• This record comes from PubMed

Changes to Material Phase and Morphology Due to High-Level Molybdenum Doping of ZnO Nanorods: Influence on Luminescence and Defects

. 2023 Apr 22 ; 16 (9) : . [epub] 20230422

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-05497Y Czech Science Foundation

The influence of Mo on the electronic states and crystalline structure, as well as morphology, phase composition, luminescence, and defects in ZnO rods grown as free-standing nanoparticles, was studied using a variety of experimental techniques. Mo has almost no influence on the luminescence of the grown ZnO particles, whereas shallow donors are strongly affected in ZnO rods. Annealing in air causes exciton and defect-related bands to drop upon Mo doping level. The increase of the Mo doping level from 20 to 30% leads to the creation of dominating molybdates. This leads to a concomitant drop in the number of formed ZnO nanorods.

See more in PubMed

Grigorjeva L., Millers D., Smits K., Pankratov V., Łojkowski W., Fidelus J., Chudoba T., Bienkowski K., Monty C. Excitonic luminescence in ZnO nanopowders and ceramics. Opt. Mater. 2009;31:1825–1827. doi: 10.1016/j.optmat.2008.10.052. DOI

Uklein A., Multian V., Kuz’Micheva G., Linnik R., Lisnyak V., Popov A., Gayvoronsky V.Y. Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects. Opt. Mater. 2018;84:738–747. doi: 10.1016/j.optmat.2018.08.001. DOI

Zhang G.B., Zhou H.J., Shi C.S., Shi J.Y., Zhou Y.X., Zhang X.Y., Fu Z.X., Kirm M., Zimmerer G. Temperature and time dependence of emission properties of zno films deposited on si substrates. Surf. Rev. Lett. 2002;9:699–703. doi: 10.1142/S0218625X02002865. DOI

D’agostino D., Di Giorgio C., Bobba F., Di Trolio A., Alippi P., Cucolo A.M., Bonapasta A.A. Effects of cobalt substitution on ZnO surface reactivity and electronic structure. J. Mater. Chem. C. 2019;7:8364–8373. doi: 10.1039/C8TC06188B. DOI

Kapat K., Shubhra Q.T.H., Zhou M., Leeuwenburgh S. Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration. Adv. Funct. Mater. 2020;30:1909045. doi: 10.1002/adfm.201909045. DOI

Siebert L., Luna-Cerón E., García-Rivera L.E., Oh J., Jang J., Rosas-Gómez D.A., Pérez-Gómez M.D., Maschkowitz G., Fickenscher H., Oceguera-Cuevas D., et al. Light-Controlled Growth Factors Release on Tetrapodal ZnO-Incorporated 3D-Printed Hydrogels for Developing Smart Wound Scaffold. Adv. Funct. Mater. 2021;31:2007555. doi: 10.1002/adfm.202007555. PubMed DOI PMC

Leiter F., Zhou H., Henecker F., Hofstaetter A., Hofmann D., Meyer B. Magnetic resonance experiments on the green emission in undoped ZnO crystals. Phys. B Condens. Matter. 2001;308–310:908–911. doi: 10.1016/S0921-4526(01)00837-7. DOI

Chen J.-X., Hao S.-T., Sun Z.-X., Zheng P., Tang J., Yang Y.-L., Zhang S.-L., Liu X.-L., Zhao J.-T., Li Q.-L., et al. Development of the ZnO:Ga nanorod arrays as an alpha particle scintillation screen for the associated particle neutron generator. Appl. Phys. Lett. 2022;120:193502. doi: 10.1063/5.0086133. DOI

You D., Xu C., Wang X., Wang J., Su W., Wang R., Chen T., Shi Z. A core@dual-shell nanorod array with a cascading band configuration for enhanced photocatalytic properties and anti-photocorrosion. J. Mater. Chem. A. 2020;8:3726–3734. doi: 10.1039/C9TA13028D. DOI

Zhou Y., Chen G., Sargent E.H., Zhuang T., Dinh C.T., He F. Freestanding nano-photoelectrode as a highly efficient and visible-light-driven photocatalyst for water-splitting. J. Mater. Chem. A. 2017;5:10651–10657. doi: 10.1039/C7TA02626A. DOI

