Study of the surface properties of ZnO nanocolumns used for thin-film solar cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28326235
PubMed Central
PMC5331301
DOI
10.3762/bjnano.8.48
Knihovny.cz E-zdroje
- Klíčová slova
- 3-dimensional solar cells, X-ray photoelectron spectroscopy, ZnO nanocolumns, hydrothermal growth, optical spectroscopy, photothermal deflection spectroscopy, plasma treatment,
- Publikační typ
- časopisecké články MeSH
Densely packed ZnO nanocolumns (NCs), perpendicularly oriented to the fused-silica substrates were directly grown under hydrothermal conditions at 90 °C, with a growth rate of around 0.2 μm/h. The morphology of the nanostructures was visualized and analyzed by scanning electron microscopy (SEM). The surface properties of ZnO NCs and the binding state of present elements were investigated before and after different plasma treatments, typically used in plasma-enhanced CVD solar cell deposition processes, by X-ray photoelectron spectroscopy (XPS). Photothermal deflection spectroscopy (PDS) was used to investigate the optical and photoelectrical characteristics of the ZnO NCs, and the changes induced to the absorptance by the plasma treatments. A strong impact of hydrogen plasma treatment on the free-carrier and defect absorption of ZnO NCs has been directly detected in the PDS spectra. Although oxygen plasma treatment was proven to be more efficient in the surface activation of the ZnO NC, the PDS analysis showed that the plasma treatment left the optical and photoelectrical features of the ZnO NCs intact. Thus, it was proven that the selected oxygen plasma treatment can be of great benefit for the development of thin film solar cells based on ZnO NCs.
Institute of Macromolecular Chemistry AS CR v v i Heyrovsky sq 2 162 06 Prague Czech Republic
Institute of Physics AS CR v v i Cukrovarnicka 10 162 53 Prague Czech Republic
Zobrazit více v PubMed
Krishnakumar V, Han J, Klein A, Jaegermann W. Thin Solid Films. 2011;519:7138–7141. doi: 10.1016/j.tsf.2010.12.118. DOI
Bosio A, Menossi D, Mazzamuto S, Romeo N. Thin Solid Films. 2011;519:7522–7525. doi: 10.1016/j.tsf.2010.12.137. DOI
Shah A, Moulin E, Ballif C. Sol Energy Mater Sol Cells. 2013;119:311–316. doi: 10.1016/j.solmat.2013.09.001. DOI
Vanecek M, Babchenko O, Purkrt A, Holovsky J, Neykova N, Poruba A, Remes Z, Meier J, Kroll U. Appl Phys Lett. 2011;98:163503. doi: 10.1063/1.3583377. DOI
Neykova N, Moulin E, Campa A, Hruska K, Poruba A, Stuckelberger M, Haug F-J, Topic M, Ballif C, Vanecek M. Phys Status Solidi A. 2015;212:1823–1829. doi: 10.1002/pssa.201431869. DOI
Vanecek M, Neykova N, Hruska K, Poruba A, Remes Z, Holovsky J, Purkrt A, Babchenko O, Meier J, Kroll U, inventors. Photovoltaic cell and methods for producing a photovoltaic cell. US8772080B2. U.S. Patent. 2014 Jul 8;
Kim J, Battaglia C, Charrière M, Hong A, Jung W, Park H, Ballif C, Sadana D. Adv Mater. 2014;26:4082–4086. doi: 10.1002/adma.201400186. PubMed DOI
Kuang Y, van der Werf K H M, Houweling Z S, Schropp R E I. Appl Phys Lett. 2011;98:113111. doi: 10.1063/1.3567527. DOI
Ho C-I, Liang W-C, Yeh D-J, Su V-C, Yang P-C, Chen S-Y, Yang T-T, Lee J-H, Kuan C-H, Cheng I-C, et al. J Appl Phys. 2013;113:163106. doi: 10.1063/1.4803045. DOI
Liu X-Y, Shan C-X, Wang S-P, Zhao H-F, Shen D-Z. Nanoscale. 2013;5:7746. doi: 10.1039/c3nr02263c. PubMed DOI
Elias J, Tena-Zaera R, Lévy-Clément C. J Electroanal Chem. 2008;621:171–177. doi: 10.1016/j.jelechem.2007.09.015. DOI
Mamat M H, Malek M F, Hafizah N N, Asiah M N, Suriani A B, Mohamed A, Nafarizal N, Ahmad M K, Rusop M. Ceram Int. 2016;42:4107–4119. doi: 10.1016/j.ceramint.2015.11.083. DOI
Neykova N, Brož A, Remeš Z, Hruška K, Kalbáčová M, Kromka A, Vaněček M. Appl Surf Sci. 2012;258:3485–3489. doi: 10.1016/j.apsusc.2011.11.101. DOI
Neykova N, Hruska K, Holovsky J, Remes Z, Vanecek M. Thin Solid Films. 2013;543:110–113. doi: 10.1016/j.tsf.2013.02.110. DOI
Jackson W B, Amer N M, Boccara A C, Fournier D. Appl Opt. 1981;20:1333–1344. doi: 10.1364/AO.20.001333. PubMed DOI
Granqvist C G, Hultåker A. Thin Solid Films. 2002;411:1–5. doi: 10.1016/S0040-6090(02)00163-3. DOI
Chen C, Lu Y, He H, Xiao M, Wang Z, Chen L, Ye Z. ACS Appl Mater Interfaces. 2013;5:10274–10279. doi: 10.1021/am403133u. PubMed DOI
Cox S F J, Davis E A, Cottrell S P, King P J C, Lord J S, Gil J M, Alberto H V, Vilão R C, Piroto Duarte J, Ayres de Campos N, et al. Phys Rev Lett. 2001;86:2601–2604. doi: 10.1103/PhysRevLett.86.2601. PubMed DOI
Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G. Phys Rev Lett. 2002;88:045504. doi: 10.1103/PhysRevLett.88.045504. PubMed DOI
Miloslavskii V K, Pogrebniak P S. Phys Status Solidi B. 1972;51:K99–K102. doi: 10.1002/pssb.2220510252. DOI
Kim Y H, Karazhanov S Zh, Kim W M. Phys Status Solidi B. 2011;248:1702–1707. doi: 10.1002/pssb.201046426. DOI
Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y, Saykally R J, Yang P. Angew Chem, Int Ed. 2003;42:3031–3034. doi: 10.1002/anie.200351461. PubMed DOI
Stuchlik J, Stuchlikova T H, Artemenko A, Remes Z. JJAP Conf Proc. 2015;3:011301. doi: 10.7567/JJAPCP.3.011301. DOI
Neykova N, Kozak H, Ledinsky M, Kromka A. Vacuum. 2012;86:603–607. doi: 10.1016/j.vacuum.2011.07.055. DOI
Pop-Georgievski O, Neykova N, Proks V, Houdkova J, Ukraintsev E, Zemek J, Kromka A, Rypaček F. Thin Solid Films. 2013;543:180–186. doi: 10.1016/j.tsf.2012.11.128. DOI
Krátká M, Neykova N, Ukraintsev E, Kromka A, Rezek B. Int J Electrochem Sci. 2013;8:1598–1608.
Remes Z, Babchenko O, Varga M, Stuchlik J, Jirasek V, Prajzler V, Nekvindova P, Kromka A. Thin Solid Films. 2016;618:130–133. doi: 10.1016/j.tsf.2016.04.026. DOI