Ziram is a broad spectrum pesticide that belongs to the class of dimethyl-dithiocarbamate (DTC) fungicides. The objectives of this study were to assess the effects of ziram in developing zebrafish. Ziram was highly toxic to zebrafish embryos, with a 96-h LC50 value of 1082.54 nM (∼0.33 mg/L). Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to solvent control (0.1% DMSO), or one dose of 1, 10, 100, and 1000 nM ziram for 96 h. Ziram induced lethality in a dose-dependent manner, decreased hatching rate and heartbeat, and caused wavy deformities at 72 and 96 hpf at 100 and 1000 nM. Basal oxygen consumption rates of zebrafish at 24 hpf were decreased with 1000 nM, suggesting that ziram affects oxidative phosphorylation. We also measured the expression of transcripts associated with the oxidative stress response (sod1 and sod2) and dopamine receptor signaling at ∼96 h of exposure. There was no difference in the expression of genes related to oxidative stress, nor those related to the dopamine system. Locomotor activity was also assessed in larval zebrafish (7 dpf), and ziram increased total activity, the velocity in light zone, and total distance moved at 10 nM, while it decreased the mean time spent in the dark zone at 1 and 10 nM. Behavioral responses were dependent upon the time point and clutch examined. These data demonstrate that ziram negatively impacts embryonic development (i.e. mortality, hatching, heartbeat and notochord development) of zebrafish, decreases basal respiration of embryos, and alters behavioral responses in larvae.
- MeSH
- Behavior, Animal drug effects MeSH
- Zebrafish growth & development metabolism MeSH
- Dopamine genetics MeSH
- Embryo, Nonmammalian drug effects MeSH
- Embryonic Development drug effects MeSH
- Larva drug effects MeSH
- Locomotion drug effects MeSH
- Oxidative Stress genetics MeSH
- Fungicides, Industrial metabolism toxicity MeSH
- Oxygen Consumption drug effects MeSH
- Ziram toxicity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The expression of genes related to the Toll-like receptors (TLRs) signaling pathway were determined. Group A, B and C fed with basal diet and group D, E and F induced TD by feeding a basal diet containing 100 mg·kg-1 thiram. rGSTA3 protein was injected at 20 μg·kg-1 in group B, E and at 50 μg·kg-1 in C, F. Results suggested that lameness and death of chondrocytes were significant on day 14. TLRs signaling pathway related genes were screened based on the transcriptome enrichment, and validated on qPCR. IL-7, TLR2, 3, 4, 5, 7, 15, MyD88, MHC-II, MDA5 and TRAF6 were significantly (p < 0.05) expressed in group E and F as compared to group D on day 14 and 23. IL-7, MHCII, TRAF6, TLR3, TLR5, TLR7, and TLR15 determined insignificant in group D compared to group A on day 23. TD occur in an early phase and alleviated in the later period. rGSTA3 protein can prevent apoptosis and repair degraded chondrocytes.
- MeSH
- Apoptosis MeSH
- Chondrocytes physiology MeSH
- Erythrocytes physiology MeSH
- Glutathione Transferase genetics metabolism MeSH
- Chickens immunology MeSH
- Poultry Diseases immunology MeSH
- Osteochondrodysplasias immunology MeSH
- Immunity, Innate MeSH
- Avian Proteins genetics metabolism MeSH
- Recombinant Proteins metabolism MeSH
- Signal Transduction genetics MeSH
- Thiram metabolism MeSH
- Toll-Like Receptors metabolism MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH