Free-Standing ZnO:Mo Nanorods Exposed to Hydrogen or Oxygen Plasma: Influence on the Intrinsic and Extrinsic Defect States

. 2022 Mar 18 ; 15 (6) : . [epub] 20220318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35329712

Grantová podpora
20-05497Y Czech Science Foundation
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760 the Ministry of Education, Youth and Sports of Czech Republic
Mobility Plus SAV-AV ČR-21-09 Czech and Slovak Academy of Sciences
VEGA 2/0157/20 the Scientific Grant Agency of Ministry of Education, Science, Research and Sport of Slovak Re-public and Slovak Academy of Sciences

Cationic doping of ZnO nanorods has gained increased interest as it can lead to the production of materials with improved luminescent properties, electrical conductivity and stability. We report on various Mo-doped ZnO powders of nanorods synthesized by the hydrothermal growth method. Further annealing or/and cold hydrogen or oxygen plasma modification was applied. The atomic structure of the as-grown and plasma-modified rods was characterized by X-ray diffraction. To identify any possible changes in morphology, scanning electron microscopy was used. Paramagnetic point defects were investigated by electron paramagnetic resonance. In particular, two new types of defects were initiated by the plasma treatment. Their appearance was explained, and corresponding mechanisms were proposed. The changes in the luminescence and scintillation properties were characterized by photo- and radioluminescence, respectively. Charge trapping phenomena were studied by thermally stimulated luminescence. Cold plasma treatment influenced the luminescence properties of ZnO:Mo structures. The contact with hydrogen lead to an approximately threefold increase in intensity of the ultraviolet exciton-related band peaking at ~3.24 eV, whereas the red band attributed to zinc vacancies (~1.97 eV) was suppressed compared to the as-grown samples. The exciton- and defect-related emission subsided after the treatment in oxygen plasma.

Zobrazit více v PubMed

Neykova N., Stuchlik J., Hruska K., Poruba A., Remes Z., Pop-Georgievski O. Study of the Surface Properties of ZnO Nanocolumns Used for Thin-Film Solar Cells. Beilstein J. Nanotechnol. 2017;8:446–451. doi: 10.3762/bjnano.8.48. PubMed DOI PMC

Neykova N., Moulin E., Campa A., Hruska K., Poruba A., Stuckelberger M., Haug F.-J., Topic M., Ballif C., Vanecek M. Three-Dimensional Amorphous Silicon Solar Cells on Periodically Ordered ZnO Nanocolumns. Phys. Status Solidi A. 2015;212:1823–1829. doi: 10.1002/pssa.201431869. DOI

Neykova N., Hruska K., Holovsky J., Remes Z., Vanecek M. Arrays of ZnO Nanocolumns for 3-Dimensional Very Thin Amorphous and Microcrystalline Silicon Solar Cells. Thin Solid Films. 2013;543:110–113. doi: 10.1016/j.tsf.2013.02.110. DOI

Vanecek M., Babchenko O., Purkrt A., Holovsky J., Neykova N., Poruba A., Remes Z., Meier J., Kroll U. Nanostructured Three-Dimensional Thin Film Silicon Solar Cells with Very High Efficiency Potential. Appl. Phys. Lett. 2011;98:163503. doi: 10.1063/1.3583377. DOI

Davydova M., Laposa A., Smarhak J., Kromka A., Neykova N., Nahlik J., Kroutil J., Drahokoupil J., Voves J. Gas-Sensing Behaviour of ZnO/Diamond Nanostructures. Beilstein J. Nanotechnol. 2018;9:22–29. doi: 10.3762/bjnano.9.4. PubMed DOI PMC

Neykova N., Brož A., Remeš Z., Hruška K., Kalbáčová M., Kromka A., Vaněček M. ZnO Hedgehog-like Structures for Control Cell Cultivation. Appl. Surf. Sci. 2012;258:3485–3489. doi: 10.1016/j.apsusc.2011.11.101. DOI

