Free-Standing ZnO:Mo Nanorods Exposed to Hydrogen or Oxygen Plasma: Influence on the Intrinsic and Extrinsic Defect States
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-05497Y
Czech Science Foundation
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760
the Ministry of Education, Youth and Sports of Czech Republic
Mobility Plus SAV-AV ČR-21-09
Czech and Slovak Academy of Sciences
VEGA 2/0157/20
the Scientific Grant Agency of Ministry of Education, Science, Research and Sport of Slovak Re-public and Slovak Academy of Sciences
PubMed
35329712
PubMed Central
PMC8949513
DOI
10.3390/ma15062261
PII: ma15062261
Knihovny.cz E-zdroje
- Klíčová slova
- EPR, Mo5+, photo-, radio- and cathodoluminescence, plasma treatment, shallow donors, zinc oxide nanorods,
- Publikační typ
- časopisecké články MeSH
Cationic doping of ZnO nanorods has gained increased interest as it can lead to the production of materials with improved luminescent properties, electrical conductivity and stability. We report on various Mo-doped ZnO powders of nanorods synthesized by the hydrothermal growth method. Further annealing or/and cold hydrogen or oxygen plasma modification was applied. The atomic structure of the as-grown and plasma-modified rods was characterized by X-ray diffraction. To identify any possible changes in morphology, scanning electron microscopy was used. Paramagnetic point defects were investigated by electron paramagnetic resonance. In particular, two new types of defects were initiated by the plasma treatment. Their appearance was explained, and corresponding mechanisms were proposed. The changes in the luminescence and scintillation properties were characterized by photo- and radioluminescence, respectively. Charge trapping phenomena were studied by thermally stimulated luminescence. Cold plasma treatment influenced the luminescence properties of ZnO:Mo structures. The contact with hydrogen lead to an approximately threefold increase in intensity of the ultraviolet exciton-related band peaking at ~3.24 eV, whereas the red band attributed to zinc vacancies (~1.97 eV) was suppressed compared to the as-grown samples. The exciton- and defect-related emission subsided after the treatment in oxygen plasma.
Zobrazit více v PubMed
Neykova N., Stuchlik J., Hruska K., Poruba A., Remes Z., Pop-Georgievski O. Study of the Surface Properties of ZnO Nanocolumns Used for Thin-Film Solar Cells. Beilstein J. Nanotechnol. 2017;8:446–451. doi: 10.3762/bjnano.8.48. PubMed DOI PMC
Neykova N., Moulin E., Campa A., Hruska K., Poruba A., Stuckelberger M., Haug F.-J., Topic M., Ballif C., Vanecek M. Three-Dimensional Amorphous Silicon Solar Cells on Periodically Ordered ZnO Nanocolumns. Phys. Status Solidi A. 2015;212:1823–1829. doi: 10.1002/pssa.201431869. DOI
Neykova N., Hruska K., Holovsky J., Remes Z., Vanecek M. Arrays of ZnO Nanocolumns for 3-Dimensional Very Thin Amorphous and Microcrystalline Silicon Solar Cells. Thin Solid Films. 2013;543:110–113. doi: 10.1016/j.tsf.2013.02.110. DOI
Vanecek M., Babchenko O., Purkrt A., Holovsky J., Neykova N., Poruba A., Remes Z., Meier J., Kroll U. Nanostructured Three-Dimensional Thin Film Silicon Solar Cells with Very High Efficiency Potential. Appl. Phys. Lett. 2011;98:163503. doi: 10.1063/1.3583377. DOI
Davydova M., Laposa A., Smarhak J., Kromka A., Neykova N., Nahlik J., Kroutil J., Drahokoupil J., Voves J. Gas-Sensing Behaviour of ZnO/Diamond Nanostructures. Beilstein J. Nanotechnol. 2018;9:22–29. doi: 10.3762/bjnano.9.4. PubMed DOI PMC
Neykova N., Brož A., Remeš Z., Hruška K., Kalbáčová M., Kromka A., Vaněček M. ZnO Hedgehog-like Structures for Control Cell Cultivation. Appl. Surf. Sci. 2012;258:3485–3489. doi: 10.1016/j.apsusc.2011.11.101. DOI
Ong C.B., Ng L.Y., Mohammad A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI
Venevtsev I.D., Tarasov A.P., Muslimov A.E., Gorokhova E.I., Zadorozhnaya L.A., Rodnyi P.A., Kanevsky V.M. Ultraviolet Luminescence of ZnO Whiskers, Nanowalls, Multipods, and Ceramics as Potential Materials for Fast Scintillators. Materials. 2021;14:2001. doi: 10.3390/ma14082001. PubMed DOI PMC
Leiter F., Zhou H., Henecker F., Hofstaetter A., Hofmann D.M., Meyer B.K. Magnetic Resonance Experiments on the Green Emission in Undoped ZnO Crystals. Phys. B Condens. Matter. 2001;308–310:908–911. doi: 10.1016/S0921-4526(01)00837-7. DOI
Dujardin C., Auffray E., Bourret-Courchesne E., Dorenbos P., Lecoq P., Nikl M., Vasil’ev A.N., Yoshikawa A., Zhu R.-Y. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Trans. Nucl. Sci. 2018;65:1977–1997. doi: 10.1109/TNS.2018.2840160. DOI
Janotti A., van de Walle C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI
Janotti A., van de Walle C.G. Native Point Defects in ZnO. Phys. Rev. B. 2007;76:165202. doi: 10.1103/PhysRevB.76.165202. DOI
Buryi M., Babin V., Chang Y.-Y., Remeš Z., Mičová J., Šimek D. Influence of Precursor Age on Defect States in ZnO Nanorods. Appl. Surf. Sci. 2020;525:146448. doi: 10.1016/j.apsusc.2020.146448. DOI
Neykova N., Chang Y.-Y., Buryi M., Davydova M., Kucerkova R., Simek D., Remes Z., Pop-Georgievski O. Study of ZnO Nanorods Grown under UV Irradiation. Appl. Surf. Sci. 2019;472:105–111. doi: 10.1016/j.apsusc.2018.03.173. DOI
Mičová J., Buryi M., Šimek D., Drahokoupil J., Neykova N., Chang Y.-Y., Remeš Z., Pop-Georgievski O., Svoboda J., Im C. Synthesis of Zinc Oxide Nanostructures and Comparison of Their Crystal Quality. Appl. Surf. Sci. 2018;461:190–195. doi: 10.1016/j.apsusc.2018.05.176. DOI
Villafuerte J., Donatini F., Kioseoglou J., Sarigiannidou E., Chaix-Pluchery O., Pernot J., Consonni V. Zinc Vacancy-Hydrogen Complexes as Major Defects in ZnO Nanowires Grown by Chemical Bath Deposition. J. Phys. Chem. C. 2020;124:16652–16662. doi: 10.1021/acs.jpcc.0c04264. DOI
Zhang M., Averseng F., Haque F., Borghetti P., Krafft J.-M., Baptiste B., Costentin G., Stankic S. Defect-Related Multicolour Emissions in ZnO Smoke: From Violet, over Green to Yellow. Nanoscale. 2019;11:5102–5115. doi: 10.1039/C8NR09998G. PubMed DOI
Lyons J.L., Varley J.B., Steiauf D., Janotti A., van de Walle C.G. First-Principles Characterization of Native-Defect-Related Optical Transitions in ZnO. J. Appl. Phys. 2017;122:035704. doi: 10.1063/1.4992128. DOI
Frodason Y.K., Johansen K.M., Bjørheim T.S., Svensson B.G., Alkauskas A. Zn Vacancy as a Polaronic Hole Trap in ZnO. Phys. Rev. B. 2017;95:094105. doi: 10.1103/PhysRevB.95.094105. DOI
Buryi M., Remeš Z., Babin V., Novotný M., Vaněček V., Aubrechtová Dragounová K., Mičová J., Landová L., Kučerková R., More-Chevalier J., et al. Influence of Mo Doping on the Luminescence Properties and Defect States in ZnO Nanorods. Comparison with ZnO:Mo Thin Films. Appl. Surf. Sci. 2021;555:149679. doi: 10.1016/j.apsusc.2021.149679. DOI
Buryi M., Remeš Z., Babin V., Artemenko A., Vaněček V., Aubrechtová Dragounová K., Landová L., Kučerková R., Mičová J. Transformation of Free-Standing ZnO Nanorods upon Er Doping. Appl. Surf. Sci. 2021;562:150217. doi: 10.1016/j.apsusc.2021.150217. DOI
Orlinskii S.B., Schmidt J., Baranov P.G., Lorrmann V., Riedel I., Rauh D., Dyakonov V. Identification of Shallow Al Donors in Al-Doped ZnO Nanocrystals: EPR and ENDOR Spectroscopy. Phys. Rev. B. 2008;77:115334. doi: 10.1103/PhysRevB.77.115334. DOI
Hofmann D.M., Hofstaetter A., Leiter F., Zhou H., Henecker F., Meyer B.K., Orlinskii S.B., Schmidt J., Baranov P.G. Hydrogen: A Relevant Shallow Donor in Zinc Oxide. Phys. Rev. Lett. 2002;88:045504. doi: 10.1103/PhysRevLett.88.045504. PubMed DOI
Schulz M. ESR Experiments on Ga Donors in ZnO Crystals. Phys. Status Solidi A. 1975;27:K5–K8. doi: 10.1002/pssa.2210270140. DOI
Dai Z.R., Pan Z.W., Wang Z.L. Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Adv. Funct. Mater. 2003;13:9–24. doi: 10.1002/adfm.200390013. DOI
Ding J., Dai Z., Qin F., Zhao H., Zhao S., Chen R. Z-Scheme BiO1−XBr/Bi2O2CO3 Photocatalyst with Rich Oxygen Vacancy as Electron Mediator for Highly Efficient Degradation of Antibiotics. Appl. Catal. B Environ. 2017;205:281–291. doi: 10.1016/j.apcatb.2016.12.018. DOI
Ravichandran K., Anbazhagan A., Dineshbabu N., Ravidhas C. Influence of Mo Doping on Transparent Conducting Properties of ZnO Films Prepared by a Simplified Spray Technique. J. Mater. Sci. Mater. Electron. 2015;26:7649–7654. doi: 10.1007/s10854-015-3404-6. DOI
Swapna R., Santhosh Kumar M.C. Growth and Characterization of Molybdenum Doped ZnO Thin Films by Spray Pyrolysis. J. Phys. Chem. Solids. 2013;74:418–425. doi: 10.1016/j.jpcs.2012.11.003. DOI
Buryi M., Remeš Z., Babin V., Vaněček V., Dragounová K.A., Mičová J., Landová L., Kučerková R. ZnO Nanorods Alloyed with Mo/Er. The Effect of Post-Deposition Treatment on Defect States and Luminescence. IOP Conf. Ser. Mater. Sci. Eng. 2021;1050:012002. doi: 10.1088/1757-899X/1050/1/012002. DOI
Neykova N., Kozak H., Ledinsky M., Kromka A. Novel Plasma Treatment in Linear Antenna Microwave PECVD System. Vacuum. 2012;86:603–607. doi: 10.1016/j.vacuum.2011.07.055. DOI
Lennon C., Tapia R.B., Kodama R., Chang Y., Sivananthan S., Deshpande M. Effects of Annealing in a Partially Reducing Atmosphere on Sputtered Al-Doped ZnO Thin Films. J. Electron. Mater. 2009;38:1568–1573. doi: 10.1007/s11664-009-0747-x. DOI
