Antifungal Activity of Salicylanilides and Their Esters with 4-(Trifluoromethyl)benzoic Acid
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22871645
PubMed Central
PMC6268247
DOI
10.3390/molecules17089426
PII: molecules17089426
Knihovny.cz E-zdroje
- MeSH
- Absidia účinky léků MeSH
- antifungální látky chemická syntéza farmakologie MeSH
- Aspergillus fumigatus účinky léků MeSH
- benzoáty chemická syntéza farmakologie MeSH
- Candida účinky léků MeSH
- esterifikace MeSH
- estery MeSH
- mikrobiální testy citlivosti MeSH
- salicylanilidy chemická syntéza farmakologie MeSH
- toluen analogy a deriváty chemie MeSH
- Trichophyton účinky léků MeSH
- Trichosporon účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-(trifluoromethyl)benzoic acid MeSH Prohlížeč
- antifungální látky MeSH
- benzoáty MeSH
- estery MeSH
- salicylanilidy MeSH
- toluen MeSH
Searching for novel antimicrobial agents still represents a current topic in medicinal chemistry. In this study, the synthesis and analytical data of eighteen salicylanilide esters with 4-(trifluoromethyl)benzoic acid are presented. They were assayed in vitro as potential antimycotic agents against eight fungal strains, along with their parent salicylanilides. The antifungal activity of the presented derivatives was not uniform and moulds showed a higher susceptibility with minimum inhibitory concentrations (MIC) ≥ 0.49 µmol/L than yeasts (MIC ≥ 1.95 µmol/L). However, it was not possible to evaluate a range of 4-(trifluoromethyl)benzoates due to their low solubility. In general, the most active salicylanilide was N-(4-bromophenyl)-4-chloro-2-hydroxybenzamide and among esters, the corresponding 2-(4-bromophenylcarbamoyl)-5-chlorophenyl 4-(trifluoromethyl) benzoate exhibited the lowest MIC of 0.49 µmol/L. However, the esterification of salicylanilides by 4-(trifluoromethyl)benzoic acid did not result unequivocally in a higher antifungal potency.
Zobrazit více v PubMed
Lopez-Martinez R. Candidosis, a new challenge. Clin. Dermatol. 2010;6:178–184. doi: 10.1016/j.clindermatol.2009.12.014. PubMed DOI
Silva S., Negri M., Henriques M., Oliveira R., Williams D.W., Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012;36:288–305. doi: 10.1111/j.1574-6976.2011.00278.x. PubMed DOI
Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet. Biol. 2010;47:94–106. doi: 10.1016/j.fgb.2009.08.002. PubMed DOI
Chandrasekar P. Management of invasive fungal infections: A role for polyenes. J. Antimicrob. Chemother. 2011;66:457–465. doi: 10.1093/jac/dkq479. PubMed DOI
Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters of salicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. PubMed
Krátký M., Vinšová J. Antiviral activity of substituted salicylanilides-a review. Mini-Rev. Med. Chem. 2011;11:956–967. PubMed
Krátký M., Vinšová J. Salicylanilide ester prodrugs as potential antimicrobial agents-a review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Waisser K., Pešina M., Holý P., Pour M., Bureš O., Kuneš J., Klimešová V., Buchta V., Kubanová P., Kaustová J. Antimycobacterial and Antifungal Isosters of Salicylamides. Arch. Pharm. Pharm. Med. Chem. 2003;336:322–335. doi: 10.1002/ardp.200300725. PubMed DOI
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., et al. Investigating the Spectrum of Biological Activity of Ring-Substituted Salicylanilides and Carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. PubMed PMC
Ienacu I.M.C., Lupea A.X., Hadaruga D., Hadaruga N., Popescu I.M. The Antimicrobial Activity and Quantitative Structure-Biological Activity Relationships Evaluation of Some Novel 2-Hydroxybenzamide Derivatives. Rev. Chim. 2008;59:247–250.
Pastor L., García-Domenech R., Gálvez J., Wolski S., García M.D. New antifungals selected by molecular topology. Bioorg. Med. Chem. Lett. 1998;8:2577–2582. doi: 10.1016/S0960-894X(98)00460-0. PubMed DOI
Daidone G., Maggio B., Schillaci D. Salicylanilide and its heterocyclic analogues. A comparative study of their antimicrobial activity. Pharmazie. 1990;45:441–442. PubMed
Kumar A., Narasimhan B., Kumar D. Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorg. Med. Chem. 2007;15:4113–4124. doi: 10.1016/j.bmc.2007.03.074. PubMed DOI
Skála P., Macháček M., Vejsová M., Kubicová L., Kuneš J., Waisser K. Synthesis and antifungal evaluation of Hydroxy-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-diones and their thioanalogs. J. Heterocycl. Chem. 2009;46:873–880. doi: 10.1002/jhet.156. DOI
Sivakumar P.M., Seenivasan S.P., Kumar V., Doble M. Novel 1,3,5-triphenyl-2-pyrazolines as anti-infective agents. Bioorg. Med. Chem. Lett. 2010;20:3169–3172. PubMed
Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide acetates: Synthesis and antibacterial evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC
Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide benzoates. Sci. World J. 2012;12 doi: 10.1100/2012/290628. PubMed DOI PMC
Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide pyrazine-2-carboxylates. Med. Chem. 2012;8:732–741. doi: 10.2174/157340612801216346. PubMed DOI
De Vita D., Scipione L., Tortorella S., Mellini P., Di Rienzo B., Simonetti G., D’Auria F.D., Panella S., Cirilli R., Di Santo R., et al. Synthesis and antifungal activity of a new series of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives. Eur. J. Med. Chem. 2012;49:334–342. doi: 10.1016/j.ejmech.2012.01.034. PubMed DOI
Imramovský A., Férriz J.M., Pauk K., Krátký M., Vinšová J. Synthetic route for the preparation of 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides. J. Comb. Chem. 2010;12:414–416. doi: 10.1021/cc900168s. PubMed DOI
Crawford F., Hollis S. Topical treatments for fungal infections of the skin and nails of the foot. Cochrane Db. Syst. Rev. . 2007 doi: 10.1002/14651858.CD001434.pub2. PubMed DOI PMC
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-Activity relations inpractice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. PubMed
Imramovsky A., Vinsova J., Ferriz J.M., Buchta V., Jampilek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. doi: 10.1016/j.bmcl.2008.11.080. PubMed DOI
Waisser K., Bureš O., Holý P., Kuneš J., Oswald R., Jirásková J., Pour M., Klimešová V., Kubicová L., Kaustová J. Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Arch. Pharm. Pharm. Med. Chem. 2003;336:53–71. doi: 10.1002/ardp.200390004. PubMed DOI
Wood R.D., Welsh W.J., Ekins S., Ai N. Glutamate receptor modulators and therapeutic agents. 2009/0239919. U.S. Patent. 2009 Sep 24;
Clinical and Laboratory Standards Institute (CLSI) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard, Third Edition. CSLI document M27–A3, 3rd ed. Vol. 28 CLSI; Wayne, PA, USA: 2008.
Clinical and Laboratory Standards Institute (CLSI) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Approved Standard, Second Edition. CSLI document M38–A2, 2nd ed. Vol. 28 CLSI; Wayne, PA, USA: 2008.
2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase
Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity
Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates