Sports activities and cardiovascular system change
Jazyk angličtina Země Česko Médium print
Typ dokumentu přehledy, časopisecké články
PubMed
38165749
PubMed Central
PMC10861254
DOI
10.33549/physiolres.935238
PII: 935238
Knihovny.cz E-zdroje
- MeSH
- cvičení fyziologie MeSH
- kardiovaskulární nemoci * diagnóza epidemiologie MeSH
- kardiovaskulární systém * MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- sporty * fyziologie MeSH
- srdce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sports activity is generally considered to be beneficial to health. The World Health Organization (WHO) recommends physical activity as part of a healthy lifestyle. Sports activities significantly affect the cardiovascular system. A number of studies show that they significantly reduce the risk of cardiovascular disease as well as decrease cardiovascular mortality. This review discusses changes in various cardiovascular parameters in athletes - vagotonia/bradycardia, hypertrophy of heart, ECG changes, blood pressure, and variability of cardiovascular parameters. Because of its relationship to the cardiovascular system, VO2max, which is widely used as an indicator of cardiorespiratory fitness, is also discussed. The review concludes with a discussion of reactive oxygen species (ROS) and oxidative stress, particularly in relation to changes in the cardiovascular system in athletes. The review appropriately summarizes the above issues and points out some new implications.
Zobrazit více v PubMed
Myers J. Exercise and Cardiovascular Health. Circulation. 2003;107:e2–5. doi: 10.1161/01.CIR.0000048890.59383.8D. PubMed DOI
Garavaglia L, Gulich D, Defeo MM, Thomas Mailland J, Irurzun IM. The effect of age on the heart rate variability of healthy subjects. PLoS One. 2021;16:e0255894. doi: 10.1371/journal.pone.0255894. PubMed DOI PMC
Stickland MK, Welsh RC, Petersen SR, Tyberg JV, Anderson VD, Jones RL, Taylor DA, et al. Does fitness level modulate the cardiovascular hemodynamic response to exercise? J Appl Physiol. 2006;100:1895–1901. doi: 10.1152/japplphysiol.01485.2005. PubMed DOI
Støylen A, Nes B, Karlsen T. Maksimal forventet hjertefrekvens. Tidsskr Den Nor Legeforening. 2012;132:1729–1729. doi: 10.4045/tidsskr.12.0503. PubMed DOI
Nes BM, Janszky I, Wisløff U, Støylen A, Karlsen T. Age-predicted maximal heart rate in healthy subjects: The HUNT Fitness Study: Maximal heart rate in a population. Scand J Med Sci Sports. 2013;23:697–704. doi: 10.1111/j.1600-0838.2012.01445.x. PubMed DOI
Maron BJ. Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol. 1986;7:190–203. doi: 10.1016/S0735-1097(86)80282-0. PubMed DOI
Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The Upper Limit of Physiologic Cardiac Hypertrophy in Highly Trained Elite Athletes. N Engl J Med. 1991;324:295–301. doi: 10.1056/NEJM199101313240504. PubMed DOI
D'Souza A, Sharma S, Boyett MR. CrossTalk opposing view: Bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node. J Physiol. 2015;593:1749–1751. doi: 10.1113/jphysiol.2014.284356. PubMed DOI PMC
Shin K, Minamitani H, Onishi S, Yamazaki H, Lee M. Assessment of Training-Induced Autonomic Adaptations in Athletes with Spectral Analysis of Cardiovascular Variability Signals. Jpn J Physiol. 1995;45:1053–1069. doi: 10.2170/jjphysiol.45.1053. PubMed DOI
Gademan MG, Uberoi A, Le VV, Mandic S, Van Oort ER, Myers J, Froelicher VF. The effect of sport on computerized electrocardiogram measurements in college athletes. Eur J Prev Cardiol. 2012;19:126–138. doi: 10.1177/1741826710392669. PubMed DOI
Kingsley JD, Figueroa A. Acute and training effects of resistance exercise on heart rate variability. Clin Physiol Funct Imaging. 2016;36:179–187. doi: 10.1111/cpf.12223. PubMed DOI
Biswas S. A Study on Resting Heart Rate and Heart Rate Variability of Athletes, Non-athletes and Cricketers. Am J Sports Sci. 2020;8:95. doi: 10.11648/j.ajss.20200804.13. DOI