Savoyant A., Rollo M., Texier M., Adam R.E., Bernardini S., Pilone O., Margeat O., Nur O., Willander M., Bertaina S. Light-Induced High-Spin State in ZnO Nanoparticles. Nanotechnology. 2020;31:095707. doi: 10.1088/1361-6528/ab57f1. PubMed DOI
Buryi M., Babin V., Artemenko A., Remeš Z., Děcká K., Mičová J. Hydrothermally Grown ZnO:Mo Nanorods Exposed to X-Ray: Luminescence and Charge Trapping Phenomena. Appl. Surf. Sci. 2022;585:152682. doi: 10.1016/j.apsusc.2022.152682. DOI
Buryi M., Remeš Z., Babin V., Artemenko A., Chertopalov S., Mičová J. Cold Plasma Treatment of ZnO:Er Nano- and Microrods: The Effect on Luminescence and Defects Creation. J. Alloys Compd. 2022;895:162671. doi: 10.1016/j.jallcom.2021.162671. DOI
Mooney J., Kambhampati P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013;4:3316–3318. doi: 10.1021/jz401508t. PubMed DOI
Buryi M., Remeš Z., Děcká K., Mičová J., Landová L. Transformation of ZNO-based structures under heavy MO doping: Defect states and luminescence; Proceedings of the NANOCON 2021 Conference; Brno, Czech Republic. 20–22 October 2021; DOI
Stehr J.E., Hofmann D.M., Meyer B.K. Electron Paramagnetic Resonance and Photo-Electron Paramagnetic Resonance Investigation on the Recharging of the Substitutional Nitrogen Acceptor in ZnO. J. Appl. Phys. 2012;112:103511. doi: 10.1063/1.4765729. DOI
Reddy A.J., Kokila M.K., Nagabhushana H., Rao J.L., Nagabhushana B.M., Shivakumara C., Chakradhar R.P.S. EPR and Photoluminescence Studies of ZnO:Mn Nanophosphors Prepared by Solution Combustion Route. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011;79:476–480. doi: 10.1016/j.saa.2011.03.014. PubMed DOI
Burešová H., Procházková L., Turtos R.M., Jarý V., Mihóková E., Beitlerová A., Pjatkan R., Gundacker S., Auffray E., Lecoq P., et al. Preparation and Luminescence Properties of ZnO:Ga—Polystyrene Composite Scintillator. Opt. Express. 2016;24:15289. doi: 10.1364/OE.24.015289. PubMed DOI
Nadupalli S., Repp S., Weber S., Erdem E. About Defect Phenomena in ZnO Nanocrystals. Nanoscale. 2021;13:9160–9171. doi: 10.1039/D1NR00943E. PubMed DOI
Remes Z., Buryi M., Neykova N., Stuchlik J., Micova J., Hsu H.S. Room Temperature Plasma Hydrogenation—An Effective Way to Suppress Defects in ZnO Nanorods. Mater. Today Proc. 2020;33:2481–2483. doi: 10.1016/j.matpr.2020.02.758. DOI
Li Q., Hao S., An R., Wang M., Sun Z., Wu Q., Gu M., Zhao J., Liu X., Zhang Z. Ultraviolet-Light Emission Enhancement and Morphology Stability for ZnO:Ga Nanorod Array Treated by Hydrogen Plasma. Appl. Surf. Sci. 2019;493:1299–1305. doi: 10.1016/j.apsusc.2019.07.149. DOI
Wang R.-C., Cheng C.-F. Performances Enhancement of H-Doped ZnO Nanorods by H2/Ar Plasma Treatment: Performances Enhancement of H-Doped ZnO Nanorods. Plasma Process. Polym. 2015;12:51–58. doi: 10.1002/ppap.201400056. DOI
Jiang S., Ren Z., Gong S., Yin S., Yu Y., Li X., Xu G., Shen G., Han G. Tunable Photoluminescence Properties of Well-Aligned ZnO Nanorod Array by Oxygen Plasma Post-Treatment. Appl. Surf. Sci. 2014;289:252–256. doi: 10.1016/j.apsusc.2013.10.146. DOI
Poole C.P., Farach H.A., American Institute of Physics, editors. Handbook of Electron Spin Resonance. Volume 2 AIP Press; New York, NY, USA: 1999.