1,3-substituted imidazolidine-2,4,5-triones: synthesis and inhibition of cholinergic enzymes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21894089
PubMed Central
PMC6264296
DOI
10.3390/molecules16097565
PII: molecules16097565
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa chemie MeSH
- benzothiazoly chemická syntéza chemie MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemická syntéza chemie MeSH
- enzymatické testy MeSH
- hydrofobní a hydrofilní interakce MeSH
- imidazolidiny chemická syntéza chemie MeSH
- krystalografie rentgenová MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- referenční hodnoty MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- benzothiazoly MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- imidazolidiny MeSH
A series of novel and highly active acetylcholinesterase and butyrylcholinesterase inhibitors derived from substituted benzothiazoles containing an imidazolidine-2,4,5-trione moiety were synthesized and characterized. The molecular structure of 1-(2,6-diisopropyl-phenyl)-3-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-imidazolidine-2,4,5-trione (3g) was determined by single-crystal X-ray diffraction. Both optical isomers are present as two independent molecules in the triclinic crystal system. The lipophilicity of the compounds was determined as the partition coefficient log K(ow) using the traditional shake-flask method. The in vitro inhibitory activity on acetylcholinesterase from electric eel and butyrylcholinesterase isolated from equine serum was determined. The inhibitory activity on acetylcholinesterase was significantly higher than that of the standard drug rivastigmine. The discussed compounds are also promising inhibitors of butyrylcholinesterase, as some of the prepared compounds inhibit butyrylcholinesterase better than the internal standards rivastigmine and galanthamine. The highest inhibitory activity (IC₅₀ = 1.66 μmol/L) corresponds to the compound 1-(4-isopropylphenyl)-3-[(R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethyl]imidazolidine-2,4,5-trione (3d). For all the studied compounds, the relationships between the lipophilicity and the chemical structure as well as their structure-activity relationships are discussed.
Zobrazit více v PubMed
Abbs Fen Rejia T.F., Rajasekharan K.N. Synthesis of 2-[2,4-diaminothiazol-5-oyl]benzothiazoles. J. Het. Chem. 2010;47:994–997. doi: 10.1002/jhet.387. DOI
Huang W., Yang G. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. Bioorg. Med. Chem. 2006;14:8280–8285. doi: 10.1016/j.bmc.2006.09.016. PubMed DOI
Havrylyuk D., Mosula L., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 2010;45:5012–5021. doi: 10.1016/j.ejmech.2010.08.008. PubMed DOI
Bradshaw T.D., Westwell A.D. The development of the antitumour benzothiazole prodrug, phortress, as a clinical candidate. Curr. Med. Chem. 2004;11:1241–1253. PubMed
Song H., Oh S.R., Lee H.K., Han G., Kim J.H., Chang H.W., Don K.E., Rhee H.K., Choo H.Y.P. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg. Med. Chem. 2010;18:7580–7585. PubMed
Paramashivappa R., Kumar P.P., Rao P.V.S., Rao A.S. Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett. 2003;13:657–660. doi: 10.1016/S0960-894X(02)01006-5. PubMed DOI
Kotani T., Ishii A., Nagaki Y., Toyomaki Y., Yago H., Suehiro S., Okukado N., Okamoto K. Highly selective aldose reductase inhibitors. 2. Optimization of the aryl part of 3-(arylmethyl)-2,4,5-trioxoimidazolidine-1-acetic acids. Chem. Pharm. Bull. 1997;45:297–304. doi: 10.1248/cpb.45.297. PubMed DOI
Robin M., Mialhe S., Pique V., Faure R., Galy J.P. Synthesis of two novel classes of tetracycles bearing tetrahydro ring system from benzothiazole 7,8,9,10-tetrahydrothiazolo[5,4-a]acridine and 1,2,3,4-tetrahydro-12H-benzothiazolo[2,3-b]quinazolin-12-one. J. Het. Chem. 2002;39:295–298. doi: 10.1002/jhet.5570390208. DOI
Pejchal V., Stepankova S., Drabina P. Synthesis of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J. Heterocycl. Chem. 2011;48:57–62. doi: 10.1002/jhet.502. DOI
Costanzo M.J., Almond H.R., Hecker L.R., Schott M.R., Yabut S.C., Zhang H.C., Andrade-Gordon P., Corcoran T.W., Giardino E.C., Kauffman J.A. In-depth study of tripeptide-based α-ketoheterocycles as inhibitors of thrombin. Effective utilization of the S1' subsite and its implications to structure-based drug design. J. Med. Chem. 48;2005:1984–2008. PubMed
Cygler M., Schrag J.D., Sussman J.L., Harel M., Silman I., Gentry M.K., Doctor B.P. Relationship between sequence conservation and 3-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993;2:366–382. PubMed PMC
Groner E., Ashani Y., Schorer-Apelbaum D., Sterling J., Herzig Y., Weinstock M. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by two series of novel carbamates. Mol. Pharmacol. 2007;71:1610–1617. doi: 10.1124/mol.107.033928. PubMed DOI
Greenblatt H.M., Dvir H., Silman I., Sussman J.L. Acetylcholinesterase—A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s dinase. J. Mol. Neurosci. 2003;20:369–383. doi: 10.1385/JMN:20:3:369. PubMed DOI
Soukup J.E. Alzheimer’s Disease: A Guide to Diagnosis, Treatment, and Management. Greenwood Publishing Group; Westport, CT, USA: 1996.
Lu L.C., Bludau J. Alzheimer's Disease. Greenwood Publishing Group; Santa Barbara, CA, USA: 2011.
Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatr. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. PubMed DOI PMC
Patel N.B., Rathod R.D. Studies on synthesis and microbial activity of novel benzothiazoles containing 2-hydroxy benzoic acid. Int. J. Chem. Sci. 2006;4:569–575.
Menges M., Hamprecht G., Menke O., Reinhard R., Schafer P., Zagar C., Westphalen K.O., Otten M., Walter H., Basf A.G. Substituted 2-(benzoaryl)pyridines. WO/1999/006394 A1 (PCT/EP1998/003833) 1999 Feb 11;
Reuveni M. Activity of the new fungicide benthiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. Eur. J. Plant. Pathol. 2003;109:243–251. doi: 10.1023/A:1022836105688. DOI
Ishii A., Kotani T., Nagaki Y., Shibayama Y., Toyomaki Y., Okukado N., Ienaga K., Okamoto K. Highly selective aldose reductase inhibitors. 1. 3-(Arylalkyl)-2,4,5-trioxoimidazolidine-1-acetic acids. J. Med. Chem. 1996;39:1924–1927. doi: 10.1021/jm9508393. PubMed DOI
Hijikata C. (Ihara Chemical Industry Co., Ltd.). Process for producing benzothiazolylalkylamine derivatives. WO/2001/074794 A1 (PCT/JP2001/002848) 2001 Oct 11;
Allen F.H., Kennard O., Watson D.G., Brammer L., Orpen A.G., Taylor R. Tables of bond lenghts determined by X-ray and neutron-difraction. 1. Bond lenghts in organic-compounds. J. Chem. Soc. Perkin Trans. 2. 1987;2:1–19.
Yoshihara R., Hosomi H., Aoyama H., Ohba S. N-Propylimidazolidinetrione and N-methyl-N'-phenylethylimidazolidinetrione. Acta Crystallogr. C. 1999;55:594–596. doi: 10.1107/S0108270198017600. DOI
Rodriguez M.A., Andrews N.L., Boyle T.J., Frazer C.S. N-Methylimidazolidinetrione. Acta Crystallogr. E. 2005;61:o2288–o2290.