Pelliccia A, Maron BJ, Culasso F, Di Paolo M, Spataro A, Biffi A, Caselli G, Piovano P. Clinical Significance of Abnormal Electrocardiographic Patterns in Trained Athletes. Circulation. 2000;102:278–284. doi: 10.1161/01.CIR.102.3.278. PubMed DOI
Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64. doi: 10.1172/JCI108079. PubMed DOI PMC
Bernardo BC, McMullen JR. Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiol Clin. 2016;34:515–530. doi: 10.1016/j.ccl.2016.06.002. PubMed DOI
Ruijsink B, Velasco Forte MN, Duong P, Asner L, Pushparajah K, Frigiola A, Nordsletten D, Razavi R. Synergy in the heart: RV systolic function plays a key role in optimizing LV performance during exercise. Am J Physiol Heart Circ Physiol. 2020;319:H642–H650. doi: 10.1152/ajpheart.00256.2020. PubMed DOI PMC
Arbab-Zadeh A, Perhonen M, Howden E, Peshock RM, Zhang R, Adams-Huet B, Haykowsky MJ, Levine BD. Cardiac Remodeling in Response to 1 Year of Intensive Endurance Training. Circulation. 2014;130:2152–2161. doi: 10.1161/CIRCULATIONAHA.114.010775. PubMed DOI PMC
Wasfy MM, Weiner RB, Wang F, Berkstresser B, Deluca J, Hutter AM, Jr, Picard MH, Baggish AL. Myocardial Adaptations to Competitive Swim Training. Med Sci Sports Exerc. 2019;51:1987–1994. doi: 10.1249/MSS.0000000000002022. PubMed DOI
Vella CA. A review of the stroke volume response to upright exercise in healthy subjects. Br J Sports Med. 2005;39:190–195. doi: 10.1136/bjsm.2004.013037. PubMed DOI PMC
Schnell F, Claessen G, La Gerche A, Claus P, Bogaert J, Delcroix M, Carré F, Heidbuchel H. Atrial volume and function during exercise in health and disease. J Cardiovasc Magn Reson. 2017;19:104. doi: 10.1186/s12968-017-0416-9. PubMed DOI PMC
Schlader ZJ, Mündel T, Barnes MJ, Hodges LD. Peak cardiac power output in healthy, trained men: CPO peak in healthy, trained men. Clin Physiol Funct Imaging. 2010;30:480–484. doi: 10.1111/j.1475-097X.2010.00959.x. PubMed DOI
Rakusan K, Ostadal B. "Physiological hypertrophy of the heart" is a misnomer. Curr Res Cardiol. 2016;3:32. doi: 10.4172/2368-0512.1000060. DOI
Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic Implications of Echocardiographically Determined Left Ventricular Mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–1566. doi: 10.1056/NEJM199005313222203. PubMed DOI
Cohn JN, Bristow MR, Chien KR, Colucci WS, Frazier OH, Leinwand LA, Lorell BH, et al. Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on Heart Failure Research. Circulation. 1997;95:766–770. doi: 10.1161/01.CIR.95.4.766. PubMed DOI
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, et al. Evidence for Cardiomyocyte Renewal in Humans. Science. 2009;324:98–102. doi: 10.1126/science.1164680. PubMed DOI PMC
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu T-D, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–436. doi: 10.1038/nature11682. PubMed DOI PMC
Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell. 2015;161:1566–1575. doi: 10.1016/j.cell.2015.05.026. PubMed DOI
Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–845. doi: 10.1038/359843a0. PubMed DOI
Bloor CM. Angiogenesis during exercise and training. Angiogenesis. 2005;8:263–271. doi: 10.1007/s10456-005-9013-x. PubMed DOI
Oláh A, Németh BT, Mátyás C, Hidi L, Lux Á, Ruppert M, Kellermayer D, et al. Physiological and pathological left ventricular hypertrophy of comparable degree is associated with characteristic differences of in vivo hemodynamics. Am J Physiol Heart Circ Physiol. 2016;310:H587–H597. doi: 10.1152/ajpheart.00588.2015. PubMed DOI
Lattanzi F, Di Bello V, Picano E, Caputo MT, Talarico L, Di Muro C, Landini L, et al. Normal ultrasonic myocardial reflectivity in athletes with increased left ventricular mass. A tissue characterization study. Circulation. 1992;85:1828–1834. doi: 10.1161/01.CIR.85.5.1828. PubMed DOI
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev. 2018;98:419–475. doi: 10.1152/physrev.00043.2016. PubMed DOI
