Ultraviolet-C Photoresponsivity Using Fabricated TiO2 Thin Films and Transimpedance-Amplifier-Based Test Setup
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CSG-MAU2003
Ministry of Business, Innovation and Employment
Project MPO TRIO II No. FV20580
Ministry of Industry and Trade
PubMed
36365873
PubMed Central
PMC9657381
DOI
10.3390/s22218176
PII: s22218176
Knihovny.cz E-resources
- Keywords
- UV-C, photoconductive detector, sensor, thin film, titanium dioxide, transimpedance amplifier, ultraviolet,
- Publication type
- Journal Article MeSH
We report on fabricated titanium dioxide (TiO2) thin films along with a transimpedance amplifier (TIA) test setup as a photoconductivity detector (sensor) in the ultraviolet-C (UV-C) wavelength region, particularly at 260 nm. TiO2 thin films deposited on high-resistivity undoped silicon-substrate at thicknesses of 100, 500, and 1000 nm exhibited photoresponsivities of 81.6, 55.6, and 19.6 mA/W, respectively, at 30 V bias voltage. Despite improvements in the crystallinity of the thicker films, the decrease in photocurrent, photoconductivity, photoconductance, and photoresponsivity in thicker films is attributed to an increased number of defects. Varying the thickness of the film can, however, be leveraged to control the wavelength response of the detector. Future development of a chip-based portable UV-C detector using TiO2 thin films will open new opportunities for a wide range of applications.
Institute of Laser Engineering Osaka University 2 6 Yamadaoka Suita 565 0871 Osaka Japan
School of Natural Sciences Massey University Auckland 0632 New Zealand
See more in PubMed
Reed N.G. The History of Ultraviolet Germicidal Irradiation for Air Disinfection. Public Health Rep. 2010;125:15–27. doi: 10.1177/003335491012500105. PubMed DOI PMC
Walker C.M., Ko G.P. Effect of Ultraviolet Germicidal Irradiation on Viral Aerosols. Environ. Sci. Technol. 2007;41:5460–5465. doi: 10.1021/es070056u. PubMed DOI
Tseng C.C., Li C.S. Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J. Occup. Environ. Hyg. 2007;4:400–405. doi: 10.1080/15459620701329012. PubMed DOI PMC
Kowalski W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Springer; Berlin/Heidelberg, Germany: 2009.
Adeli B. Not If, But When: UV LED Beverage Disinfection. IUVA News. Sep 6, 2020. pp. 10–11.
Bolton J.R., Cotton C.A., editors. The Ultraviolet Disinfection Handbook. American Water Works Association; Denver, CO, USA: 2008.
Shining a light on COVID-19. Nat. Photonics. 2020;14:337. doi: 10.1038/s41566-020-0650-9. DOI
Biasin M., Bianco A., Pareschi G., Cavalleri A., Cavatorta C., Fenizia C., Galli P., Lessio L., Lualdi M., Tombetti E., et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci. Rep. 2021;11:6260. doi: 10.1038/s41598-021-85425-w. PubMed DOI PMC
De Abajo F.J.G., Hernandez R.J., Kaminer I., Meyerhans A., Rosell-Llompart J., Sanchez-Elsner T. Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano. 2020;14:7704–7713. doi: 10.1021/acsnano.0c04596. PubMed DOI
Raeiszadeh M., Adeli B. A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics. 2020;7:2941–2951. doi: 10.1021/acsphotonics.0c01245. PubMed DOI
Jean J., Rodriguez-Lopez M.I., Jubinville E., Nunez-Delicado E., Gomez-Lopez V.M. Potential of pulsed light technology for control of SARS-CoV-2 in hospital environments. J. Photochem. Photobiol. B Biol. 2021;215:112106. doi: 10.1016/j.jphotobiol.2020.112106. PubMed DOI PMC
Ontiveros C.C., Shoults D.C., MacIsaac S., Rauch K.D., Sweeney C.L., Stoddart A.K., Gagnon G.A. Specificity of UV-C LED disinfection efficacy for three N95 respirators. Sci. Rep. 2021;11:15350. doi: 10.1038/s41598-021-94810-4. PubMed DOI PMC
Zhang C., Hasan S.M. A New Floating-gate Radiation Sensor and Readout Circuit in Standard Single-Poly 130-nm CMOS Technology. IEEE Trans. Nucl. Sci. 2019;66:1906–1915. doi: 10.1109/TNS.2019.2922714. DOI
Suzuki K., Cadatal-Raduban M., Kase M., Ono S. Band gap engineering of CaxSr1-xF2 and its application as filterless vacuum ultraviolet photodetectors with controllable spectral responses. Opt. Mater. 2019;88:576–579. doi: 10.1016/j.optmat.2018.12.023. DOI
Yu X., Kato S., Ito H., Ono S., Kase M., Cadatal-Raduban M. Filterless tunable photoconductive ultraviolet radiation detector using CeF3 thin films grown by pulsed laser deposition. AIP Adv. 2020;10:045309. doi: 10.1063/1.5140827. DOI
Yu X., Cadatal-Raduban M., Kato S., Kase M., Ono S. Femtosecond PLD-grown YF3 nanoparticle thin films as improved filterless VUV photoconductive detectors. Nanotechnology. 2020;32:015501. doi: 10.1088/1361-6528/abb84e. PubMed DOI
Shaikh S.K., Inamdar S.I., Ganbavle V.V., Rajpure Y.K. Chemical bath deposited ZnO thin film based UV photoconductive detector. J. Alloys Compd. 2016;664:242–249. doi: 10.1016/j.jallcom.2015.12.226. DOI
Pearton S.J., Zopler J.C., Shul R.J., Ren F. GaN: Processing, defects, and devices. J. Appl. Phys. 1999;86:1. doi: 10.1063/1.371145. DOI
Li J., Fan Z.Y., Dahal R., Nakarmi M.L., Lin J.Y., Jiang H.X. 200nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett. 2006;89:213510. doi: 10.1063/1.2397021. DOI
Zheng W., Huang F., Zheng R., Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) Photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater. 2015;27:3921–3927. PubMed
Zhang W.J., Chong Y.M., Bello I., Lee S.T. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J. Phys. D Appl. Phys. 2007;40:6159. doi: 10.1088/0022-3727/40/20/S03. DOI
Samantaray C.B., Singh R.N. Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Int. Mater. Rev. 2005;50:313–344. doi: 10.1179/174328005X67160. DOI
Li Y., Guo J., Zheng W., Huang F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl. Phys. Lett. 2020;117:023504. doi: 10.1063/5.0007606. DOI
Zheng W., Lin R., Zhang Z., Huang F. Vacuum-ultraviolet Photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces. 2018;10:27116–27123. doi: 10.1021/acsami.8b07189. PubMed DOI
Watanabe K., Taniguchi T., Niiyama T., Miya K., Taniguchi M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics. 2009;3:591. doi: 10.1038/nphoton.2009.167. DOI
Balducci A., Marinelli M., Milani E., Morgada M.E., Tucciarone A., Verona-Rinati G., Angelone M., Pillon M. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett. 2005;86:193509. doi: 10.1063/1.1927709. DOI
Uchida K., Ishihara H., Nippashi K., Matsuoka M., Hayashi K. Measurement of vacuum ultraviolet radiation with diamond photo detectors. J. Light Vis. Eng. 2004;28:97. doi: 10.2150/jlve.28.97. DOI
Lin C.-N., Lu Y.-J., Yang X., Tian Y.-Z., Gao C.-J., Sun J.-L., Dong L., Zhong F., Hu W.-D., Shan C.-X. Diamond-based all-carbon Photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018;6:1800068. doi: 10.1002/adom.201800068. DOI
Bedikyan L., Zakhariev S., Kejzlar P., Volesky L., Zakharieva M., Petkov N., Louda P. Preparation and characterization of TiO2 thin films for UV sensor. MM Sci. J. 2015;12:201520. doi: 10.17973/MMSJ.2015_12_201520. DOI
Cadatal-Raduban M., Yamanoi K., Olejnicek J., Kohuot M., Kato S., Horiuchi Y., Kato T., Haoze Y., Sarukura N., Ono S. Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Film. 2021;726:138637. doi: 10.1016/j.tsf.2021.138637. DOI
Zhang M., Zhang H., Lv K., Chen W., Zhou J., Shen L., Ruan S. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction. Opt. Exp. 2012;20:5936–5941. doi: 10.1364/OE.20.005936. PubMed DOI
Mercado C.C., Knorr F.J., McHale J.L., Usmani S.M., Ichimura A.S., Saraf L.V. Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2. J. Phys. Chem. C. 2012;116:10796–10804. doi: 10.1021/jp301680d. DOI
Cadatal-Raduban M., Kato T., Horiuchi Y., Olejnicek J., Kohout M., Yamanoi K., Ono S. Effect of substrate and thickness on the photoconductivity of nanoparticle titanium dioxide thin film vacuum ultraviolet photoconductive detector. Nanomaterials. 2021;12:10. doi: 10.3390/nano12010010. PubMed DOI PMC
Singh C., Panda E. Variation of electrical properties in thickening Al-doped ZnO films: Role of defect chemistry. RSC Adv. 2016;6:48910–48918. doi: 10.1039/C6RA06513A. DOI
Tseng Z.-L., Kao P.-C., Chen Y.-C., Juang Y.-D., Kuo Y.-M., Chu S.-Y. Effect of thicknesses on the structure, conductivity, and transparency of Al-doped ZnO anodes in organic light-emitting diodes. J. Electrochem. Soc. 2011;158:J310–J315. doi: 10.1149/1.3615847. DOI
Saravanan K., Krishnan R., Hsieh S.H., Wang H.T., Wang Y.F., Pong W.F., Asoka K., Avasthi D.K., Kanjilal D. Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films. RSC Adv. 2015;5:40813–40819. doi: 10.1039/C5RA02144H. DOI
Cheng L.-C., Wu M.-R., Huang C.-Y., Juang T.-K., Liu P.-L., Horng R.-H. Effect of defects on the properties of ZnGa2O4 thin-film transistors. ACS Appl. Electron. Mater. 2019;1:253–259. doi: 10.1021/acsaelm.8b00093. DOI
Kumar N., Patel M., Nguyen T.T., Kim S., Kim J. Effect of TiO2 layer thickness of TiO2/NiO transparent photovoltaics. Photovoltaics. 2021;29:943–952. doi: 10.1002/pip.3419. DOI
Jia L., Zheng W., Huang F. Vacuum-ultraviolet photodetectors. PhotoniX. 2020;1:22. doi: 10.1186/s43074-020-00022-w. DOI
Xing J., Wei H., Guo E.-J., Yang F. Highly sensitive fast-response UV photodetectors based on epitaxial TiO2 films. J. Phys. D Appl. Phys. 2011;44:375104. doi: 10.1088/0022-3727/44/37/375104. DOI
Liu M., Kim H.K. Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 2004;84:173–175. doi: 10.1063/1.1640468. DOI
Liang S., Sheng H., Liu Y., Huo Z., Lu Y., Shen H. ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth. 2001;225:110–113. doi: 10.1016/S0022-0248(01)00830-2. DOI