Optical and Transport Properties of ZnO Thin Films Prepared by Reactive Pulsed Mid-Frequency Sputtering Combined with RF ECWR Plasma
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
40278456
PubMed Central
PMC12029288
DOI
10.3390/nano15080590
PII: nano15080590
Knihovny.cz E-resources
- Keywords
- Hall effect, ZnO, optical absorptance, photoluminescence, sputtering,
- Publication type
- Journal Article MeSH
The study explores the optical and transport properties of polycrystalline ZnO thin films prepared using reactive pulsed mid-frequency sputtering with RF electron cyclotron wave resonance (ECWR) plasma. This deposition method increases the ionization degree of sputtered particles, the dissociation of reactive gas and the plasma density of pulsed reactive magnetron plasma. Optical absorption spectra reveal a sharp Urbach edge, indicating low valence band disorder. Lattice disorder and deep defect concentration are more likely to occur in samples with higher roughness. PL analysis at low temperature reveals in all samples a relatively slow (μs) red emission band related to deep bulk defects. The fast (sub-ns), surface-related blue PL band was observed in some samples. Blue PL disappeared after annealing in air at 500 °C. Room temperature Hall effect measurements confirm n-type conductivity, though with relatively low mobility, suggesting defect-related scattering. Persistent photoconductivity was observed under UV illumination, indicating deep trap states affecting charge transport. These results highlight the impact of deposition and post-treatment on polycrystalline ZnO thin films, offering insights into optimizing their performance for optoelectronic applications, such as UV detectors and transparent conductive oxides.
See more in PubMed
Klingshirn C., Fallert J., Zhou H., Sartor J., Thiele C., Maier-Flaig F., Schneider D., Kalt H. 65 Years of ZnO Research—Old and Very Recent Results. Phys. Stat. Sol. (B) 2010;247:1424–1447. doi: 10.1002/pssb.200983195. DOI
Klingshirn C. ZnO: Material, Physics and Applications. ChemPhysChem. 2007;8:782–803. doi: 10.1002/cphc.200700002. PubMed DOI
Klingshirn C.F., editor. Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer; Berlin/Heidelberg, Germany: 2010. (Springer Series in Materials Science).
Erhart P., Juslin N., Goy O., Nordlund K., Müller R., Albe K. Analytic Bond-Order Potential for Atomistic Simulations of Zinc Oxide. J. Phys. Condens. Matter. 2006;18:6585–6605. doi: 10.1088/0953-8984/18/29/003. DOI
Schulz H., Thiemann K.H. Structure Parameters and Polarity of the Wurtzite Type Compounds Sic—2H and ZnO. Solid State Commun. 1979;32:783–785. doi: 10.1016/0038-1098(79)90754-3. DOI
Özgür Ü., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Doğan S., Avrutin V., Cho S.-J., Morkoç H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005;98:041301. doi: 10.1063/1.1992666. DOI
Buryi M., Remeš Z., Babin V., Chertopalov S., Děcká K., Dominec F., Mičová J., Neykova N. Free-Standing ZnO:Mo Nanorods Exposed to Hydrogen or Oxygen Plasma: Influence on the Intrinsic and Extrinsic Defect States. Materials. 2022;15:2261. doi: 10.3390/ma15062261. PubMed DOI PMC
Sans J.A., Segura A., Mollar M., Marí B. Optical Properties of Thin Films of ZnO Prepared by Pulsed Laser Deposition. Thin Solid Film. 2004;453–454:251–255. doi: 10.1016/j.tsf.2003.11.155. DOI
Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E. Mechanisms behind Green Photoluminescence in ZnO Phosphor Powders. J. Appl. Phys. 1996;79:7983–7990. doi: 10.1063/1.362349. DOI
Kohan A.F., Ceder G., Morgan D., Van De Walle C.G. First-Principles Study of Native Point Defects in ZnO. Phys. Rev. B—Condens. Matter Mater. Phys. 2000;61:15019–15027. doi: 10.1103/PhysRevB.61.15019. DOI
Reynolds D.C., Look D.C., Jogai B., Morkoç H. Similarities in the Bandedge and Deep-Centre Photoluminescence Mechanisms of ZnO and GaN. Solid State Commun. 1997;101:643–646. doi: 10.1016/S0038-1098(96)00697-7. DOI
Li M., Xing G., Xing G., Wu B., Wu T., Zhang X., Sum T.C. Origin of Green Emission and Charge Trapping Dynamics in ZnO Nanowires. Phys. Rev. B. 2013;87:115309. doi: 10.1103/PhysRevB.87.115309. DOI
Kodama K., Uchino T. Thermally Activated Below-Band-Gap Excitation behind Green Photoluminescence in ZnO. J. Appl. Phys. 2012;111:093525. doi: 10.1063/1.4712624. DOI