Gupta S, Sen S. Animal Models for Heart Failure. In: WANG QK, editor. Cardiovascular Disease, Volume 2: Molecular Medicine. Vol. 129. Humana Press; 2006. pp. 97–114. PubMed DOI
McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003;100:12355–12360. doi: 10.1073/pnas.1934654100. PubMed DOI PMC
McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Dorfman AL, Longnus S, et al. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol Cell Biol. 2004;24:6231–6240. doi: 10.1128/MCB.24.14.6231-6240.2004. PubMed DOI PMC
Kim J, Wende AR, Sena S, Theobald HA, Soto J, Sloan C, Wayment BE, et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol. 2008;22:2531–2543. doi: 10.1210/me.2008-0265. PubMed DOI PMC
Ikeda H, Shiojima I, Ozasa Y, Yoshida M, Holzenberger M, Kahn CR, Walsh K, et al. Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy. J Mol Cell Cardiol. 2009;47:664–675. doi: 10.1016/j.yjmcc.2009.08.028. PubMed DOI PMC
Riehle C, Wende AR, Zhu Y, Oliveira KJ, Pereira RO, Jaishy BP, Bevins J, et al. Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training. Mol Cell Biol. 2014;34:3450–3460. doi: 10.1128/MCB.00426-14. PubMed DOI PMC
Wang Y, Wisloff U, Kemi O. Animal models in the study of exercise-induced cardiac hypertrophy. Physiol Res. 2010;59:633–644. doi: 10.33549/physiolres.931928. PubMed DOI
Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res. 1998;39:60–76. doi: 10.1016/S0008-6363(98)00110-2. PubMed DOI
Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil. 2007;14:753–760. doi: 10.1097/HJR.0b013e3281eacef1. PubMed DOI
Droste SK, Chandramohan Y, Hill LE, Linthorst ACE, Reul JMHM. Voluntary Exercise Impacts on the Rat Hypothalamic-Pituitary-Adrenocortical Axis Mainly at the Adrenal Level. Neuroendocrinology. 2007;86:26–37. doi: 10.1159/000104770. PubMed DOI
Lambert MI, Van Zyl C, Jaunky R, Lambert EV, Noakes TD. Tests of running performance do not predict subsequent spontaneous running in rats. Physiol Behav. 1996;60:171–176. doi: 10.1016/0031-9384(96)00012-1. PubMed DOI
Melo SFS, Júnior NDS, Baraúna VG, Oliveira EM. Cardiovascular Adaptations Induced by Resistance Training in Animal Models. Int J Med Sci. 2018;15:403–410. doi: 10.7150/ijms.23150. PubMed DOI PMC
Nicastro H, Zanchi NE, Da Luz CR, Chaves DFS, Lancha AH. An Experimental Model for Resistance Exercise in Rodents. J Biomed Biotechnol. 2012;2012:1–7. doi: 10.1155/2012/457065. PubMed DOI PMC
Tamaki T, Uchiyama S, Nakano S. A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exerc. 1992;24:881–886. doi: 10.1249/00005768-199208000-00009. PubMed DOI
Barauna VG, Junior MLB, Costa Rosa LFB, Casarini DE, Krieger JE, Oliveira EM. CARDIOVASCULAR ADAPTATIONS IN RATS SUBMITTED TO A RESISTANCE-TRAINING MODEL. Clin Exp Pharmacol Physiol. 2005;32:249–254. doi: 10.1111/j.1440-1681.2005.04180.x. PubMed DOI
de Araujo AJS, dos Santos ACV, dos Santos Souza K, Aires MB, Santana-Filho VJ, Fioretto ET, Mota MM, Santos MRV. Resistance training controls arterial blood pressure in rats with L-NAME-induced hypertension. (Article in English, Portuguese) Arq Bras Cardiol. 2013;100:339–346. doi: 10.5935/abc.20130051. PubMed DOI
Rosa EF, Silva AC, Ihara SSM, Mora OA, Aboulafia J, Nouailhetas VLA. Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. J Appl Physiol. 2005;99:1569–1575. doi: 10.1152/japplphysiol.00417.2005. PubMed DOI
Konhilas JP, Maass AH, Luckey SW, Stauffer BL, Olson EN, Leinwand LA. Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol. 2004;287:H2768–H2776. doi: 10.1152/ajpheart.00292.2004. PubMed DOI PMC
Barbato JC, Koch LG, Darvish A, Cicila GT, Metting PJ, Britton SL. Spectrum of aerobic endurance running performance in eleven inbred strains of rats. J Appl Physiol. 1998;85:530–536. doi: 10.1152/jappl.1998.85.2.530. PubMed DOI
Koch LG, Britton SL, Barbato JC, Rodenbaugh DW, DiCARLO SE. Phenotypic differences in cardiovascular regulation in inbred rat models of aerobic capacity. Physiol Genomics. 1999;1:63–69. doi: 10.1152/physiolgenomics.1999.1.2.63. PubMed DOI