Davies D.R. The crystal structure of parabanic acid. Acta Crystallogr. 1955;8:129–136. doi: 10.1107/S0365110X5500056X. DOI
Craven B.M., McMullan R.K. Charge density in parabanic acid from X-ray and neutron diffraction. Acta Crystallogr. B. 1979;35:934–945. doi: 10.1107/S0567740879005203. DOI
He X.M., Swaminathan S., Craven B.M., McMullan R.K. Thermal vibrations and electrostatic properties of parabanic acid at 123 and 298 K. Acta Crystallogr. B. 1988;44:271–281. doi: 10.1107/S0108768187011108. PubMed DOI
Blackman A.G., Buckingham D.A., Simpson J. Reactions of coordinated imidazole. Oxidation products and ring cleavage in the reactions of RImH3+ (R = pentaamminecobalt) with acetyl hypobromite and hypobromous acid. Inorg. Chem. 1991;30:1635–1642. doi: 10.1021/ic00007a040. DOI
Weber H.P., Craven B.M. Structure and charge density of the 1:1 complex of thiourea with parabanic acid at 298 K. Acta Crystallogr. B. 1987;43:202–209. doi: 10.1107/S0108768187098069. DOI
Colman P.M., Medlin E.H. The crystal structure of thiourea parabanic acid. Acta Crystallogr. B. 1970;26:1553–1559. doi: 10.1107/S056774087000448X. DOI
Weber H.P., Ruble J.R., Craven B.M., McMullan R.K. The neutron structure at 116 K of the 1:1 complex of perdeuterated parabanic acid and urea. Acta Crystallogr. B. 1980;36:1121–1126. doi: 10.1107/S0567740880005420. DOI
Colman P.M., Medlin E.H. The crystal structure of urea parabanic acid. Acta Crystallogr. B. 1970;26:1547–1553. doi: 10.1107/S0567740870004478. DOI
Sarker S.R., Stone D.M., Evain E.J., Cooley J.H., Willett R.D. Reaction of oxalyl and malonyl chloride with 1,1-dimethyl-2-substituted hydrazides. J. Heterocycl. Chem. 1994;31:1535–1539. doi: 10.1002/jhet.5570310643. DOI
Volkova Y.A., Averina E.B., Rybakov V.B., Kuznetsova T.S. Private Communication. [(accessed on 20 August 2011)]. Available online: http://www.ccdc.cam.ac.uk/products/csd/deposit/communications.php/
Zarzyka-Niemiec I., Lubczak J., Ciunik Z., Wolowiec S., Ruman T. Bis(hydroxyalkylated) derivates of parabanic acid. Heterocycl. Commun. 2002;8:559–564.
Forrester A.R., Howie R.A., Stephen K. Structure of N,N'-diacetylparabanic acid. Acta Crystallogr. C. 1988:860–862.
Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Darvesh S., McDonald R.S., Darvesh K.V., Mataija D., Conrad S., Gomez G., Walsh R., Martin E. Selective reversible inhibition of human butyrylcholinesterase by aryl amide derivatives of phenotiazine. Bioorg. Med. Chem. 2007;15:6367–6378. doi: 10.1016/j.bmc.2007.06.060. PubMed DOI
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI
Chiou S.Y., Huang C.F., Hwang M.T., Lin G. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates. J. Biochem. Mol. Tox. 2009;5:303–308. PubMed
Berger S., Braun S., Kalinowski H.O. NMR Spectroscopy of the Non-Metallic Elements. John Wiley; Chichester, UK: 1997.
Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzym. 1997;276:307–326. PubMed
Ahmed F.R., Hall S.R., Huber C.P. Crystallographic Computing. Munksgaard; Copenhagen, Denmark: 1970.
Altomare A., Cascarano G., Giacovazzo C., Guagliardi A. Completion and refinement of crystal structures with SIR92. J. Appl. Crystallogr. 1993;26:343–350. doi: 10.1107/S0021889892010331. DOI
Sheldrick G.M. SHELXL-97. University of Göttingen; Göttingen, Germany: 1997. PubMed
OECD guideline for the testing of chemicals 107—Partition coefficient (n-octanol/water): Shake Flask Method. [(accessed on 17 August 2011)]. Available online: http://www.oecd.org/
Kwok S.O., Wang K.C., Kwok H.B. An improved method to determine SH and –S–S– group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. 2004;59:293–296. PubMed
Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors
Proline-Based Carbamates as Cholinesterase Inhibitors