Ong C.B., Ng L.Y., Mohammad A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI

Venevtsev I.D., Tarasov A.P., Muslimov A.E., Gorokhova E.I., Zadorozhnaya L.A., Rodnyi P.A., Kanevsky V.M. Ultraviolet Luminescence of ZnO Whiskers, Nanowalls, Multipods, and Ceramics as Potential Materials for Fast Scintillators. Materials. 2021;14:2001. doi: 10.3390/ma14082001. PubMed DOI PMC

Leiter F., Zhou H., Henecker F., Hofstaetter A., Hofmann D.M., Meyer B.K. Magnetic Resonance Experiments on the Green Emission in Undoped ZnO Crystals. Phys. B Condens. Matter. 2001;308–310:908–911. doi: 10.1016/S0921-4526(01)00837-7. DOI

Dujardin C., Auffray E., Bourret-Courchesne E., Dorenbos P., Lecoq P., Nikl M., Vasil’ev A.N., Yoshikawa A., Zhu R.-Y. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Trans. Nucl. Sci. 2018;65:1977–1997. doi: 10.1109/TNS.2018.2840160. DOI

Janotti A., van de Walle C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI

Janotti A., van de Walle C.G. Native Point Defects in ZnO. Phys. Rev. B. 2007;76:165202. doi: 10.1103/PhysRevB.76.165202. DOI

Buryi M., Babin V., Chang Y.-Y., Remeš Z., Mičová J., Šimek D. Influence of Precursor Age on Defect States in ZnO Nanorods. Appl. Surf. Sci. 2020;525:146448. doi: 10.1016/j.apsusc.2020.146448. DOI

Neykova N., Chang Y.-Y., Buryi M., Davydova M., Kucerkova R., Simek D., Remes Z., Pop-Georgievski O. Study of ZnO Nanorods Grown under UV Irradiation. Appl. Surf. Sci. 2019;472:105–111. doi: 10.1016/j.apsusc.2018.03.173. DOI

Mičová J., Buryi M., Šimek D., Drahokoupil J., Neykova N., Chang Y.-Y., Remeš Z., Pop-Georgievski O., Svoboda J., Im C. Synthesis of Zinc Oxide Nanostructures and Comparison of Their Crystal Quality. Appl. Surf. Sci. 2018;461:190–195. doi: 10.1016/j.apsusc.2018.05.176. DOI

Villafuerte J., Donatini F., Kioseoglou J., Sarigiannidou E., Chaix-Pluchery O., Pernot J., Consonni V. Zinc Vacancy-Hydrogen Complexes as Major Defects in ZnO Nanowires Grown by Chemical Bath Deposition. J. Phys. Chem. C. 2020;124:16652–16662. doi: 10.1021/acs.jpcc.0c04264. DOI

Zhang M., Averseng F., Haque F., Borghetti P., Krafft J.-M., Baptiste B., Costentin G., Stankic S. Defect-Related Multicolour Emissions in ZnO Smoke: From Violet, over Green to Yellow. Nanoscale. 2019;11:5102–5115. doi: 10.1039/C8NR09998G. PubMed DOI

Lyons J.L., Varley J.B., Steiauf D., Janotti A., van de Walle C.G. First-Principles Characterization of Native-Defect-Related Optical Transitions in ZnO. J. Appl. Phys. 2017;122:035704. doi: 10.1063/1.4992128. DOI

Frodason Y.K., Johansen K.M., Bjørheim T.S., Svensson B.G., Alkauskas A. Zn Vacancy as a Polaronic Hole Trap in ZnO. Phys. Rev. B. 2017;95:094105. doi: 10.1103/PhysRevB.95.094105. DOI

Buryi M., Remeš Z., Babin V., Novotný M., Vaněček V., Aubrechtová Dragounová K., Mičová J., Landová L., Kučerková R., More-Chevalier J., et al. Influence of Mo Doping on the Luminescence Properties and Defect States in ZnO Nanorods. Comparison with ZnO:Mo Thin Films. Appl. Surf. Sci. 2021;555:149679. doi: 10.1016/j.apsusc.2021.149679. DOI

Buryi M., Remeš Z., Babin V., Artemenko A., Vaněček V., Aubrechtová Dragounová K., Landová L., Kučerková R., Mičová J. Transformation of Free-Standing ZnO Nanorods upon Er Doping. Appl. Surf. Sci. 2021;562:150217. doi: 10.1016/j.apsusc.2021.150217. DOI

Orlinskii S.B., Schmidt J., Baranov P.G., Lorrmann V., Riedel I., Rauh D., Dyakonov V. Identification of Shallow Al Donors in Al-Doped ZnO Nanocrystals: EPR and ENDOR Spectroscopy. Phys. Rev. B. 2008;77:115334. doi: 10.1103/PhysRevB.77.115334. DOI

Hofmann D.M., Hofstaetter A., Leiter F., Zhou H., Henecker F., Meyer B.K., Orlinskii S.B., Schmidt J., Baranov P.G. Hydrogen: A Relevant Shallow Donor in Zinc Oxide. Phys. Rev. Lett. 2002;88:045504. doi: 10.1103/PhysRevLett.88.045504. PubMed DOI

Schulz M. ESR Experiments on Ga Donors in ZnO Crystals. Phys. Status Solidi A. 1975;27:K5–K8. doi: 10.1002/pssa.2210270140. DOI

Dai Z.R., Pan Z.W., Wang Z.L. Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Adv. Funct. Mater. 2003;13:9–24. doi: 10.1002/adfm.200390013. DOI

Ding J., Dai Z., Qin F., Zhao H., Zhao S., Chen R. Z-Scheme BiO1−XBr/Bi2O2CO3 Photocatalyst with Rich Oxygen Vacancy as Electron Mediator for Highly Efficient Degradation of Antibiotics. Appl. Catal. B Environ. 2017;205:281–291. doi: 10.1016/j.apcatb.2016.12.018. DOI

Ravichandran K., Anbazhagan A., Dineshbabu N., Ravidhas C. Influence of Mo Doping on Transparent Conducting Properties of ZnO Films Prepared by a Simplified Spray Technique. J. Mater. Sci. Mater. Electron. 2015;26:7649–7654. doi: 10.1007/s10854-015-3404-6. DOI

Swapna R., Santhosh Kumar M.C. Growth and Characterization of Molybdenum Doped ZnO Thin Films by Spray Pyrolysis. J. Phys. Chem. Solids. 2013;74:418–425. doi: 10.1016/j.jpcs.2012.11.003. DOI

Buryi M., Remeš Z., Babin V., Vaněček V., Dragounová K.A., Mičová J., Landová L., Kučerková R. ZnO Nanorods Alloyed with Mo/Er. The Effect of Post-Deposition Treatment on Defect States and Luminescence. IOP Conf. Ser. Mater. Sci. Eng. 2021;1050:012002. doi: 10.1088/1757-899X/1050/1/012002. DOI

Neykova N., Kozak H., Ledinsky M., Kromka A. Novel Plasma Treatment in Linear Antenna Microwave PECVD System. Vacuum. 2012;86:603–607. doi: 10.1016/j.vacuum.2011.07.055. DOI

Lennon C., Tapia R.B., Kodama R., Chang Y., Sivananthan S., Deshpande M. Effects of Annealing in a Partially Reducing Atmosphere on Sputtered Al-Doped ZnO Thin Films. J. Electron. Mater. 2009;38:1568–1573. doi: 10.1007/s11664-009-0747-x. DOI

Savoyant A., Rollo M., Texier M., Adam R.E., Bernardini S., Pilone O., Margeat O., Nur O., Willander M., Bertaina S. Light-Induced High-Spin State in ZnO Nanoparticles. Nanotechnology. 2020;31:095707. doi: 10.1088/1361-6528/ab57f1. PubMed DOI