Ray C., Pal T. Retracted Article: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A. 2017;5:9465–9487. doi: 10.1039/C7TA02116J. DOI

Barbillon G., Sandana V.E., Humbert C., Bélier B., Rogers D.J., Teherani F.H., Bove P., McClintock R., Razeghi M. Study of Au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing. J. Mater. Chem. C. 2017;5:3528–3535. doi: 10.1039/C7TC00098G. DOI

Feng H., Liang L., Wu W., Huang Z., Liu Y. Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide nano-heterostructures for efficient photocatalysis. J. Mater. Chem. C. 2020;8:11263–11273. doi: 10.1039/D0TC02607G. DOI

Garg N., White C.E. Mechanism of zinc oxide retardation in alkali-activated materials: An in situ X-ray pair distribution function investigation. J. Mater. Chem. A. 2017;5:11794–11804. doi: 10.1039/C7TA00412E. DOI

Chen H., Shen K., Chen J., Chen X., Li Y. Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A. 2017;5:9937–9945. doi: 10.1039/C7TA02184D. DOI

He G.-H., Jiang M.-M., Dong L., Zhang Z.-Z., Li B.-H., Shan C.-X., Shen D.-Z. Near-infrared light-emitting devices from individual heavily Ga-doped ZnO microwires. J. Mater. Chem. C. 2017;5:2542–2551. doi: 10.1039/C6TC05568K. DOI

Buryi M., Babin V., Chang Y.-Y., Remeš Z., Mičová J., Šimek D. Influence of precursor age on defect states in ZnO nanorods. Appl. Surf. Sci. 2020;525:146448. doi: 10.1016/j.apsusc.2020.146448. DOI

Neykova N., Hruska K., Holovsky J., Remes Z., Vanecek M. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells. Thin Solid Films. 2013;543:110–113. doi: 10.1016/j.tsf.2013.02.110. DOI

Mičová J., Buryi M., Šimek D., Drahokoupil J., Neykova N., Chang Y.-Y., Remeš Z., Pop-Georgievski O., Svoboda J., Im C. Synthesis of zinc oxide nanostructures and comparison of their crystal quality. Appl. Surf. Sci. 2018;461:190–195. doi: 10.1016/j.apsusc.2018.05.176. DOI

Dujardin C., Auffray E., Bourret-Courchesne E., Dorenbos P., Lecoq P., Nikl M., Vasil’Ev A.N., Yoshikawa A., Zhu R.-Y. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Trans. Nucl. Sci. 2018;65:1977–1997. doi: 10.1109/TNS.2018.2840160. DOI

Abrahams S.C., Bernstein J.L. Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969;25:1233–1236. doi: 10.1107/S0567740869003876. DOI

Buryi M., Remeš Z., Babin V., Artemenko A., Vaněček V., Dragounová K.A., Landová L., Kučerková R., Mičová J. Transformation of free-standing ZnO nanorods upon Er doping. Appl. Surf. Sci. 2021;562:150217. doi: 10.1016/j.apsusc.2021.150217. DOI

Buryi M., Remeš Z., Babin V., Novotný M., Vaněček V., Dragounová K.A., Mičová J., Landová L., Kučerková R., More-Chevalier J., et al. Influence of Mo doping on the luminescence properties and defect states in ZnO nanorods. Comparison with ZnO:Mo thin films. Appl. Surf. Sci. 2021;555:149679. doi: 10.1016/j.apsusc.2021.149679. DOI

Neykova N., Moulin E., Čampa A., Hruška K., Poruba A., Stuckelberger M., Haug F.-J., Topič M., Ballif C., Vanecek M. Three-dimensional amorphous silicon solar cells on periodically ordered ZnO nanocolumns. Phys. Status Solidi (A) 2015;212:1823–1829. doi: 10.1002/pssa.201431869. DOI

Neykova N., Brož A., Remeš Z., Hruška K., Kalbáčová M., Kromka A., Vaněček M. ZnO hedgehog-like structures for control cell cultivation. Appl. Surf. Sci. 2012;258:3485–3489. doi: 10.1016/j.apsusc.2011.11.101. DOI

Buryi M., Remeš Z., Babin V., Vaněček V., Dragounová K.A., Mičová J., Landová L., Kučerková R. ZnO nanorods alloyed with Mo/Er. The effect of post-deposition treatment on defect states and luminescence. IOP Conf. Ser. Mater. Sci. Eng. 2021;1050:012002. doi: 10.1088/1757-899X/1050/1/012002. DOI

