• This record comes from PubMed

Ultraviolet-C Photoresponsivity Using Fabricated TiO2 Thin Films and Transimpedance-Amplifier-Based Test Setup

. 2022 Oct 25 ; 22 (21) : . [epub] 20221025

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CSG-MAU2003 Ministry of Business, Innovation and Employment
Project MPO TRIO II No. FV20580 Ministry of Industry and Trade

We report on fabricated titanium dioxide (TiO2) thin films along with a transimpedance amplifier (TIA) test setup as a photoconductivity detector (sensor) in the ultraviolet-C (UV-C) wavelength region, particularly at 260 nm. TiO2 thin films deposited on high-resistivity undoped silicon-substrate at thicknesses of 100, 500, and 1000 nm exhibited photoresponsivities of 81.6, 55.6, and 19.6 mA/W, respectively, at 30 V bias voltage. Despite improvements in the crystallinity of the thicker films, the decrease in photocurrent, photoconductivity, photoconductance, and photoresponsivity in thicker films is attributed to an increased number of defects. Varying the thickness of the film can, however, be leveraged to control the wavelength response of the detector. Future development of a chip-based portable UV-C detector using TiO2 thin films will open new opportunities for a wide range of applications.

See more in PubMed

Reed N.G. The History of Ultraviolet Germicidal Irradiation for Air Disinfection. Public Health Rep. 2010;125:15–27. doi: 10.1177/003335491012500105. PubMed DOI PMC

Walker C.M., Ko G.P. Effect of Ultraviolet Germicidal Irradiation on Viral Aerosols. Environ. Sci. Technol. 2007;41:5460–5465. doi: 10.1021/es070056u. PubMed DOI

Tseng C.C., Li C.S. Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J. Occup. Environ. Hyg. 2007;4:400–405. doi: 10.1080/15459620701329012. PubMed DOI PMC

Kowalski W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Springer; Berlin/Heidelberg, Germany: 2009.

Adeli B. Not If, But When: UV LED Beverage Disinfection. IUVA News. Sep 6, 2020. pp. 10–11.

Bolton J.R., Cotton C.A., editors. The Ultraviolet Disinfection Handbook. American Water Works Association; Denver, CO, USA: 2008.

Shining a light on COVID-19. Nat. Photonics. 2020;14:337. doi: 10.1038/s41566-020-0650-9. DOI

Biasin M., Bianco A., Pareschi G., Cavalleri A., Cavatorta C., Fenizia C., Galli P., Lessio L., Lualdi M., Tombetti E., et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci. Rep. 2021;11:6260. doi: 10.1038/s41598-021-85425-w. PubMed DOI PMC

De Abajo F.J.G., Hernandez R.J., Kaminer I., Meyerhans A., Rosell-Llompart J., Sanchez-Elsner T. Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano. 2020;14:7704–7713. doi: 10.1021/acsnano.0c04596. PubMed DOI

Raeiszadeh M., Adeli B. A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics. 2020;7:2941–2951. doi: 10.1021/acsphotonics.0c01245. PubMed DOI

Jean J., Rodriguez-Lopez M.I., Jubinville E., Nunez-Delicado E., Gomez-Lopez V.M. Potential of pulsed light technology for control of SARS-CoV-2 in hospital environments. J. Photochem. Photobiol. B Biol. 2021;215:112106. doi: 10.1016/j.jphotobiol.2020.112106. PubMed DOI PMC

Ontiveros C.C., Shoults D.C., MacIsaac S., Rauch K.D., Sweeney C.L., Stoddart A.K., Gagnon G.A. Specificity of UV-C LED disinfection efficacy for three N95 respirators. Sci. Rep. 2021;11:15350. doi: 10.1038/s41598-021-94810-4. PubMed DOI PMC

Zhang C., Hasan S.M. A New Floating-gate Radiation Sensor and Readout Circuit in Standard Single-Poly 130-nm CMOS Technology. IEEE Trans. Nucl. Sci. 2019;66:1906–1915. doi: 10.1109/TNS.2019.2922714. DOI

Suzuki K., Cadatal-Raduban M., Kase M., Ono S. Band gap engineering of CaxSr1-xF2 and its application as filterless vacuum ultraviolet photodetectors with controllable spectral responses. Opt. Mater. 2019;88:576–579. doi: 10.1016/j.optmat.2018.12.023. DOI

Yu X., Kato S., Ito H., Ono S., Kase M., Cadatal-Raduban M. Filterless tunable photoconductive ultraviolet radiation detector using CeF3 thin films grown by pulsed laser deposition. AIP Adv. 2020;10:045309. doi: 10.1063/1.5140827. DOI

Yu X., Cadatal-Raduban M., Kato S., Kase M., Ono S. Femtosecond PLD-grown YF3 nanoparticle thin films as improved filterless VUV photoconductive detectors. Nanotechnology. 2020;32:015501. doi: 10.1088/1361-6528/abb84e. PubMed DOI

Shaikh S.K., Inamdar S.I., Ganbavle V.V., Rajpure Y.K. Chemical bath deposited ZnO thin film based UV photoconductive detector. J. Alloys Compd. 2016;664:242–249. doi: 10.1016/j.jallcom.2015.12.226. DOI

Pearton S.J., Zopler J.C., Shul R.J., Ren F. GaN: Processing, defects, and devices. J. Appl. Phys. 1999;86:1. doi: 10.1063/1.371145. DOI

Li J., Fan Z.Y., Dahal R., Nakarmi M.L., Lin J.Y., Jiang H.X. 200nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett. 2006;89:213510. doi: 10.1063/1.2397021. DOI

Zheng W., Huang F., Zheng R., Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) Photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater. 2015;27:3921–3927. PubMed

Zhang W.J., Chong Y.M., Bello I., Lee S.T. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J. Phys. D Appl. Phys. 2007;40:6159. doi: 10.1088/0022-3727/40/20/S03. DOI

Samantaray C.B., Singh R.N. Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Int. Mater. Rev. 2005;50:313–344. doi: 10.1179/174328005X67160. DOI

Li Y., Guo J., Zheng W., Huang F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl. Phys. Lett. 2020;117:023504. doi: 10.1063/5.0007606. DOI

Zheng W., Lin R., Zhang Z., Huang F. Vacuum-ultraviolet Photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces. 2018;10:27116–27123. doi: 10.1021/acsami.8b07189. PubMed DOI

Watanabe K., Taniguchi T., Niiyama T., Miya K., Taniguchi M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics. 2009;3:591. doi: 10.1038/nphoton.2009.167. DOI

Balducci A., Marinelli M., Milani E., Morgada M.E., Tucciarone A., Verona-Rinati G., Angelone M., Pillon M. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett. 2005;86:193509. doi: 10.1063/1.1927709. DOI

Uchida K., Ishihara H., Nippashi K., Matsuoka M., Hayashi K. Measurement of vacuum ultraviolet radiation with diamond photo detectors. J. Light Vis. Eng. 2004;28:97. doi: 10.2150/jlve.28.97. DOI

Lin C.-N., Lu Y.-J., Yang X., Tian Y.-Z., Gao C.-J., Sun J.-L., Dong L., Zhong F., Hu W.-D., Shan C.-X. Diamond-based all-carbon Photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018;6:1800068. doi: 10.1002/adom.201800068. DOI

Bedikyan L., Zakhariev S., Kejzlar P., Volesky L., Zakharieva M., Petkov N., Louda P. Preparation and characterization of TiO2 thin films for UV sensor. MM Sci. J. 2015;12:201520. doi: 10.17973/MMSJ.2015_12_201520. DOI

Cadatal-Raduban M., Yamanoi K., Olejnicek J., Kohuot M., Kato S., Horiuchi Y., Kato T., Haoze Y., Sarukura N., Ono S. Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Film. 2021;726:138637. doi: 10.1016/j.tsf.2021.138637. DOI

Zhang M., Zhang H., Lv K., Chen W., Zhou J., Shen L., Ruan S. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction. Opt. Exp. 2012;20:5936–5941. doi: 10.1364/OE.20.005936. PubMed DOI

Mercado C.C., Knorr F.J., McHale J.L., Usmani S.M., Ichimura A.S., Saraf L.V. Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2. J. Phys. Chem. C. 2012;116:10796–10804. doi: 10.1021/jp301680d. DOI

Cadatal-Raduban M., Kato T., Horiuchi Y., Olejnicek J., Kohout M., Yamanoi K., Ono S. Effect of substrate and thickness on the photoconductivity of nanoparticle titanium dioxide thin film vacuum ultraviolet photoconductive detector. Nanomaterials. 2021;12:10. doi: 10.3390/nano12010010. PubMed DOI PMC

Singh C., Panda E. Variation of electrical properties in thickening Al-doped ZnO films: Role of defect chemistry. RSC Adv. 2016;6:48910–48918. doi: 10.1039/C6RA06513A. DOI

Tseng Z.-L., Kao P.-C., Chen Y.-C., Juang Y.-D., Kuo Y.-M., Chu S.-Y. Effect of thicknesses on the structure, conductivity, and transparency of Al-doped ZnO anodes in organic light-emitting diodes. J. Electrochem. Soc. 2011;158:J310–J315. doi: 10.1149/1.3615847. DOI

Saravanan K., Krishnan R., Hsieh S.H., Wang H.T., Wang Y.F., Pong W.F., Asoka K., Avasthi D.K., Kanjilal D. Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films. RSC Adv. 2015;5:40813–40819. doi: 10.1039/C5RA02144H. DOI

Cheng L.-C., Wu M.-R., Huang C.-Y., Juang T.-K., Liu P.-L., Horng R.-H. Effect of defects on the properties of ZnGa2O4 thin-film transistors. ACS Appl. Electron. Mater. 2019;1:253–259. doi: 10.1021/acsaelm.8b00093. DOI

Kumar N., