Impact of electron cyclotron wave resonance plasma on defect reduction in ZnO thin films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MPP project no. JSPS-23-07
Czech Academy of Sciences
Project No. SENDISO -CZ.02.01.01/00/22_008/0004596
European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
Grant Number 21K18909
Japan Society for the Promotion of Science
2024B1-004
Osaka University Institute of Laser Engineering Collaborative Research Fund
PN2335EE1857
Kuwait Foundation for the Advancement of Sciences
Grant No. AF-2022230-B3
Amada Foundation
CSG-MAU2003
New Zealand Ministry of Business, Innovation, and Employment
PubMed
39953087
PubMed Central
PMC11829018
DOI
10.1038/s41598-025-88921-5
PII: 10.1038/s41598-025-88921-5
Knihovny.cz E-zdroje
- Klíčová slova
- Electron cyclotron wave resonance, Medium-frequency range magnetron sputtering, Photoconductive detector, Thin film, Vacuum ultraviolet, Zinc oxide,
- Publikační typ
- časopisecké články MeSH
This study presents the fabrication of highly photosensitive undoped zinc oxide (ZnO) thin films for vacuum ultraviolet (VUV) radiation detection, covering the wavelength range of 100-200 nm. ZnO films were deposited using hybrid pulsed reactive magnetron sputtering, assisted by ECWR (electron cyclotron wave resonance) plasma. Control of the ECWR power (PECWR), ranging from 0 to 380 W, played a crucial role in enhancing the films' photoconductive properties. At PECWR = 200 W, the photosensitivity increased by 8 orders of magnitude compared to films deposited without ECWR assistance. This improvement was attributed to a sharp reduction in dark current due to lower defect density. Photoluminescence and cathodoluminescence spectra revealed a significant reduction in defect-related emissions for films deposited at PECWR = 200 W, confirming fewer intrinsic defects. Raman spectroscopy also showed a decrease in defect-related vibrational modes in the same films. Time-Resolved Microwave Conductivity (TRMC) measurements further supported these findings, demonstrating rapid recombination of charge carriers at 200 W, indicative of low trap densities. These results suggest that precise control of ECWR power allows for optimization of the defect concentration and crystallinity in ZnO films, paving the way for the development of high-sensitivity VUV photodetectors.
Institute of Laser Engineering Osaka University 2 6 Yamadaoka Suita 565 0871 Osaka Japan
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 Prague 8 182 00 Czech Republic
New Industry Creation Hatchery Center Tohoku University Sendai 980 8579 Japan
Unitec Institute of Technology 139 Carrington Road Mt Albert Auckland 1025 New Zealand
Zobrazit více v PubMed
Pile, D. F. P. Vacuum-ultraviolet source. Nat. Photonics12, 568 (2018).
Yamanoi, K. et al. Luminescence properties of Nd3+ and Er3+ doped glasses in the VUV region. Opt. Mater.35, 1962 (2013).
Shimizu, T. et al. Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite. Appl. Phys. Lett.110, 14 (2017).
Arita, R. et al. Significant blue-shift in photoluminescence excitation spectra of Nd3+:LaF3 potential laser medium at low-temperature. Opt. Mater.47, 462 (2015).
BenMoussa, A. et al. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2. Astron. Astrophys.508, 1085 (2009).
Torr, M. R. et al. A far ultraviolet imager for the International Solar-Terrestrial Physics Mission. Space Sci. Rev.71, 329 (1995).
Shea, M. A., Smart, D. F., McCracken, K. G., Dreschhoff, G. A. M. & Spence, H. E. Solar proton events for 450 years: the Carrington event in perspective. Adv. Space Res.38, 232 (2006).
Mahkov, V. Vacuum ultraviolet luminescence of wide band-gap solids studied using time-resolved spectroscopy with synchrotron radiation. Phys. Scr.89, 044010 (2014).
Minami, Y. et al. Spectroscopic investigation of praseodymium and cerium co-doped 20Al (PO3) 3-80LiF glass for potential scintillator applications. J. Non-Cryst Sol521, 119495 (2019).
Nakazato, T. et al. Nd3+: LaF3 as a step-wise excited scintillator for femtosecond ultraviolet pulses. IEEE Trans. Nucl. Sci.57, 1208 (2010).
Dujardin, C. et al. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci.65, 1977 (2018).
Arikawa, Y. et al. Note: Light output enhanced fast response and low afterglow L6i glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion. Rev. Sci. Instrum.81, 10 (2010). PubMed
Pearton, S. J., Zopler, J. C., Shul, R. J. & Ren, F. Radial plasma flow in a hot anode vacuum arc. J. Appl. Phys.86, 114 (1999).
Li, J. & Fan, Z. Y. 200nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett.89, 213510 (2006).
Zheng, W., Huang, F., Zheng, R. & Wu, H. Low‐dimensional structure vacuum‐ultraviolet‐sensitive (λ < 200 nm) photodetector with fast‐response speed based on high‐quality AlN micro/nanowire. Adv. Mater.27, 3921 (2015). PubMed
Cadatal-Raduban, M. et al. Effect of substrate and thickness on the photoconductivity of nanoparticle titanium dioxide thin film vacuum ultraviolet photoconductive detector. Nanomaterials12,10 (2022). PubMed PMC
Cadatal-Raduban, M., Pope, J., Olejníček, J., Kohout, M. & Harrison, J. A. S.M.R. Hasan. Ultraviolet-C photoresponsivity using fabricated TiO2 thin films and transimpedance-amplifier-based test setup. Sensors22, 8176 (2022). PubMed PMC
Cadatal-Raduban, M. et al. Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Films726, 138637 (2021).
Zheng, W. et al. Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces10, 20696 (2018). PubMed
Shaikh, S. K., Inamdar, S. I., Ganbavle, V. V. & Rajpure, K. Y. Chemical bath deposited ZnO thin film based UV photoconductive detector. J. Alloys Comp.664, 242 (2016).
Balducci, A. et al. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett.86, 193509 (2005).
Uchida, K., Ishihara, H., Nippashi, K., Matsuoka, M. & Hayashi, K. Measurement of vacuum ultraviolet radiation with diamond photo sensors. J. Light Vis. Eng.28, 97 (2004).
Lin, C. N. et al. Diamond‐based all‐carbon photodetectors for solar‐blind imaging. Adv. Opt. Mater.6, 1800068 (2018).
Zhang, W. J., Chong, Y. M., Bello, I. & Lee, S. T. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J. Phys. D Appl. Phys.40, 6159 (2007).
Samantaray, C. B. & Singh, R. N. Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Int. Mater. Rev.50, 313 (2005).
Li, Y., Guo, J., Zheng, W. & Huang, F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl. Phys. Lett.117, 023504 (2020).
Zheng, W., Lin, R., Zhang, Z. & Huang, F. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces10, 27116 (2018). PubMed
Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K. & Taniguchi, M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics3, 591 (2009).
Kato, T., Cadatal-Raduban, M., Horiuchi, Y., Ozawa, G. & Ono, S. Influence of annealing on thin film/substrate interface and vacuum ultraviolet photoconductivity of neodymium fluoride thin films. Adv. Mater. Interfaces11, 2300696 (2024).
Kato, T., Cadatal-Raduban, M. & Ono, S. Towards the development of a self-powered vacuum ultraviolet photodetector based on calcium fluoride/gold interface. Results Opt.11, 100378 (2023).
Yu, X., Cadatal-Raduban, M., Kato, S., Kase, M. & Ono, S. Femtosecond PLD-grown YF3 nanoparticle thin films as improved filterless VUV photoconductive detectors. Nanotechnology32, 015501 (2020). PubMed
Yu, X. et al. Filterless tunable photoconductive ultraviolet radiation detector using CeF3 thin films grown by pulsed laser deposition. AIP Adv.10, 4 (2020).
Suzuki, K., Cadatal-Raduban, M., Kase, M. & Ono, S. Band gap engineering of CaxSr1-xF2 and its application as filterless vacuum ultraviolet photodetectors with controllable spectral responses. Opt. Mater.88, 576 (2019).
Ieda, M. et al. Optical characteristic improvement of neodymium-doped lanthanum fluoride thin films grown by pulsed laser deposition for vacuum ultraviolet application. Jpn J. Appl. Phys.51, 022603 (2012).
Shan, W. et al. Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett.86, 191911 (2005).
Hacini, N. et al. Compositional, structural, morphological, and optical properties of ZnO thin films prepared by PECVD technique. Coatings11, 202 (2021).
Franklin, J. B. et al. Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. J. Mater. Chem.21, 8178 (2011).
Mahmood, K. & Samaa, B. M. Influence of annealing treatment on structural, optical, electric, and thermoelectric properties of MBE-grown ZnO. J. Exp. Theor. Phys.126, 766–771 (2018).
Bing-chu, Y., Xiao-yan, L., Fei, G. & Xue-long, M. Photoluminescence properties of ZnO thin films prepared by DC magnetron sputtering. J. Cent. South. Univ. Technol.15, 449–453 (2008).
Kermiche, F., Taabouche, A., Bouabellou, A., Hanini, F. & Bouachiba, Y. Behavior study of ZnO thin films grown by PLD for several applications. Cryst. Rep.67, 1239–1245 (2022).
Miandal, K. et al. Photoelectrochemical activity of magnetron sputtered ZnO thin films: role of thermal annealing. J. Adv. Res. Mater. Sci.20, 6–13 (2016).
Cadatal-Raduban, M. et al. Ultrafast UV luminescence of ZnO films: sub‐30 ps decay time with suppressed visible component. Adv. Opt. Mater.2024, 2400377 (2024).
Jousten, K. Handbook of Vacuum Technology (Wiley-VCH Verlag GmbH & Co, 2016).
Monica, M. C., Allain, D. B., Hayden, D. R. & Juliano, D. N. Characterization of magnetron-sputtered partially ionized deposition as a function of metal and gas species. J. Vac Sci. Technol. A18, 797–801 (2000).
Green, K. M., Hayden, D. B., Juliano, D. R. & Ruzic, D. N. Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system. Rev. Sci. Instrum.68, 4555–4560 (1997).
Anders, A. Deposition rates of high power impulse magnetron sputtering: physics and economics. J. Vac Sci. Technol. A28, 783–790 (2010).
Brenning, N. et al. A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons. Plasma Sources Sci. Technol., 26, 125003 (2017).
Lundin, D., Minea, T. & Gudmundsson, J. T. High Power Impulse Magnetron Sputtering 49–80. (Elsevier, 2020).
Kelly, P. J. et al. Deposition of photocatalytic titania coatings on polymeric substrates by HiPIMS. Vacuum, 86, 1880–1882 (2012).
Poolcharuansin, P., Bowes, M., Petty, T. J. & Bradley, J. W. Ionized metal flux fraction measurements in HiPIMS discharges. J. Phys. Appl. Phys., 45, 322001 (2012).
Kubart, T., Čada, M., Lundin, D. & Hubička, Z. Investigation of ionized metal flux fraction in HiPIMS discharges with Ti and Ni targets. Surf. Coat. Technol., 238, 152–157 (2014).
Montenegro, D. N. et al. Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D: Appl. Phys.46, 235302 (2013).
Song, Y. et al. Raman spectra and microstructure of zinc oxide irradiated with swift heavy ion. Crystals9, 395 (2019).
Sann, J. et al. Zn interstitial related donors in ammonia-treated ZnO powders. Phys. Rev. B76, 195203 (2007).
Pelant, I. & Valenta, J. Non-radiative Recombination, Luminescence Spectroscopy of Semiconductors (Oxford Academic, 2012).
Sezemsky, P. et al. Modified high frequency probe approach for diagnostics of highly reactive plasma. Plasma Sources Sci. Technol.28, 115009 (2019).
Bandopadhyay, K. & Mitra, J. Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal?. RSC Adv.5, 23540 (2015).
Baxter, J. B. & Schmuttenmaer, C. A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B110, 25229 (2006). PubMed
Gan, Z., Ahn, S., Yu, H., Smith, D. J. & McCartney, M. R. Mater. Res. Exp.2, 10 (2015).
Fravventura, M. C., Deligiannis, D., Schins, J. M., Siebbeles, L. D. A. & Savenije, T. J. What limits photoconductance in anatase TiO2 nanostructures? A real and imaginary microwave conductance study. J. Phys. Chem. C, 117, 8032 (2013).
Caselli, V. M. & Savenije, T. J. Quantifying charge carrier recombination losses in MAPbI3/C60 and MAPbI3/Spiro-OMeTAD with and without bias illumination. J. Phys. Chem. Lett.13, 7523 (2022). PubMed PMC
Savenije, T. J., Guo, D., Caselli, V. M. & Hutter, E. M. Adv. Energy Mat. 1903788 (2020).
Hutter, E. M. & Savenije, T. J. Thermally activated second-order recombination hints toward indirect recombination in fully inorganic CsPbI3Perovskites. ACS Energy Lett.3, 2068 (2018). PubMed PMC