Buryi M., Babin V., Artemenko A., Remeš Z., Děcká K., Mičová J. Hydrothermally Grown ZnO:Mo Nanorods Exposed to X-Ray: Luminescence and Charge Trapping Phenomena. Appl. Surf. Sci. 2022;585:152682. doi: 10.1016/j.apsusc.2022.152682. DOI

Buryi M., Remeš Z., Babin V., Artemenko A., Chertopalov S., Mičová J. Cold Plasma Treatment of ZnO:Er Nano- and Microrods: The Effect on Luminescence and Defects Creation. J. Alloys Compd. 2022;895:162671. doi: 10.1016/j.jallcom.2021.162671. DOI

Mooney J., Kambhampati P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013;4:3316–3318. doi: 10.1021/jz401508t. PubMed DOI

Buryi M., Remeš Z., Děcká K., Mičová J., Landová L. Transformation of ZNO-based structures under heavy MO doping: Defect states and luminescence; Proceedings of the NANOCON 2021 Conference; Brno, Czech Republic. 20–22 October 2021; DOI

Stehr J.E., Hofmann D.M., Meyer B.K. Electron Paramagnetic Resonance and Photo-Electron Paramagnetic Resonance Investigation on the Recharging of the Substitutional Nitrogen Acceptor in ZnO. J. Appl. Phys. 2012;112:103511. doi: 10.1063/1.4765729. DOI

Reddy A.J., Kokila M.K., Nagabhushana H., Rao J.L., Nagabhushana B.M., Shivakumara C., Chakradhar R.P.S. EPR and Photoluminescence Studies of ZnO:Mn Nanophosphors Prepared by Solution Combustion Route. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011;79:476–480. doi: 10.1016/j.saa.2011.03.014. PubMed DOI

Burešová H., Procházková L., Turtos R.M., Jarý V., Mihóková E., Beitlerová A., Pjatkan R., Gundacker S., Auffray E., Lecoq P., et al. Preparation and Luminescence Properties of ZnO:Ga—Polystyrene Composite Scintillator. Opt. Express. 2016;24:15289. doi: 10.1364/OE.24.015289. PubMed DOI

Nadupalli S., Repp S., Weber S., Erdem E. About Defect Phenomena in ZnO Nanocrystals. Nanoscale. 2021;13:9160–9171. doi: 10.1039/D1NR00943E. PubMed DOI

Remes Z., Buryi M., Neykova N., Stuchlik J., Micova J., Hsu H.S. Room Temperature Plasma Hydrogenation—An Effective Way to Suppress Defects in ZnO Nanorods. Mater. Today Proc. 2020;33:2481–2483. doi: 10.1016/j.matpr.2020.02.758. DOI

Li Q., Hao S., An R., Wang M., Sun Z., Wu Q., Gu M., Zhao J., Liu X., Zhang Z. Ultraviolet-Light Emission Enhancement and Morphology Stability for ZnO:Ga Nanorod Array Treated by Hydrogen Plasma. Appl. Surf. Sci. 2019;493:1299–1305. doi: 10.1016/j.apsusc.2019.07.149. DOI

Wang R.-C., Cheng C.-F. Performances Enhancement of H-Doped ZnO Nanorods by H2/Ar Plasma Treatment: Performances Enhancement of H-Doped ZnO Nanorods. Plasma Process. Polym. 2015;12:51–58. doi: 10.1002/ppap.201400056. DOI

Jiang S., Ren Z., Gong S., Yin S., Yu Y., Li X., Xu G., Shen G., Han G. Tunable Photoluminescence Properties of Well-Aligned ZnO Nanorod Array by Oxygen Plasma Post-Treatment. Appl. Surf. Sci. 2014;289:252–256. doi: 10.1016/j.apsusc.2013.10.146. DOI

Poole C.P., Farach H.A., American Institute of Physics, editors. Handbook of Electron Spin Resonance. Volume 2 AIP Press; New York, NY, USA: 1999.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...