Lerman I, Harrison BC, Freeman K, Hewett TE, Allen DL, Robbins J, Leinwand LE. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol (1985) 2002;92:2245–2255. doi: 10.1152/japplphysiol.01045.2001. PubMed DOI
Kilikevicius A, Venckunas T, Zelniene R, Carroll AM, Lionikaite S, Ratkevicius A, Lionikas A. Divergent physiological characteristics and responses to endurance training among inbred mouse strains: Training and genetic effects in mice. Scand J Med Sci Sports. 2013;23:657–668. doi: 10.1111/j.1600-0838.2012.01451.x. PubMed DOI
Pitts GC. Body composition in the rat: interactions of exercise, age, sex, and diet. Am J Physiol Regul Integr Comp Physiol. 1984;246:R495–R501. doi: 10.1152/ajpregu.1984.246.4.R495. PubMed DOI
Mason RE, Likar I. A new system of multiple-lead exercise electrocardiography. Am Heart J. 1966;71:196–205. doi: 10.1016/0002-8703(66)90182-7. PubMed DOI
Trachsel LD, Wilhelm M. Das Elektrokardiogramm des Sporttreibenden und der Sport-assoziierte plötzliche Herztod: The athletes' ECG and the exercise related sudden cardiac death. Ther Umsch. 2015;72:303–309. doi: 10.1024/0040-5930/a000680. PubMed DOI
Harmon KG, Asif IM, Klossner D, Drezner JA. Incidence of Sudden Cardiac Death in National Collegiate Athletic Association Athletes. Circulation. 2011;123:1594–1600. doi: 10.1161/CIRCULATIONAHA.110.004622. PubMed DOI
Drezner JA, Sharma S, Wilson MG. Sports cardiology: preventing sudden cardiac death. Br J Sports Med. 2014;48:1133–1133. doi: 10.1136/bjsports-2014-093922. PubMed DOI
Marijon E, Uy-Evanado A, Reinier K, Teodorescu C, Narayanan K, Jouven X, Gunson K, et al. Sudden Cardiac Arrest During Sports Activity in Middle Age. Circulation. 2015;131:1384–1391. doi: 10.1161/CIRCULATIONAHA.114.011988. PubMed DOI PMC
Finocchiaro G, Papadakis M, Robertus JL, Dhutia H, Steriotis AK, Tome M, Mellor G, et al. Etiology of Sudden Death in Sports. J Am Coll Cardiol. 2016;67:2108–2115. doi: 10.1016/j.jacc.2016.02.062. PubMed DOI
Karagjozova I, Petrovska S, Nikolic S, Maleska-Ivanovska V, Georgievska-Ismail L. Frequency of Electrocardiographic Changes in Trained Athletes in the Republic of Macedonia. Open Access Maced J Med Sci. 2017;5:708–713. doi: 10.3889/oamjms.2017.174. PubMed DOI PMC
Mohlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, Budde T, et al. Running: the risk of coronary events Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29:1903–1910. doi: 10.1093/eurheartj/ehn163. PubMed DOI
Aengevaeren VL, Mosterd A, Braber TL, Prakken NHJ, Doevendans PA, Grobbee DE, Thompson PD, et al. Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes. Circulation. 2017;136:138–148. doi: 10.1161/CIRCULATIONAHA.117.027834. PubMed DOI
Merghani A, Maestrini V, Rosmini S, Cox AT, Dhutia H, Bastiaenan R, David S, et al. Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes With a Low Atherosclerotic Risk Profile. Circulation. 2017;136:126–137. doi: 10.1161/CIRCULATIONAHA.116.026964. PubMed DOI
Santora LJ, Marin J, Vangrow J, Minegar C, Robinson M, Mora J, Friede G. Coronary Calcification in Body Builders Using Anabolic Steroids. Prev Cardiol. 2006;9:198–201. doi: 10.1111/j.1559-4564.2006.05210.x. PubMed DOI
Shibata S, Levine BD. Biological aortic age derived from the arterial pressure waveform. J Appl Physiol. 2011;110:981–987. doi: 10.1152/japplphysiol.01261.2010. PubMed DOI PMC
Nerlekar N, Ha FJ, Cheshire C, Rashid H, Cameron JD, Wong DT, Seneviratne S, Brown AJ. Computed Tomographic Coronary Angiography-Derived Plaque Characteristics Predict Major Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging. 2018;11:e006973. doi: 10.1161/CIRCIMAGING.117.006973. PubMed DOI
Maron BJ. Sudden Death in Young Competitive Athletes: Clinical, Demographic, and Pathological Profiles. JAMA. 1996;276:199. doi: 10.1001/jama.1996.03540030033028. PubMed DOI
Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, La Gerche A, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol. 2017;69:1057–1075. doi: 10.1016/j.jacc.2017.01.015. PubMed DOI
Walker HK, Hall WD, Hurst JW. Clinical Methods: The History, Physical, and Laboratory Examinations. Third Edition. Butterworths; 1990. [Accessed January 26, 2023]. http://www.ncbi.nlm.nih.gov/books/NBK201/ PubMed
Al-Makki A, DiPette D, Whelton PK, Murad MH, Mustafa RA, Acharya S, Beheiry HM, et al. Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary. Hypertension. 2022;79:293–301. doi: 10.1161/HYPERTENSIONAHA.121.18192. PubMed DOI PMC
Charkoudian N, Rabbitts JA. Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc. 2009;84:822–830. doi: 10.4065/84.9.822. PubMed DOI PMC
Joyner MJ, Charkoudian N, Wallin BG. Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertens Dallas Tex 1979. 2010;56:10–16. doi: 10.1161/HYPERTENSIONAHA.109.140186. PubMed DOI PMC
Berg T, Jensen J. Simultaneous parasympathetic and sympathetic activation reveals altered autonomic control of heart rate, vascular tension, and epinephrine release in anesthetized hypertensive rats. Front Neurol. 2011;2:71. doi: 10.3389/fneur.2011.00071. PubMed DOI PMC
Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46:121–136. PubMed
Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR, Jr International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev. 1995;47:267–270. PubMed
Perez DM. The Adrenergic Receptors: In the 21st Century. Humana Press; 2006. p. 404. DOI
Ciccarelli M, Santulli G, Pascale V, Trimarco B, Iaccarino G. Adrenergic receptors and metabolism: role in development of cardiovascular disease. Front Physiol. 2013;4:265. doi: 10.3389/fphys.2013.00265. PubMed DOI PMC
Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol. 2021;82:193–197. doi: 10.1016/j.ando.2020.03.012. PubMed DOI
Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc. 2001;33(Supplement):S484–S492. doi: 10.1097/00005768-200106001-00018. PubMed DOI
Wielemborek-Musial K, Szmigielska K, Leszczynska J, Jegier A. Blood Pressure Response to Submaximal Exercise Test in Adults. BioMed Res Int. 2016;2016:1–8. doi: 10.1155/2016/5607507. PubMed DOI PMC
Pescatello LS, Fargo AE, Leach CN, Scherzer HH. Short-term effect of dynamic exercise on arterial blood pressure. Circulation. 1991;83:1557–1561. doi: 10.1161/01.CIR.83.5.1557. PubMed DOI
Mittal S, Jaiswal MK. Pathophysiology of Cardiac Output in Athletes and Non-Athletes. J Adv Med Dent Sci Res. 2018;6:56–58.
MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol (1985) 1985;58:785–790. doi: 10.1152/jappl.1985.58.3.785. PubMed DOI
Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med Auckl NZ. 2003;33:889–919. doi: 10.2165/00007256-200333120-00003. PubMed DOI
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–222. doi: 10.1126/science.6166045. PubMed DOI
Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst. 1990;30:91–100. doi: 10.1016/0165-1838(90)90132-3. PubMed DOI
Izraeli S, Alcalay M, Benjamini Y, Wallach-Kapon R, Tochner Z, Akselrod S. Modulation of the dose-dependent effects of atropine by low-dose pyridostigmine: quantification by spectral analysis of heart rate fluctuations in healthy human beings. Pharmacol Biochem Behav. 1991;39:613–617. doi: 10.1016/0091-3057(91)90136-P. PubMed DOI
Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol. 2003;90:317–325. doi: 10.1007/s00421-003-0953-9. PubMed DOI
Tonhajzerová I, Javorka K. Evaluation of heart rate variability and its usefulness. (Article in Slovak) Cesk Fysiol. 2000;49:51–60. PubMed
Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16:17–32. doi: 10.1080/00140137308924479. PubMed DOI
Javorka K, Javorková J, Petrásková M, Tonhajzerová I, Buchanec J, Chromá O. Heart rate variability and cardiovascular tests in young patients with diabetes mellitus type 1. J Pediatr Endocrinol Metab JPEM. 1999;12:423–431. doi: 10.1515/JPEM.1999.12.3.423. PubMed DOI
Kawamoto M, Kaneko K, Hardian Yuge O. Heart rate variability during artificial ventilation and apnea in brain-damaged rabbits. Am J Physiol. 1996;271:H410–H416. doi: 10.1152/ajpheart.1996.271.2.H410. PubMed DOI
Wong A, Figueroa A. Effects of Acute Stretching Exercise and Training on Heart Rate Variability: A Review. J Strength Cond Res. 2021;35:1459–1466. doi: 10.1519/JSC.0000000000003084. PubMed DOI
Pal GK, Adithan C, Ananthanarayanan PH, Pal P, Nanda N, Durgadevi T, Lalitha V, et al. Sympathovagal imbalance contributes to prehypertension status and cardiovascular risks attributed by insulin resistance, inflammation, dyslipidemia and oxidative stress in first degree relatives of type 2 diabetics. PLoS One. 2013;8:e78072. doi: 10.1371/journal.pone.0078072. PubMed DOI PMC
Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–131. doi: 10.1016/j.ijcard.2009.09.543. PubMed DOI
Chen JL, Yeh DP, Lee JP, Chen C-Y, Huang C-Y, Lee S-D, Chen C-C, et al. Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. J Strength Cond Res. 2011;25:1546–1552. doi: 10.1519/JSC.0b013e3181da7858. PubMed DOI
Heffernan KS, Sosnoff JJ, Jae SY, Gates GJ, Fernhall B. Acute resistance exercise reduces heart rate complexity and increases QTc interval. Int J Sports Med. 2008;29:289–293. doi: 10.1055/s-2007-965363. PubMed DOI
Kingsley JD, Hochgesang S, Brewer A, Buxton E, Martinson M, Heidner G. Autonomic modulation in resistance-trained individuals after acute resistance exercise. Int J Sports Med. 2014;35:851–856. doi: 10.1055/s-0034-1371836. PubMed DOI
Karavirta L, Tulppo MP, Laaksonen DE, Nyman K, Laukkanen RT, Kinnunen H, Häkkinen A, Häkkinen K. Heart rate dynamics after combined endurance and strength training in older men. Med Sci Sports Exerc. 2009;41:1436–1443. doi: 10.1249/MSS.0b013e3181994a91. PubMed DOI
Wanderley FAC, Moreira A, Sokhatska O, Palmares C, Moreira P, Sandercock G, Oliveira J, Carvalho J. Differential responses of adiposity, inflammation and autonomic function to aerobic versus resistance training in older adults. Exp Gerontol. 2013;48:326–333. doi: 10.1016/j.exger.2013.01.002. PubMed DOI
Kingsley JD, McMillan V, Figueroa A. The effects of 12 weeks of resistance exercise training on disease severity and autonomic modulation at rest and after acute leg resistance exercise in women with fibromyalgia. Arch Phys Med Rehabil. 2010;91:1551–1557. doi: 10.1016/j.apmr.2010.07.003. PubMed DOI
Levy WC, Cerqueira MD, Harp GD, Johannessen KA, Abrass IB, Schwartz RS, Stratton JR. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol. 1998;82:1236–1241. doi: 10.1016/S0002-9149(98)00611-0. PubMed DOI
Raffin J, Barthélémy JC, Dupré C, Pichot V, Berger M, Féasson L, Busso T. Exercise Frequency Determines Heart Rate Variability Gains in Older People: A Meta-Analysis and Meta-Regression. Sports Med. 2019;49:719–729. doi: 10.1007/s40279-019-01097-7. PubMed DOI
Verheyden B, Eijnde BO, Beckers F, Vanhees L, Aubert AE. Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55–75 years. J Sports Sci. 2006;24:1137–1147. doi: 10.1080/02640410500497634. PubMed DOI
Asayama K, Schutte R, Li Y, Hansen TW, Staessen JA. Blood pressure variability in risk stratification: What does it add? Clin Exp Pharmacol Physiol. 2014;41:1–8. doi: 10.1111/1440-1681.12091. PubMed DOI
Seidel M, Pagonas N, Seibert FS, Bauer F, Rohn B, Vlatsas S, Mühlberger D, et al. The differential impact of aerobic and isometric handgrip exercise on blood pressure variability and central aortic blood pressure. J Hypertens. 2021;39:1269–1273. doi: 10.1097/HJH.0000000000002774. PubMed DOI
Chehuen M, da R, Cucato GG, de Carvalho CRF, Zerati AE, Leicht A, Wolosker N, Ritti-Dias RM, de Moraes Forjaz CL. Walking Training Improves Ambulatory Blood Pressure Variability in Claudication. (Article in English, Portuguese) Arq Bras Cardiol. 2021;116:898–905. doi: 10.36660/abc.20190822. PubMed DOI PMC