Marotti R.E., Badán J.A., Quagliata E., Dalchiele E.A. Red Photoluminescence and Band Edge Shift from ZnO Thin Films. Phys. B Condens. Matter. 2007;398:337–340. doi: 10.1016/j.physb.2007.04.038. DOI
Leung Y.H., Chen X.Y., Ng A.M.C., Guo M.Y., Liu F.Z., Djurišić A.B., Chan W.K., Shi X.Q., Van Hove M.A. Green Emission in ZnO Nanostructures—Examination of the Roles of Oxygen and Zinc Vacancies. Appl. Surf. Sci. 2013;271:202–209. doi: 10.1016/j.apsusc.2013.01.160. DOI
Erhart P., Albe K. Diffusion of Zinc Vacancies and Interstitials in Zinc Oxide. Appl. Phys. Lett. 2006;88:201918. doi: 10.1063/1.2206559. DOI
Ayoub I., Kumar V., Abolhassani R., Sehgal R., Sharma V., Sehgal R., Swart H.C., Mishra Y.K. Advances in ZnO: Manipulation of Defects for Enhancing Their Technological Potentials. Nanotechnol. Rev. 2022;11:575–619. doi: 10.1515/ntrev-2022-0035. DOI
Janotti A., Van de Walle C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI
Borysiewicz M.A. ZnO as a Functional Material, a Review. Crystals. 2019;9:505. doi: 10.3390/cryst9100505. DOI
Van de Walle C.G. Defect Analysis and Engineering in ZnO. Phys. B Condens. Matter. 2001;308–310:899–903. doi: 10.1016/S0921-4526(01)00830-4. DOI
Galazka Z., Irmscher K., Pietsch M., Ganschow S., Schulz D., Klimm D., Hanke I.M., Schroeder T., Bickermann M. Experimental Hall Electron Mobility of Bulk Single Crystals of Transparent Semiconducting Oxides. J. Mater. Res. 2021;36:4746–4755. doi: 10.1557/s43578-021-00353-9. DOI
Jayah N.A., Yahaya H., Mahmood M.R., Terasako T., Yasui K., Hashim A.M. High Electron Mobility and Low Carrier Concentration of Hydrothermally Grown ZnO Thin Films on Seeded A-Plane Sapphire at Low Temperature. Nanoscale Res. Lett. 2015;10:7. doi: 10.1186/s11671-014-0715-0. PubMed DOI PMC
Hofmann D.M., Hofstaetter A., Leiter F., Zhou H., Henecker F., Meyer B.K., Orlinskii S.B., Schmidt J., Baranov P.G. Hydrogen: A Relevant Shallow Donor in Zinc Oxide. Phys. Rev. Lett. 2002;88:045504. doi: 10.1103/PhysRevLett.88.045504. PubMed DOI
Van de Walle C.G. Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett. 2000;85:1012–1015. doi: 10.1103/PhysRevLett.85.1012. PubMed DOI
Remes Z., Chang Y.Y., Stuchlík J., Neykova N., Soucek J., Hsu H.S. Enhanced Room Temperature Exciton Photoluminescence of Plasma Hydrogenated ZnO Nanocolumns. IOP Conf. Ser. Mater. Sci. Eng. 2019;465:012008. doi: 10.1088/1757-899X/465/1/012008. DOI
Cadatal-Raduban M., Olejníček J., Hibino K., Maruyama Y., Písaříková A., Shinohara K., Asaka T., Lebedová Volfová L., Kohout M., Jiaqi Z., et al. Ultrafast UV Luminescence of ZnO Films: Sub-30 Ps Decay Time with Suppressed Visible Component. Adv. Opt. Mater. 2024;12:2400377. doi: 10.1002/adom.202400377. DOI
Kavan L., Krýsová H., Zukalová M., Tarábková H., Hubička Z. Peculiar Photoelectrochemical Activity of Zinc Oxide and Tin Dioxide. J. Photochem. Photobiol. A Chem. 2025;458:115929. doi: 10.1016/j.jphotochem.2024.115929. DOI
Hibino K., Olejníček J., Yamanoi K., Ponseca C.S., Shuaib A., Maruyama Y., Písaříková A., Kohout M., Čada M., Kapran A., et al. Impact of Electron Cyclotron Wave Resonance Plasma on Defect Reduction in ZnO Thin Films. Sci. Rep. 2025;15:5555. doi: 10.1038/s41598-025-88921-5. PubMed DOI PMC
Krysova H., Mansfeldova V., Tarabkova H., Pisarikova A., Hubicka Z., Kavan L. High-Quality Dense ZnO Thin Films: Work Function and Photo/Electrochemical Properties. J. Solid State Electrochem. 2024;28:2531–2546. doi: 10.1007/s10008-023-05766-6. DOI
Remes Z., Babchenko O., Varga M., Stuchlik J., Jirasek V., Prajzler V., Nekvindova P., Kromka A. Preparation and Optical Properties of Nanocrystalline Diamond Coatings for Infrared Planar Waveguides. Thin Solid Film. 2016;618:130–133. doi: 10.1016/j.tsf.2016.04.026. DOI
Jackson W.B., Amer N.M., Boccara A.C., Fournier D. Photothermal Deflection Spectroscopy and Detection. Appl. Opt. 1981;20:1333–1344. doi: 10.1364/AO.20.001333. PubMed DOI
Mooney J., Kambhampati P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013;4:3316–3318. doi: 10.1021/jz401508t. PubMed DOI
Pelant I. Luminescence Spectroscopy of Semiconductors. Oxford University Press; Oxford, UK: New York, NY, USA: 2012.
