Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates

. 2016 Feb 11 ; 21 (2) : . [epub] 20160211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26875979

Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.

Zobrazit více v PubMed

Schwarz S., Lucas S.D., Sommerwerk S., Csuk R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg. Med. Chem. 2014;22:3370–3378. doi: 10.1016/j.bmc.2014.04.046. PubMed DOI

Saeed A., Mahesar P.A., Zaib S., Khan M.S., Matin A., Shahid M., Iqbal J. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases. Eur. J. Med. Chem. 2014;78:43–53. doi: 10.1016/j.ejmech.2014.03.015. PubMed DOI

Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Mesulam M.M., Guillozet A., Shaw P., Levey A., Duysen E.G., Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002;110:627–639. doi: 10.1016/S0306-4522(01)00613-3. PubMed DOI

Ibach B., Haen E. Acetylcholinesterase inhibition in Alzheimer’s disease. Curr. Pharm. Des. 2004;10:231–251. doi: 10.2174/1381612043386509. PubMed DOI

Leger G.C., Massoud F. Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease. Expert Rev. Clin. Pharmacol. 2013;6:423–442. doi: 10.1586/17512433.2013.811237. PubMed DOI

Francis P.T., Nordberg A., Arnold S.E. A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol. Sci. 2005;26:104–111. doi: 10.1016/j.tips.2004.12.010. PubMed DOI

Chaudhaery S.S., Roy K.K., Shakya N., Saxena G., Sammi S.R., Nazir A., Nath C., Saxena A.K. Novel Carbamates as Orally Active Acetylcholinesterase Inhibitors Found to Improve Scopolamine-Induced Cognition Impairment: Pharmacophore-Based Virtual Screening, Synthesis, and Pharmacology. J. Med. Chem. 2010;53:6490–6505. doi: 10.1021/jm100573q. PubMed DOI

Wieckowska A., Bajda M., Guzior N., Malawska B. Novel alkyl- and arylcarbamate derivatives with N-benzylpiperidine and N-benzylpiperazine moieties as cholinesterases inhibitors. Eur. J. Med. Chem. 2010;45:5602–5611. doi: 10.1016/j.ejmech.2010.09.010. PubMed DOI

Imramovský A., Pejchal V., Štěpánková Š., Vorčáková K., Jampílek J., Vančo J., Šimůnek P., Královec K., Brůčková L., Mandíková J., et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI

Yuan W., Shang Z., Qiang X., Tan Z., Deng Y. Synthesis of pterostilbene and resveratrol carbamate derivatives as potential dual cholinesterase inhibitors and neuroprotective agents. Res. Chem. Intermed. 2014;40:787–800. doi: 10.1007/s11164-012-1003-1. DOI

Gocer H., Akincioglu A., Goksu S., Gulcin I., Supuran C.T. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J. Enzyme Inhib. Med. Chem. 2015;3:316–320. doi: 10.3109/14756366.2014.928704. PubMed DOI

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI

Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC

Lin G., Lai C.Y., Liao W.C. Molecular Recognition by Acetylcholinesterase at the Peripheral Anionic Site: Structure-Activity Relationships for Inhibitions by Aryl Carbamates. Bioorg. Med. Chem. 1999;7:2683–2689. doi: 10.1016/S0968-0896(99)00213-8. PubMed DOI

Krátký M., Vinšová J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Krátký M., Vinšová J., Novotná E., Wsól V., Ulmann V., Stolaříková J., Fernandes S., Bhat S., Liu J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis (Edinb.) 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI

Krátký M., Vinšová J., Novotná E., Mandíková J., Trejtnar F., Stolaříková J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC

Krátký M., Volková M., Novotná E., Trejtnar F., Stolaříková J., Vinšová J. Synthesis and Biological Activity of New Salicylanilide N,N-Disubstituted Carbamates and Thiocarbamates. Bioorg. Med. Chem. 2014;22:4073–4082. doi: 10.1016/j.bmc.2014.05.064. PubMed DOI

Krátký M., Vinšová J., Novotná E., Stolaříková J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci. 2014;53:1–9. doi: 10.1016/j.ejps.2013.12.001. PubMed DOI

Krátký M., Novotná E., Saxena S., Yogeeswari P., Sriram D., Švarcová M., Vinšová J. Salicylanilide Diethyl Phosphates as Potential Inhibitors of Some Mycobacterial Enzymes. Sci. World J. 2014;2014 doi: 10.1155/2014/703053. PubMed DOI PMC

Chen C.L., Liu F.L., Lee C.C., Chen T.C., Ali A.A.A., Sytwu H.K., Chang D.M., Huang H.S. Modified Salicylanilide and 3-Phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione Derivatives as Novel Inhibitors of Osteoclast Differentiation and Bone Resorption. J. Med. Chem. 2014;57:8072–8085. doi: 10.1021/jm5007897. PubMed DOI

Vinšová J., Krátký M., Komlóová M., Dadapeer E., Štěpánková Š., Vorčáková K., Stolaříková J. Diethyl 2-(Phenylcarbamoyl)phenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition. Molecules. 2014;19:7152–7168. doi: 10.3390/molecules19067152. PubMed DOI PMC

Vinšová J., Kozic J., Krátký M., Stolaříková J., Mandíková J., Trejtnar F., Buchta V. Salicylanilide diethyl phosphates: Synthesis, antimicrobial activity and cytotoxicity. Bioorg. Med. Chem. 2014;22:728–737. doi: 10.1016/j.bmc.2013.12.016. PubMed DOI

Ou S.Y., Kwok K.C., Wang Y., Bao H.Y. An improved method to determine SH and -S-S- group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI

Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. doi: 10.1016/j.ab.2007.07.023. PubMed DOI

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C. 2004;59:293–296. doi: 10.1515/znc-2004-3-430. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science. 1991;253:872–879. doi: 10.1126/science.1678899. PubMed DOI

Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P., Silman I., Sussman J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1993;90:9031–9035. doi: 10.1073/pnas.90.19.9031. PubMed DOI PMC

Axelsen P.H., Harel M., Silman I., Sussman J.L. Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci. 1994;3:188–197. doi: 10.1002/pro.5560030204. PubMed DOI PMC

Johnson G., Moore S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006;12:217–225. doi: 10.2174/138161206775193127. PubMed DOI

Nicolet Y, Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003;278:41141–41147. PubMed

Saxena A., Redman A.M., Jiang X., Lockridge O., Doctor B.P. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem. Biol. Interact. 1999;119:61–69. doi: 10.1016/S0009-2797(99)00014-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...