Matias LAS, Mariano IM, Batista JP, de Souza TCF, Amaral AL, Dechichi JGC, de Lima Rodrigues M, et al. Acute and chronic effects of combined exercise on ambulatory blood pressure and its variability in hypertensive postmenopausal women. Chin J Physiol. 2020;63:227–234. doi: 10.4103/CJP.CJP_61_20. PubMed DOI
Mariano IM, Dechichi JGC, Matias LAS, de Lima Rodrigues M, Batista JP, de Souza TCF, Amaral AL, et al. Ambulatory blood pressure variability and combined exercise training: comparison between hypertensive and normotensive postmenopausal women. Blood Press Monit. 2020;25:338–345. doi: 10.1097/MBP.0000000000000480. PubMed DOI
La Rovere MT, Pinna GD, Raczak G. Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol Off J Int Soc Holter Noninvasive Electrocardiol Inc. 2008;13:191–207. doi: 10.1111/j.1542-474X.2008.00219.x. PubMed DOI PMC
Teixeira AL, Ritti-Dias R, Antonino D, Bottaro M, Millar PJ, Vianna LC. Sex Differences in Cardiac Baroreflex Sensitivity after Isometric Handgrip Exercise. Med Sci Sports Exerc. 2018;50:770–777. doi: 10.1249/MSS.0000000000001487. PubMed DOI
Rodríguez-Núñez I, Pontes RB, Romero F, Campos RR. Effects of physical exercise on baroreflex sensitivity and renal sympathetic nerve activity in chronic nicotine-treated rats. Can J Physiol Pharmacol. 2021;99:786–794. doi: 10.1139/cjpp-2020-0381. PubMed DOI
Tomoto T, Repshas J, Zhang R, Tarumi T. Midlife aerobic exercise and dynamic cerebral autoregulation: associations with baroreflex sensitivity and central arterial stiffness. J Appl Physiol (1985) 2021;131:1599–1612. doi: 10.1152/japplphysiol.00243.2021. PubMed DOI PMC
Kingsley JD, Tai YL, Marshall EM, Glasgow A, Oliveira R, Parks JC, Mayo X. Autonomic modulation and baroreflex sensitivity after acute resistance exercise: responses between sexes. J Sports Med Phys Fitness. 2019;59:1036–1044. doi: 10.23736/S0022-4707.18.08864-3. PubMed DOI
van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992;72:881–940. doi: 10.1152/physrev.1992.72.4.881. PubMed DOI
Masoud WGT, Ussher JR, Wang W, et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res. 2014;101:30–38. doi: 10.1093/cvr/cvt216. PubMed DOI
Ong SB, Hall AR, Hausenloy DJ. Mitochondrial Dynamics in Cardiovascular Health and Disease. Antioxid Redox Signal. 2013;19:400–414. doi: 10.1089/ars.2012.4777. PubMed DOI PMC
Disatnik MH, Hwang S, Ferreira JCB, Mochly-Rosen D. New therapeutics to modulate mitochondrial dynamics and mitophagy in cardiac diseases. J Mol Med. 2015;93:279–287. doi: 10.1007/s00109-015-1256-4. PubMed DOI PMC
Jiang HK, Wang YH, Sun L, He X, Zhao M, Feng Z-H, Yu X-J, Zang W-J. Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: Roles of mitochondrial network dynamics. Int J Mol Sci. 2014;15:5304–5322. doi: 10.3390/ijms15045304. PubMed DOI PMC
Coronado M, Fajardo G, Nguyen K, Zhao M, Kooiker K, Jung G, Hu D-Q, et al. Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy Demand. Circ Res. 2018;122:282–295. doi: 10.1161/CIRCRESAHA.117.310725. PubMed DOI PMC
Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochim Biophys Acta. 2008;1777:1092–1097. doi: 10.1016/j.bbabio.2008.05.001. PubMed DOI PMC
Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–664. doi: 10.1126/science.1156906. PubMed DOI
Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153–159. doi: 10.1016/j.freeradbiomed.2007.01.029. PubMed DOI
Shukla V, Mishra SK, Pant HC. Oxidative Stress in Neurodegeneration. Adv Pharmacol Sci. 2011;2011:1–13. doi: 10.1155/2011/572634. PubMed DOI PMC
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC
Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol. 2011;589:2129–2138. doi: 10.1113/jphysiol.2010.201327. PubMed DOI PMC
Bloomer RJ, Goldfarb AH, Wideman L, McKenzie MJ, Consitt LA. Effects of Acute Aerobic and Anaerobic Exercise on Blood Markers of Oxidative Stress. J Strength Cond Res. 2005;19:276. doi: 10.1519/14823.1. PubMed DOI
Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. doi: 10.1186/1476-5918-8-1. PubMed DOI PMC
Radak Z, Taylor AW, Ohno H, Goto S. Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev. 2001;7:90–107. PubMed
