Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23529028
PubMed Central
PMC6270420
DOI
10.3390/molecules18043674
PII: molecules18043674
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Benzoates pharmacology MeSH
- Nitro Compounds pharmacology MeSH
- Isocitrate Lyase antagonists & inhibitors metabolism MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium avium drug effects MeSH
- Mycobacterium kansasii drug effects MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Propionates pharmacology MeSH
- Salicylanilides pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3-nitropropionic acid MeSH Browser
- Anti-Bacterial Agents MeSH
- Benzoates MeSH
- Nitro Compounds MeSH
- Isocitrate Lyase MeSH
- Propionates MeSH
- salicylanilide MeSH Browser
- Salicylanilides MeSH
The development of novel antimicrobial agents represents a timely research topic. Eighteen salicylanilide 4-(trifluoromethyl)benzoates were evaluated against Mycobacterium tuberculosis, M. avium and M. kansasii, eight bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and for the inhibition of mycobacterial isocitrate lyase. Some compounds were further screened against drug-resistant M. tuberculosis and for their cytotoxicity. Minimum inhibitory concentrations (MICs) for all mycobacterial strains were within 0.5-32 μmol/L, with 4-chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl 4-(trifluoromethyl)benzoate superiority. Gram-positive bacteria including MRSA were inhibited with MICs ³ 0.49 μmol/L, while Gram-negative ones were much less susceptible. Salicylanilide 4-(trifluoromethyl)benzoates showed significant antibacterial properties, for many strains being comparable to standard drugs (isoniazid, benzylpenicillin) with no cross-resistance. All esters showed mild inhibition of mycobacterial isocitrate lyase and four compounds were comparable to 3-nitropropionic acid without a direct correlation between in vitro MICs and enzyme inhibition.
See more in PubMed
WHO. 2011/2012 Tuberculosis Global Facts. [(accessed on 12 December 2012)]. Available online: http://www.who.int/tb/publications/2011/factsheet_tb_2011.pdf.
Caminero J.A. Extensively drug-resistant tuberculosis: Is its definition correct? Eur. Respir. J. 2008;32:1413–1415. doi: 10.1183/09031936.00094708. PubMed DOI
McKinney J.D., Bentrup K.H., Munoz-Elias E.J., Miczak A., Chen B., Chan W.T., Swenson D., Sacchettini J.C., Jacobs W.R., Russell D.G. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–738. doi: 10.1038/35021074. PubMed DOI
Krátký M., Vinšová J., Novotná E., Mandíková J., Wsól V., Trejtnar F., Ulmann V., Stolaříková J., Fernandes S., Bhat S., Liu J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI
Krátký M., Vinšová J. Advances in mycobacterial isocitrate lyase targeting and inhibitors. Curr. Med. Chem. 2012;19:6126–6137. doi: 10.2174/092986712804485782. PubMed DOI
Cabrera C.E., Gómez R.F., Zuñiga A.E., Corral R.H., López B., Chávez M. Epidemiology of nosocomial bacteria resistant to antimicrobials. Colomb. Med. 2011;42:117–125.
Scientific Blueprint for Tuberculosis Drug Development. [(accessed on 12 December 2012)]. Available online: http://www.tballiance.org/downloads/publications/TBA_Scientific_Blueprint.pdf.