Buryi M., Remeš Z., Babin V., Chertopalov S., Děcká K., Dominec F., Mičová J., Neykova N. Free-Standing ZnO:Mo Nanorods Exposed to Hydrogen or Oxygen Plasma: Influence on the Intrinsic and Extrinsic Defect States. Materials. 2022;15:2261. doi: 10.3390/ma15062261. PubMed DOI PMC

Buryi M., remeš Z., děcká K., Mičová J., Landová L. Transformation of ZnO-based structures under heavy Mo doping: Defect states and luminescence; Proceedings of the NANOCON 2021 Conference; Brno, Czech Republic. 20–22 October 2021; pp. 74–79. DOI

Buryi M., Babin V., Artemenko A., Remeš Z., Děcká K., Mičová J. Hydrothermally grown ZnO:Mo nanorods exposed to X-ray: Luminescence and charge trapping phenomena. Appl. Surf. Sci. 2022;585:152682. doi: 10.1016/j.apsusc.2022.152682. DOI

Neykova N., Kozak H., Ledinsky M., Kromka A. Novel plasma treatment in linear antenna microwave PECVD system. Vacuum. 2012;86:603–607. doi: 10.1016/j.vacuum.2011.07.055. DOI

Buryi M., Remeš Z., Babin V., Artemenko A., Chertopalov S., Mičová J. Cold plasma treatment of ZnO:Er nano- and microrods: The effect on luminescence and defects creation. J. Alloys Compd. 2022;895:162671. doi: 10.1016/j.jallcom.2021.162671. DOI

Buryi M., Ridzoňová K., Neykova N., Landová L., Hájek F., Babin V., Děcká K., Sharma R.K., Pop-Georgievski O. Effect of UV Irradiation on the Growth of ZnO:Er Nanorods and Their Intrinsic Defects. Chemosensors. 2023;11:156. doi: 10.3390/chemosensors11030156. DOI

Rajiv P., Dinnebier R.E., Jansen M. “Powder 3D Parametric”—A program for Automated Sequential and Parametric Rietveld Refinement Using Topas. Mater. Sci. Forum. 2010;651:97–104. doi: 10.4028/www.scientific.net/MSF.651.97. DOI

Pop-Georgievski O., Kubies D., Zemek J., Neykova N., Demianchuk R., Chánová E.M., Šlouf M., Houska M., Rypacek F. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: A study of functionalization and stability. Beilstein J. Nanotechnol. 2015;6:617–631. doi: 10.3762/bjnano.6.63. PubMed DOI PMC

Pop-Georgievski O., Neykova N., Proks V., Houdkova J., Ukraintsev E., Zemek J., Kromka A., Rypaček F. Polydopamine-modified nanocrystalline diamond thin films as a platform for bio-sensing applications. Thin Solid Films. 2013;543:180–186. doi: 10.1016/j.tsf.2012.11.128. DOI

Mooney J., Kambhampati P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013;4:3316–3318. doi: 10.1021/jz401508t. PubMed DOI

Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI

Nishinaga T., editor. Organic Redox Systems: Synthesis, Properties, and Applications. Wiley; Hoboken, NJ, USA: 2016.

Lo S.-S., Huang D., Tu C.-H., Jan D.-J. Formation and Raman scattering of seed-like ZnO nanostructure. J. Raman Spectrosc. 2009;40:1694–1697. doi: 10.1002/jrs.2329. DOI

Neykova N., Chang Y.-Y., Buryi M., Davydova M., Kucerkova R., Simek D., Remes Z., Pop-Georgievski O. Study of ZnO nanorods grown under UV irradiation. Appl. Surf. Sci. 2019;472:105–111. doi: 10.1016/j.apsusc.2018.03.173. DOI

Li L.M., Li C.C., Zhang J., Du Z.F., Zou B.S., Yu H.C., Wang Y.G., Wang T.H. Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires. Nanotechnology. 2007;18:225504. doi: 10.1088/0957-4484/18/22/225504. DOI

Yang J.H., Zheng J.H., Zhai H.J., Yang L.L. Low temperature hydrothermal growth and optical properties of ZnO nanorods. Cryst. Res. Technol. 2008;44:87–91. doi: 10.1002/crat.200800294. DOI

Neykova N., Stuchlik J., Hruska K., Poruba A., Remes Z., Pop-Georgievski O. Study of the surface properties of ZnO nanocolumns used for thin-film solar cells. Beilstein J. Nanotechnol. 2017;8:446–451. doi: 10.3762/bjnano.8.48. PubMed DOI PMC

Lyons J.L., Varley J.B., Steiauf D., Janotti A., Van de Walle C.G. First-principles characterization of native-defect-related optical transitions in ZnO. J. Appl. Phys. 2017;122:035704. doi: 10.1063/1.4992128. DOI

Frodason Y.K., Johansen K.M., Bjørheim T.S., Svensson B.G., Alkauskas A. Zn vacancy as a polaronic hole trap in ZnO. Phys. Rev. B. 2017;95:094105. doi: 10.1103/PhysRevB.95.094105. DOI

Thomas D. The exciton spectrum of zinc oxide. J. Phys. Chem. Solids. 1960;15:86–96. doi: 10.1016/0022-3697(60)90104-9. DOI

Meyer B.K., Alves H., Hofmann D.M., Kriegseis W., Forster D., Bertram F., Christen J., Hoffmann A., Straßburg M., Dworzak M., et al. Bound exciton and donor–acceptor pair recombinations in ZnO. Phys. Status Solidi (B) 2004;241:231–260. doi: 10.1002/pssb.200301962. DOI

Buryi M., Spassky D., Hybler J., Laguta V., Nikl M. Electron Spin Resonance study of charge trapping in α-ZnMoO4 single crystal scintillator. Opt. Mater. 2015;47:244–250. doi: 10.1016/j.optmat.2015.05.032. DOI

Spassky D., Nagirnyi V., Mikhailin V., Savon A., Belsky A., Laguta V., Buryi M., Galashov E., Shlegel V., Voronina I., et al. Trap centers in molybdates. Opt. Mater. 2013;35:2465–2472. doi: 10.1016/j.optmat.2013.06.054. DOI

Teke A., Özgür Ü., Doğan S., Gu X., Morkoç H., Nemeth B., Nause J., Everitt H.O. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B. 2004;70:195207. doi: 10.1103/PhysRevB.70.195207. DOI

Wang Y.G., Lau S.P., Lee H.W., Yu S.F., Tay B.K., Zhang X.H., Hng H.H. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 2003;94:354–358. doi: 10.1063/1.1577819. DOI

Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions. Oxford University Press; Oxford, UK: 2012.

Jakes P., Erdem E. Finite size effects in ZnO nanoparticles: An electron paramagnetic resonance (EPR) analysis. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2011;5:56–58. doi: 10.1002/pssr.201004450. DOI

Anjana R., Jayaraj M.K., Yadav A.K., Jha S.N., Bhattacharyya D. Investigating the evolution of local structure around Er and Yb in ZnO:Er and ZnO:Er, Yb on annealing using X-ray absorption spectroscopy. J. Appl. Phys. 2018;123:153102. doi: 10.1063/1.5022638. DOI

Wang J., Zhou M.J., Hark S.K., Li Q., Tang D., Chu M.W., Chen C.H. Local electronic structure and luminescence properties of Er doped ZnO nanowires. Appl. Phys. Lett. 2006;89:221917. doi: 10.1063/1.2399340. DOI

Honglin L., Yingbo L., Jinzhu L., Ke Y. Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. J. Alloy. Compd. 2014;617:102–107. doi: 10.1016/j.jallcom.2014.08.019. DOI

Mackova A., Malinsky P., Pupikova H., Nekvindova P., Cajzl J., Svecova B., Oswald J., Wilhelm R., Kolitsch A. A comparison of the structural changes and optical properties of LiNbO3, Al2O3 and ZnO after Er+ ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2014;331:182–186. doi: 10.1016/j.nimb.2013.11.047. DOI

Van de Walle C.G. Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett. 2000;85:1012–1015. doi: 10.1103/PhysRevLett.85.1012. PubMed DOI

Poole C.P., Farach H.A., American Institute of Physics, editors. Handbook of Electron Spin Resonance. Volume 2 AIP Press; New York, NY, USA: 1999.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...