Traverse JH, Nesmelov YE, Crampton M, Lindstrom P, Thomas DD, Bache RJ. Measurement of myocardial free radical production during exercise using EPR spectroscopy. Am J Physiol Heart Circ Physiol. 2006;290:H2453–H2458. doi: 10.1152/ajpheart.00412.2005. PubMed DOI
Schieber M, Chandel NS. ROS Function in Redox Signaling and Oxidative Stress. Curr Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
Alleman RJ, Tsang AM, Ryan TE, Patteson DJ, McClung JM, Spangenburg EE, Shaikh SR, et al. Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am J Physiol Heart Circ Physiol. 2016;310:H1360–H1370. doi: 10.1152/ajpheart.00858.2015. PubMed DOI PMC
Lee J, Goldfarb AH, Rescino MH, Hegde S, Patrick S, Apperson K. Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Med Sci Sports Exerc. 2002;34:443–448. doi: 10.1097/00005768-200203000-00010. PubMed DOI
McAnulty SR, McAnulty LS, Nieman DC, Morrow JD, Utter AC, Dumke CL. Effect of resistance exercise and carbohydrate ingestion on oxidative stress. Free Radic Res. 2005;39:1219–1224. doi: 10.1080/10725760500317536. PubMed DOI
Quindry JC, Stone WL, King J, Broeder CE. The Effects of Acute Exercise on Neutrophils and Plasma Oxidative Stress. Med Sci Sports Exerc. 2003;35:1139–1145. doi: 10.1249/01.MSS.0000074568.82597.0B. PubMed DOI
Radovanovic D, Bratic M, Nurkic M, Cvetkovic T, Ignjatovic A, Aleksandrovic M. Oxidative stress biomarker response to concurrent strength and endurance training. Gen Physiol Biophys. 2009;28(Spec Issue):205–211. PubMed
Brites FD, Evelson PA, Christiansen MG, Nicol MF, Basílico MJ, Wikinski RW, Llesuy SF. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci (Lond) 1999;96:381–385. doi: 10.1042/cs0960381. PubMed DOI
Hadžović-Džuvo A, Valjevac A, Lepara O, Pjanić S, Hadžimuratović A, Mekić A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn J Basic Med Sci. 2014;14:56. doi: 10.17305/bjbms.2014.2262. PubMed DOI PMC
D'Souza A, Bucchi A, Johnsen AB, Logantha SJRJ, Monfredi O, Yanni J, Prehar S, et al. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun. 2014;5:3775. doi: 10.1038/ncomms4775. PubMed DOI PMC
D'Souza A, Pearman CM, Wang Y, Nakao S, Logantha SJRJ, Cox C, Bennett H, et al. Targeting miR-423–5p Reverses Exercise Training-Induced HCN4 Channel Remodeling and Sinus Bradycardia. Circ Res. 2017;121:1058–1068. doi: 10.1161/CIRCRESAHA.117.311607. PubMed DOI PMC
Azevedo L, Perlingeiro P, Hachul D, Gomes-Santos IL, Brum PC, Allison TG, Negrão CE, De Matos LDNJ. Sport Modality Affects Bradycardia Level and Its Mechanisms of Control in Professional Athletes. Int J Sports Med. 2014;35:e3-e3. doi: 10.1055/s-0034-1384589. PubMed DOI
Alves GB, Oliveira EM, Alves CR, Rached HRS, Mota GFA, Pereira AC, Rondon MU, et al. Influence of angiotensinogen and angiotensin-converting enzyme polymorphisms on cardiac hypertrophy and improvement on maximal aerobic capacity caused by exercise training. Eur J Cardiovasc Prev Rehabil. 2009;16:487–492. doi: 10.1097/HJR.0b013e32832c5a8a. PubMed DOI
Karlowatz RJ, Scharhag J, Rahnenfuhrer J, Schneider U, Jakob E, Kindermann W, Zang KD. Polymorphisms in the IGF1 signalling pathway including the myostatin gene are associated with left ventricular mass in male athletes. Br J Sports Med. 2011;45:36–41. doi: 10.1136/bjsm.2008.050567. PubMed DOI
Ye Y, Lin H, Wan M, Qiu P, Xia R, He J, Tao J, et al. The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Front Physiol. 2021;12:701151. doi: 10.3389/fphys.2021.701151. PubMed DOI PMC
de Sousa CV, Sales MM, Rosa TS, Lewis JE, de Andrade RV, Simões HG. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sports Med. 2017;47:277–293. doi: 10.1007/s40279-016-0566-1. PubMed DOI
Chandwaney R, Leichtweis S, Leeuwenburgh C, Ji LL. Oxidative stress and mitochondrial function in skeletal muscle: Effects of aging and exercise training. AGE. 1998;21:109–117. doi: 10.1007/s11357-998-0017-5. PubMed DOI PMC