok S.O., Wang K.C., Kwok H.B. An improved method to determine SH and –S–S– group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI

Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. 2004;59:293–296. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...