Tompkins H.G. Spectroscopic Ellipsometry and Reflectometry: A User’s Guide. Wiley; New York, NY, USA: 1999.
Remes Z., Stuchlik J., Purkrt A., Chang Y.-Y., Jirasek V., Stenclova P., Prajzler V., Nekvindova P. The Intrinsic Submicron ZnO Thin Films Prepared by Reactive Magnetron Sputtering; Proceedings of the NANOCON 2016—Conference Proceedings; Brno, Czech Republic. 19–21 October 2016; Ostrava, Czech Republic: TANGER Ltd.; 2016. pp. 36–41.
Aspnes D.E., Theeten J.B., Hottier F. Investigation of Effective-Medium Models of Microscopic Surface Roughness by Spectroscopic Ellipsometry. Phys. Rev. B. 1979;20:3292–3302. doi: 10.1103/PhysRevB.20.3292. DOI
Franta D., Ohlídal I. Influence of Lateral Dimensions of the Irregularities on the Optical Quantities of Rough Surfaces. J. Opt. A Pure Appl. Opt. 2006;8:763–774. doi: 10.1088/1464-4258/8/9/010. DOI
Tikhonravov A.V., Trubetskov M.K., Tikhonravov A.A., Duparré A. Effects of Interface Roughness on the Spectral Properties of Thin Films and Multilayers. Appl. Opt. 2003;42:5140. doi: 10.1364/AO.42.005140. PubMed DOI
Urbach F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953;92:1324. doi: 10.1103/PhysRev.92.1324. DOI
Buryi M., Remeš Z., Babin V., Artemenko A., Vaněček V., Aubrechtová Dragounová K., Landová L., Kučerková R., Mičová J. Transformation of Free-Standing ZnO Nanorods upon Er Doping. Appl. Surf. Sci. 2021;562:150217. doi: 10.1016/j.apsusc.2021.150217. DOI
Remeš Z., Neyková N., Remeš Š., Novák R., Kučerková R., Jarý V., Mičová J. Nanosecond Photoluminescence Decay in Zinc Molybdate Oxide Nanocrystals Observed by TCSPC and Phase Shift Methods. J. Phys. Conf. Ser. 2024;2931:012011. doi: 10.1088/1742-6596/2931/1/012011. DOI
Lakowicz J.R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of Fluorescence Decay Kinetics from Variable-Frequency Phase Shift and Modulation Data. Biophys. J. 1984;46:463–477. doi: 10.1016/S0006-3495(84)84043-6. PubMed DOI PMC
Gao S.-L., Qiu L.-P., Zhang J., Han W.-P., Ramakrishna S., Long Y.-Z. Persistent Photoconductivity of Metal Oxide Semiconductors. ACS Appl. Electron. Mater. 2024;6:1542–1561. doi: 10.1021/acsaelm.3c01549. DOI
Devore J.L. Probability and Statistics for Engineering and the Sciences. 8th ed. Brooks/Cole, Cengage Learning; Boston, MA, USA: 2012.
Sze S.M., Ng K.K. Physics of Semiconductor Devices. 3rd ed. Wiley-Interscience; Hoboken, NJ, USA: 2007.
Sheetz R.M., Ponomareva I., Richter E., Andriotis A.N., Menon M. Defect-Induced Optical Absorption in the Visible Range in ZnO Nanowires. Phys. Rev. B. 2009;80:195314. doi: 10.1103/PhysRevB.80.195314. DOI
Teke A., Özgür Ü., Doğan S., Gu X., Morkoç H., Nemeth B., Nause J., Everitt H.O. Excitonic Fine Structure and Recombination Dynamics in Single-Crystalline ZnO. Phys. Rev. B. 2004;70:195207. doi: 10.1103/PhysRevB.70.195207. DOI
Buryi M., Babin V., Chang Y.-Y., Remeš Z., Mičová J., Šimek D. Influence of Precursor Age on Defect States in ZnO Nanorods. Appl. Surf. Sci. 2020;525:146448. doi: 10.1016/j.apsusc.2020.146448. DOI
Thomas D.G. Interstitial Zinc in Zinc Oxide. J. Phys. Chem. Solids. 1957;3:229–237. doi: 10.1016/0022-3697(57)90027-6. DOI
Liang Z., Yu X., Lei B., Liu P., Mai W. Novel Blue-Violet Photoluminescence from Sputtered ZnO Thin Films. J. Alloys Compd. 2011;509:5437–5440. doi: 10.1016/j.jallcom.2011.02.084. DOI
Pankove J.I. Optical Processes in Semiconductors. Dover; Mineola, NY, USA: 1975. Unabridged Republication, with Slight Corr.