Krátký M., Vinšová J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters of salicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. doi: 10.1016/j.ejmech.2010.09.040. PubMed DOI
Krátký M., Vinšová J., Rodriguez N.G., Stolaříková J. Antimycobacterial activity of salicylanilide benzenesulfonates. Molecules. 2012;17:492–503. doi: 10.3390/molecules17010492. PubMed DOI PMC
Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide benzoates. ScientificWorldJournal. 2012;12 doi: 10.1100/2012/290628. PubMed DOI PMC
Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide pyrazine-2-carboxylates. Med. Chem. 2012;8:732–741. doi: 10.2174/157340612801216346. PubMed DOI
Krátký M., Vinšová J., Stolaříková J. Antimycobacterial assessment of salicylanilide benzoates including multidrug-resistant tuberculosis strains. Molecules. 2012;17:12812–12820. doi: 10.3390/molecules171112812. PubMed DOI PMC
Cheng T.J.R., Wu Y.T., Yang S.T., Lo K.H., Chen S.K., Chen Y.H., Huang W.I., Yuan C.H., Guo C.W., Huang L.Y., et al. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorg. Med. Chem. 2010;18:8512–8529. doi: 10.1016/j.bmc.2010.10.036. PubMed DOI
Garner A.L., Gloeckner C., Tricoche N., Zakhari J.S., Samje M., Cho-Ngwa F., Lustigman S., Janda K.D. Design, synthesis, and biological activities of closantel analogues: Structural promiscuity and its impact on Onchocerca volvulu. J. Med. Chem. 2011;54:3963–3972. doi: 10.1021/jm200364n. PubMed DOI
Fomovska A., Wood R.D., Mui E., Dubey J.P., Ferreira L.R., Hickman M.R., Lee P.J., Leed S.E., Auschwitz J.M., Welsh W.J., et al. Salicylanilide inhibitors of Toxoplasma gondii. J. Med. Chem. 2012;55:8375–8391. PubMed PMC
Ding N., Zhang W., Xiao H.L., Wang P., Li Y.X. Synthesis and biological evaluation of a series of novel salicylanilides as inhibitors of EGFR protein tyrosine kinases. Chin. Chem. Lett. 2012;23:529–532. doi: 10.1016/j.cclet.2012.03.016. DOI
Steffen J.D., Coyle D.L., Damodaran K., Beroza P., Jacobson M.K. Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG) J. Med. Chem. 2011;54:5403–5413. doi: 10.1021/jm200325s. PubMed DOI PMC
Zuo M., Zheng Y.W., Lu S.M., Li Y., Zhang S.Q. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC–EGFR dual inhibitors. Bioorg. Med. Chem. 2012;20:4405–4412. doi: 10.1016/j.bmc.2012.05.034. PubMed DOI
Zhu Z.W., Shi L., Ruan X.M., Yang Y., Li H.Q., Xu S.P., Zhu H.L. Synthesis and antiproliferative activities against Hep-G2 of salicylanide derivatives: potent inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. J. Enzym. Inhib. Med. Chem. 2011;26:37–45. doi: 10.3109/14756361003671060. PubMed DOI
Liu X.H., Lv P.C., Li B., Zhu H.L., Song B.A. Synthesis, structure, and antibacterial activity of novel 5-arylpyrazole derivatives. Aust. J. Chem. 2008;61:223–230. doi: 10.1071/CH07253. DOI
Krátký M., Vinšová J. Antifungal activity of salicylanilides and their esters with 4-(trifluoromethyl)benzoic acid. Molecules. 2012;17:9426–9442. doi: 10.3390/molecules17089426. PubMed DOI PMC
Waisser K., Bureš O., Holý P., Kuneš J., Oswald R., Jirásková L., Pour M., Klimešová V., Kubicová L., Kaustová J. Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Arch. Pharm. Pharm. Med. Chem. 2003;336:53–71. doi: 10.1002/ardp.200390004. PubMed DOI
Imramovský A., Vinšová J., Férriz J.M., Doležal R., Jampílek J., Kaustová J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Férriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI
Liu X.H., Song B.A., Bhadury P.S., Zhu H.L., Cui P., Hou K.K., Xu H.L. Novel 5-(3-(substituted)-4,5-dihydroisoxazol-5-yl)-2-methoxyphenyl derivatives: Synthesis and anticancer activity. Aust. J. Chem. 2008;61:864–869. doi: 10.1071/CH07395. DOI
Wada K., Ohkoshi E., Morris-Natschke S.L., Bastow K.F., Lee K.H. Cytotoxic esterified diterpenoid alkaloid derivatives with increased selectivity against a drug-resistant cancer cell line. Bioorg. Med. Chem. Lett. 2012;22:249–252. doi: 10.1016/j.bmcl.2011.11.026. PubMed DOI PMC
Deng W., Guo Z., Guo Y., Feng Z., Jiang Y., Chu F. Acryloylamino-salicylanilides as EGFR PTK inhibitors. Bioorg. Med. Chem. Lett. 2006;16:469–472. doi: 10.1016/j.bmcl.2005.06.088. PubMed DOI
Liechti C., Séquin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI
Bradford M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Dixon G.H., Kornberg H.L. Assay methods for key enzymes of the glyoxylate cycle. Biochem. J. 1959;72:P3.
Salicylanilides and Their Anticancer Properties
Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics
4-Aminobenzoic Acid Derivatives: Converting Folate Precursor to Antimicrobial and Cytotoxic Agents
Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity
Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents
Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates
Salicylanilide diethyl phosphates as potential inhibitors of some mycobacterial enzymes