• This record comes from PubMed

Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates

. 2013 Mar 25 ; 18 (4) : 3674-88. [epub] 20130325

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 23529028
PubMed Central PMC6270420
DOI 10.3390/molecules18043674
PII: molecules18043674
Knihovny.cz E-resources

The development of novel antimicrobial agents represents a timely research topic. Eighteen salicylanilide 4-(trifluoromethyl)benzoates were evaluated against Mycobacterium tuberculosis, M. avium and M. kansasii, eight bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and for the inhibition of mycobacterial isocitrate lyase. Some compounds were further screened against drug-resistant M. tuberculosis and for their cytotoxicity. Minimum inhibitory concentrations (MICs) for all mycobacterial strains were within 0.5-32 μmol/L, with 4-chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl 4-(trifluoromethyl)benzoate superiority. Gram-positive bacteria including MRSA were inhibited with MICs ³ 0.49 μmol/L, while Gram-negative ones were much less susceptible. Salicylanilide 4-(trifluoromethyl)benzoates showed significant antibacterial properties, for many strains being comparable to standard drugs (isoniazid, benzylpenicillin) with no cross-resistance. All esters showed mild inhibition of mycobacterial isocitrate lyase and four compounds were comparable to 3-nitropropionic acid without a direct correlation between in vitro MICs and enzyme inhibition.

See more in PubMed

WHO. 2011/2012 Tuberculosis Global Facts. [(accessed on 12 December 2012)]. Available online: http://www.who.int/tb/publications/2011/factsheet_tb_2011.pdf.

Caminero J.A. Extensively drug-resistant tuberculosis: Is its definition correct? Eur. Respir. J. 2008;32:1413–1415. doi: 10.1183/09031936.00094708. PubMed DOI

McKinney J.D., Bentrup K.H., Munoz-Elias E.J., Miczak A., Chen B., Chan W.T., Swenson D., Sacchettini J.C., Jacobs W.R., Russell D.G. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–738. doi: 10.1038/35021074. PubMed DOI

Krátký M., Vinšová J., Novotná E., Mandíková J., Wsól V., Trejtnar F., Ulmann V., Stolaříková J., Fernandes S., Bhat S., Liu J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI

Krátký M., Vinšová J. Advances in mycobacterial isocitrate lyase targeting and inhibitors. Curr. Med. Chem. 2012;19:6126–6137. doi: 10.2174/092986712804485782. PubMed DOI

Cabrera C.E., Gómez R.F., Zuñiga A.E., Corral R.H., López B., Chávez M. Epidemiology of nosocomial bacteria resistant to antimicrobials. Colomb. Med. 2011;42:117–125.

Scientific Blueprint for Tuberculosis Drug Development. [(accessed on 12 December 2012)]. Available online: http://www.tballiance.org/downloads/publications/TBA_Scientific_Blueprint.pdf.

Krátký M., Vinšová J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters of salicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. doi: 10.1016/j.ejmech.2010.09.040. PubMed DOI

Krátký M., Vinšová J., Rodriguez N.G., Stolaříková J. Antimycobacterial activity of salicylanilide benzenesulfonates. Molecules. 2012;17:492–503. doi: 10.3390/molecules17010492. PubMed DOI PMC

Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide benzoates. ScientificWorldJournal. 2012;12 doi: 10.1100/2012/290628. PubMed DOI PMC

Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide pyrazine-2-carboxylates. Med. Chem. 2012;8:732–741. doi: 10.2174/157340612801216346. PubMed DOI

Krátký M., Vinšová J., Stolaříková J. Antimycobacterial assessment of salicylanilide benzoates including multidrug-resistant tuberculosis strains. Molecules. 2012;17:12812–12820. doi: 10.3390/molecules171112812. PubMed DOI PMC

Cheng T.J.R., Wu Y.T., Yang S.T., Lo K.H., Chen S.K., Chen Y.H., Huang W.I., Yuan C.H., Guo C.W., Huang L.Y., et al. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorg. Med. Chem. 2010;18:8512–8529. doi: 10.1016/j.bmc.2010.10.036. PubMed DOI

Garner A.L., Gloeckner C., Tricoche N., Zakhari J.S., Samje M., Cho-Ngwa F., Lustigman S., Janda K.D. Design, synthesis, and biological activities of closantel analogues: Structural promiscuity and its impact on Onchocerca volvulu. J. Med. Chem. 2011;54:3963–3972. doi: 10.1021/jm200364n. PubMed DOI

Fomovska A., Wood R.D., Mui E., Dubey J.P., Ferreira L.R., Hickman M.R., Lee P.J., Leed S.E., Auschwitz J.M., Welsh W.J., et al. Salicylanilide inhibitors of Toxoplasma gondii. J. Med. Chem. 2012;55:8375–8391. PubMed PMC

Ding N., Zhang W., Xiao H.L., Wang P., Li Y.X. Synthesis and biological evaluation of a series of novel salicylanilides as inhibitors of EGFR protein tyrosine kinases. Chin. Chem. Lett. 2012;23:529–532. doi: 10.1016/j.cclet.2012.03.016. DOI

Steffen J.D., Coyle D.L., Damodaran K., Beroza P., Jacobson M.K. Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG) J. Med. Chem. 2011;54:5403–5413. doi: 10.1021/jm200325s. PubMed DOI PMC

Zuo M., Zheng Y.W., Lu S.M., Li Y., Zhang S.Q. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC–EGFR dual inhibitors. Bioorg. Med. Chem. 2012;20:4405–4412. doi: 10.1016/j.bmc.2012.05.034. PubMed DOI

Zhu Z.W., Shi L., Ruan X.M., Yang Y., Li H.Q., Xu S.P., Zhu H.L. Synthesis and antiproliferative activities against Hep-G2 of salicylanide derivatives: potent inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. J. Enzym. Inhib. Med. Chem. 2011;26:37–45. doi: 10.3109/14756361003671060. PubMed DOI

Liu X.H., Lv P.C., Li B., Zhu H.L., Song B.A. Synthesis, structure, and antibacterial activity of novel 5-arylpyrazole derivatives. Aust. J. Chem. 2008;61:223–230. doi: 10.1071/CH07253. DOI

Krátký M., Vinšová J. Antifungal activity of salicylanilides and their esters with 4-(trifluoromethyl)benzoic acid. Molecules. 2012;17:9426–9442. doi: 10.3390/molecules17089426. PubMed DOI PMC

Waisser K., Bureš O., Holý P., Kuneš J., Oswald R., Jirásková L., Pour M., Klimešová V., Kubicová L., Kaustová J. Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Arch. Pharm. Pharm. Med. Chem. 2003;336:53–71. doi: 10.1002/ardp.200390004. PubMed DOI

Imramovský A., Vinšová J., Férriz J.M., Doležal R., Jampílek J., Kaustová J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Férriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI

Liu X.H., Song B.A., Bhadury P.S., Zhu H.L., Cui P., Hou K.K., Xu H.L. Novel 5-(3-(substituted)-4,5-dihydroisoxazol-5-yl)-2-methoxyphenyl derivatives: Synthesis and anticancer activity. Aust. J. Chem. 2008;61:864–869. doi: 10.1071/CH07395. DOI

Wada K., Ohkoshi E., Morris-Natschke S.L., Bastow K.F., Lee K.H. Cytotoxic esterified diterpenoid alkaloid derivatives with increased selectivity against a drug-resistant cancer cell line. Bioorg. Med. Chem. Lett. 2012;22:249–252. doi: 10.1016/j.bmcl.2011.11.026. PubMed DOI PMC

Deng W., Guo Z., Guo Y., Feng Z., Jiang Y., Chu F. Acryloylamino-salicylanilides as EGFR PTK inhibitors. Bioorg. Med. Chem. Lett. 2006;16:469–472. doi: 10.1016/j.bmcl.2005.06.088. PubMed DOI

Liechti C., Séquin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI

Bradford M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Dixon G.H., Kornberg H.L. Assay methods for key enzymes of the glyoxylate cycle. Biochem. J. 1959;72:P3.

Newest 20 citations...

See more in
Medvik | PubMed

Enhancing the antimycobacterial efficacy of pyridine-4-carbohydrazide: linkage to additional antimicrobial agents via oxocarboxylic acids

. 2025 Feb 19 ; 16 (2) : 767-778. [epub] 20241016

Salicylanilides and Their Anticancer Properties

. 2023 Jan 15 ; 24 (2) : . [epub] 20230115

Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics

. 2022 Oct 01 ; 23 (19) : . [epub] 20221001

N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity

. 2020 May 12 ; 25 (10) : . [epub] 20200512

4-Aminobenzoic Acid Derivatives: Converting Folate Precursor to Antimicrobial and Cytotoxic Agents

. 2019 Dec 19 ; 10 (1) : . [epub] 20191219

Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity

. 2017 Sep 19 ; 22 (9) : . [epub] 20170919

Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents

. 2017 Mar 28 ; 22 (4) : . [epub] 20170328

Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation

. 2017 Feb 02 ; 22 (2) : . [epub] 20170202

Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates

. 2016 Feb 11 ; 21 (2) : . [epub] 20160211

Salicylanilide diethyl phosphates as potential inhibitors of some mycobacterial enzymes

. 2014 ; 2014 () : 703053. [epub] 20141104

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...