Diethyl 2-(phenylcarbamoyl)phenyl phosphorothioates: synthesis, antimycobacterial activity and cholinesterase inhibition
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24886941
PubMed Central
PMC6271228
DOI
10.3390/molecules19067152
PII: molecules19067152
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antituberkulotika chemická syntéza chemie farmakologie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium avium účinky léků MeSH
- Mycobacterium kansasii účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antituberkulotika MeSH
- cholinesterasové inhibitory MeSH
A new series of 27 diethyl 2-(phenylcarbamoyl)phenyl phosphorothioates (thiophosphates) was synthesized, characterized by NMR, IR and CHN analyses and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and two strains of Mycobacterium kansasii. The best activity against M. tuberculosis was found for O-{4-bromo-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphorothioate (minimum inhibitory concentration of 4 µM). The highest activity against nontuberculous mycobacteria was exhibited by O-(5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}-phenyl) O,O-diethyl phosphorothioate with MIC values from 16 µM. Prepared thiophosphates were also evaluated against acetylcholinesterase from electric eel and butyrylcholinesterase from equine serum. Their inhibitory activity was compared to that of the known cholinesterases inhibitors galanthamine and rivastigmine. All tested compounds showed a higher (for AChE inhibition) and comparable (for BChE inhibition) activity to that of rivastigmine, with IC50s within the 8.04 to 20.2 µM range.
Zobrazit více v PubMed
WHO Global Tuberculosis Report 2013. [(accessed on 26 February 2014)]. Available online: http://www.who.int/tb/publications/global_report/en/
Vinšová J., Kozic J., Krátký M., Stolaříková J., Mandíková J., Trejtnar F., Buchta V. Salicylanilide diethyl phosphates: Synthesis, antimicrobial activity and cytotoxicity. Bioorg. Med. Chem. 2014;22:728–737. PubMed
Ausin C, Kauffman J.S., Duff R.J., Shivaprasad S., Beaucage S.L. Assessment of heat-sensitive thiophosphate protecting groups in the development of thermolytic DNA oligonucleotide prodrugs. Tetrahedron. 2010;66:68–79.
Grajkowski A., Cieslak J., Gapeev A., Beaucage S.L. Hydroxyalkylated phosphoramidate, phosphoramidothioate and phosphorodiamidothioate derivatives as thiophosphate protecting groups in the development of thermolytic DNA prodrugs. New J. Chem. 2010;34:880–887.
Leisvuori A., Ahmed Z., Ora M., Beigelman L., Blatt L., Lonnberg H. Synthesis of 3',5'-Cyclic Phosphate and Thiophosphate Esters of 2'-C-Methyl Ribonucleosides. Helv. Chim. Acta. 2012;95:1512–1520. doi: 10.1002/hlca.201200099. DOI
Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI
Barnard E.A. Neuromuscular transmission—enzymatic destruction of acetylcholine. In: Hubbard J.I., editor. The Peripheral Nervous System. 1st ed. Plenum; New York, NY, USA: 1974. pp. 201–224.
Taylor P. Anticholinesterase agents. In: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.W., Gilman A.G., editors. Goodman and Gilman’s Pharmacological Basis of Therapeutics. 9th ed. McGraw-Hill; New York, NY, USA: 1996. pp. 161–176.
Greenblatt H.M., Dvir H., Silman I., Sussman J.L. Acetylcholinesterase: A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J. Mol. Neurosci. 2003;20:369–384. doi: 10.1385/JMN:20:3:369. PubMed DOI
Chatonnet A., Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 1989;260:625–634. PubMed PMC
Boublik Y., Saint-Aguet P., Lougarre A., Arnaud M., Villatte F., Estrada-Mondaca S., Fournier D. Acetylcholinesterase engineering for detection of insecticide residues. Protein Eng. Des. Sel. 2002;15:43–50. doi: 10.1093/protein/15.1.43. PubMed DOI
Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC
Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters of salicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. PubMed
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C. 2004;59:293–296. PubMed
Kaustova J. Quantitative micromethod for drug susceptibility testing of mycobacteria in Sula’s medium. Klin. Mikrobiol. Inf. Lek. 1997;3:115–124.
Kwok S.O., Wang K.C., Kwok H.B. An improved method to determine SH and -S-S- group content in soymilk protein. Food Chem. 2004;88:317–320.
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. doi: 10.1016/j.ab.2007.07.023. PubMed DOI