The distinctive flagellar proteome of Euglena gracilis illuminates the complexities of protistan flagella adaptation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
204697/Z/16/Z
Wellcome Trust - United Kingdom
MR/P009018/1
Medical Research Council - United Kingdom
PubMed
34292600
DOI
10.1111/nph.17638
Knihovny.cz E-zdroje
- Klíčová slova
- Euglena, cilia, evolution, flagella, pellicle, proteomics,
- MeSH
- Euglena gracilis * MeSH
- flagella MeSH
- organely MeSH
- proteom MeSH
- proteomika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
The eukaryotic flagellum/cilium is a prominent organelle with conserved structure and diverse functions. Euglena gracilis, a photosynthetic and highly adaptable protist, employs its flagella for both locomotion and environmental sensing. Using proteomics of isolated E. gracilis flagella we identify nearly 1700 protein groups, which challenges previous estimates of the protein complexity of motile eukaryotic flagella. We not only identified several unexpected similarities shared with mammalian flagella, including an entire glycolytic pathway and proteasome, but also document a vast array of flagella-based signal transduction components that coordinate gravitaxis and phototactic motility. By contrast, the pellicle was found to consist of > 900 protein groups, containing additional structural and signalling components. Our data identify significant adaptations within the E. gracilis flagellum, many of which are clearly linked to the highly flexible lifestyle.
Department of Parasitology Faculty of Science BIOCEV Charles University Vestec 252 50 Czech Republic
Faculty of Sciences University of South Bohemia České Budějovice 370 05 Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague 142 20 Czech Republic
School of Life Sciences University of Dundee Dundee DD1 5EH UK
Zobrazit více v PubMed
Baker MA, Nixon B, Naumovski N, Aitken RJ. 2012. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Systems Biology in Reproductive Medicine 58: 211-217.
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, Valli J, Becvar T, Myskova J, Lestinova T et al. 2019. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathogens 15: e1007828.
Blum JJ. 1971. Existence of a breaking point in cilia and flagella. Journal of Theoretical Biology 33: 257-263.
Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG et al. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440: 224-227.
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. 2021. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends in Parasitology 37: 100-116.
Cicconofri G, Noselli G, DeSimone A. 2021. The biomechanical role of extra-axonemal structures in shaping the flagellar beat of Euglena gracilis. eLife 10: e58610.
Conesa A, Götz S, García-Gόmez JM, Terol J, Talόn M, Robles M. 2005. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.
Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 26: 1367-1372.
Daiker V, Häder DP, Richter PR, Lebert M. 2011. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta 233: 1055-1062.
Daiker V, Lebert M, Richter P, Häder DP. 2010. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis. Planta 231: 1229-1236.
van Dam TJP, Townsend MJ, Turk M, Schlessinger A, Sali A, Field MC, Huynen MA. 2013. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proceedings of the National Academy of Sciences, USA 110: 6943-6948.
Dang HQ, Zhou Q, Rowlett VW, Hu H, Lee KJ, Margolin W, Li Z. 2017. Proximity interactions among basal body components in Trypanosoma brucei identify novel regulators of basal body biogenesis and inheritance. MBio 8: e02120-e2216.
Dean S, Moreira-Leite F, Varga V, Gull K. 2016. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proceedings of the National Academy of Sciences, USA 113: E5135-E5143.
Dean S, Sunter JD, Wheeler RJ. 2017. TryTag.org: a trypanosome genome-wide protein localisation resource. Trends in Parasitology 33: 80-82.
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. 2012. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Current Protein & Peptide Science 13: 524-546.
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová A, Prasad B, Soukal P, Santana-Molina C, O'Neill E, Nankissoor NN et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology 17: 11.
Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. Genome Informatics Japan 23: 205-211.
Emms DM, Kelly S. 2015. Orthofinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A et al. 2016. The pfam protein families database: towards a more sustainable future. Nucleic Acids Research 44(D1): D279-D285.
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. 2014. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles). Protist 165: 662-675.
Gerhardt C, Wiegering A, Leu T, Rüther U. 2016. Control of hedgehog signalling by the cilia-regulated proteasome. Journal of Developmental Biology 4: 27.
Ginger ML, Ngazoa ES, Pereira CA, Pullen TJ, Kabiri M, Becker K, Gull K, Steverding D. 2005. Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei. Journal of Biological Chemistry 280: 11781-11789.
Häder DP, Ntefidou M, Iseki M, Watanabe M. 2005. Phototaxis photoreceptor in euglena gracilis. In: Wada M, Shimazaki K, Lino M, eds. Light sensing in plants. Tokyo, Japan: Springer, 223-229.
Häder DP, Richter PR, Schuster M, Daiker V, Lebert M. 2009. Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: involvement of a transient receptor potential-like channel and a calmodulin. Advances in Space Research 43: 1179-1184.
Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J. 2020. A uniquely complex mitochondrial proteome from Euglena gracilis. Molecular Biology and Evolution 37: 2173-2191.
Hausmann KR, Alimenti R, Antipa C, Boenigk G, Fujishima J, Hans-Dieter M, Kodama Y, Luporini P, Lynn D, Machemer H et al. 2014. Motility. In: Hausmann KR, Renate R, eds. Cilia and flagella - ciliates and flagellates: ultrastructure and cell biology, function and systematics, symbiosis and biodiversity. Berlin, Germany: Schweizerbart Science, 121-147.
Hofmann C, Bouck GB. 1976. Immunological and structural evidence for patterned instussusceptive surface growth in a unicellular organism - postulated role for submembranous proteins and microtubules. Journal of Cell Biology 69: 693-715.
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. 2008. The origin of plastids. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 363: 2675-2685.
Hyams JS. 1982. The Euglena paraflagellar rod: structure, relationship to other flagellar components and preliminary biochemical characterization. Journal of Cell Science 55: 199-210.
Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M. 2002. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415: 1047-1051.
Jia YL, Xue LX, Li J, Liu HT. 2010. Isolation and proteomic analysis of the halotolerant alga Dunaliella salina flagella using shotgun strategy. Molecular Biology Reports 37: 711-716.
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and ghostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology 428: 726-731.
Kerns K, Morales P, Sutovsky P. 2016. Regulation of sperm capacitation by the 26s proteasome: an emerging new paradigm in spermatology. Biology of Reproduction 94: 117.
Kohl L, Robinson D, Bastin P. 2003. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO Journal 22: 5336-5346.
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biology 11: 200407.
Koumura Y, Suzuki T, Yoshikawa S, Watanabe M, Iseki M. 2004. The origin of photoactivated adenylyl cyclase (PAC), the euglena blue-light receptor: phylogenetic analysis of orthologues of pac subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilis. Photochemical & Photobiological Sciences 3: 580-586.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.
Leander BS, Lax G, Karnkowska A, Simpson AGB. 2017. Euglenida. In: Archibald JM, Simpson AGB, Slamovits CH, eds. Handbook of the protists. Cham, Switzerland: Springer International, 1047-1088.
Lechtreck KF. 2015. IFT-cargo interactions and protein transport in cilia. Trends in Biochemical Sciences 40: 765-778.
Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB. 2009. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. Journal of Cell Biology 187: 1117-1132.
Lechtreck KF, Van De Weghe JC, Harris JA, Liu PW. 2017. Protein transport in growing and steady-state cilia. Traffic 18: 277-286.
Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O. 2019. Ngphylogeny.Fr: new generation phylogenetic services for non-specialists. Nucleic Acids Research 47: W260-W265.
Liu PW, Lou XC, Wingfield JL, Lin JF, Nicastro D, Lechtreck K. 2020. Chlamydomonas pkd2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. Journal of Cell Biology. 219: e202001122.
Liu Q, Tan G, Levenkova N, Li T, Pugh EN, Rux JJ, Speicher DW, Pierce EA. 2007. The proteome of the mouse photoreceptor sensory cilium complex. Molecular & Cellular Proteomics 6: 1299-1317.
Long H, Wang QY, Huang KY. 2015. Ciliary/flagellar protein ubiquitination. Cells 4: 474-482.
Madeira F, Park Ym, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47: W636-W641.
Maga JA, LeBowitz JH. 1999. Unravelling the kinetoplastid paraflagellar rod. Trends in Cell Biology 9: 409-413.
Maharana BR, Tewari AK, Singh V. 2015. An overview on kinetoplastid paraflagellar rod. Journal of Parasitic Diseases 39: 589-595.
Marrs JA, Bouck GB. 1992. The 2 major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins. Journal of Cell Biology 118: 1465-1475.
Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. 2011. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evolutionary Biology 11: 105.
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends in Parasitology 29: 43-52.
Mayer U, Küller A, Daiber PC, Neudorf I, Warnken U, Schnolzer M, Frings S, Mohrlen F. 2009. The proteome of rat olfactory sensory cilia. Proteomics 9: 322-334.
Melkonian M, Robenek H, Rassat J. 1982. Flagellar membrane specilizations and their relationship to mastigonemes and microtubules in Euglena gracilis. Journal of Cell Science 55: 115-135.
Mitchell BF, Pedersen LB, Feely M, Rosenbaum JL, Mitchell DR. 2005. Atp production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Molecular Biology of the Cell 16: 4509-4518.
Nakano Y, Urade Y, Urade R, Kitaoka S. 1987. Isolation, purification, and characterization of the pellicle of Euglena gracilis z. Journal of Biochemistry 102: 1053-1063.
Nasir A, Le Bail A, Daiker V, Klima J, Richter P, Lebert M. 2018. Identification of a flagellar protein implicated in the gravitaxis in the flagellate Euglena gracilis. Scientific Reports 8: 7605.
Ngo HM, Bouck GB. 1995. Isolation of Euglena flagella. Methods in Cell Biology 47: 25-29.
Noselli G, Beran A, Arroyo M, DeSimone A. 2019. Swimming Euglena respond to confinement with a behavioural change enabling effective crawling. Nature Physics 15: 496-502.
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J et al. 2019. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytologist 225: 1578-1592.
Ntefidou M, Häder DP. 2005. Photoactivated adenylyl cyclase (pac) genes in the flagellate Euglena gracilis mutant strains. Photochemical & Photobiological Sciences 4: 732-739.
Oberholzer M, Bregy P, Marti G, Minca M, Peier M, Seebeck T. 2007. Trypanosomes and mammalian sperm: one of a kind? Trends in Parasitology 23: 71-77.
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. 2011. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Molecular & Cellular Proteomics 10: M111.010538.
Pazour GJ, Agrin N, Leszyk J, Witman GB. 2005. Proteomic analysis of a eukaryotic cilium. Journal of Cell Biology. 170: 103-113.
Portman N, Gull K. 2010. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. International Journal for Parasitology 40: 135-148.
Richter P, Lebert M, Tahedl H, Häder DP. 2001. Calcium is involved in the gravitactic orientation in colorless flagellates. Journal of Plant Physiology 158: 689-697.
Rosati G, Verni F, Barsanti L, Passarelli V, Gualtieri P. 1991. Ultrastructure of the apical zone of Euglena gracilis - photoreceptors and motor apparatus. Electron Microscopy Reviews 4: 319-342.
Rosiere TK, Marrs JA, Bouck GB. 1990. A 39-kD plasma membrane protein (ip39) is an anchor for the unusual membrane skeleton of Euglena gracilis. Journal of Cell Biology 110: 1077-1088.
Rout MP, Field MC. 2017. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annual Review of Biochemistry 86: 637-657.
Saada EA, Kabututu ZP, Lopez M, Shimogawa MM, Langousis G, Oberholzer M, Riestra A, Jonsson ZO, Wohlschlegel JA, Hill KL. 2014. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei flagellar membrane. Eukaryotic Cell 13: 1064-1076.
Sim HJ, Yun S, Kim HE, Kwon KY, Kim G-H, Yun S, Kim BG, Myung K, Park TJ, Kwon T. 2020. Simple method to characterize the ciliary proteome of multiciliated cells. Journal of Proteome Research 19: 391-400.
Sinha A, Datta SP, Ray A, Sarkar S. 2015. A reduced VWA domain-containing proteasomal ubiquitin receptor of Giardia lamblia localizes to the flagellar pore regions in microtubule-dependent manner. Parasites & Vectors 8: 120.
Smith JC, Northey JGB, Garg J, Pearlman RE, Siu KWM. 2005. Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. Journal of Proteome Research 4: 909-919.
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M et al. 2014. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Molecular & Cellular Proteomics 13: 1769-1786.
Suzuki H, Ito Y, Yamazaki Y, Mineta K, Uji M, Abe K, Tani K, Fujiyoshi Y, Tsukita S. 2013. The four-transmembrane protein ip39 of Euglena forms strands by a trimeric unit repeat. Nature Communications 4: 1766.
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida K-I et al. 2018. Phylogeny and morphology of new diplonemids from Japan. Protist 169: 158-179.
Varga V, Moreira-Leite F, Portman N, Gull K. 2017. Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proceedings of the National Academy of Sciences, USA 114: E6546-E6555.
Vélez-Ramírez DE, Shimogawa MM, Ray SS, Lopez A, Rayatpisheh S, Langousis G, Gallagher-Jones M, Dean S, Wohlschlegel JA, Hill KL. 2021. APEX2 proximity proteomics resolves flagellum subdomains and identifies flagellum tip-specific proteins in Trypanosoma brucei. mSphere 6: 33568455.
Verni F, Rosati G, Lenzi P, Barsanti L, Passarelli V, Gualtieri P. 1992. Morphological relationship between paraflagellar swelling and paraxial rod in Euglena gracilis. Micron and Microscopica Acta 23: 37-44.
Visconti PE. 2012. Sperm bioenergetics in a nutshell. Biology of Reproduction 87: 72.
Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T et al. 2016. 2016 update of the pride database and its related tools. Nucleic Acids Research 44: D447-D456.
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191.
Waters AM, Beales PL. 2011. Ciliopathies: an expanding disease spectrum. Pediatric Nephrology 26: 1039-1056.
Yang PF, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, Agrin NS, King SM, Sale WS, Kamiya R et al. 2006. Radial spoke proteins of Chlamydomonas flagella. Journal of Cell Science 119: 1165-1174.
Yang SY, Huang MJ, Zhao YF, Zhang HP. 2021. Controlling cell motion and microscale flow with polarized light fields. Physical Review Letters 126: 058001.
Zhao L, Hou YQ, Picariello T, Craige B, Witman GB. 2019. Proteome of the central apparatus of a ciliary axoneme. Journal of Cell Biology. 218: 2051-2070.
Zhou Q, Gheiratmand L, Chen YX, Lim TK, Zhang J, Li SW, Xia NS, Liu BH, Lin QS, He CY. 2010. A comparative proteomic analysis reveals a new bi-lobe protein required for bi-lobe duplication and cell division in Trypanosoma brucei. PLoS ONE 5: 12.
Zoltner M, Del Pino RC, Field MC. 2020. Sorting the muck from the brass: analysis of protein complexes and cell lysates. Methods in Molecular Biology 2116: 645-653.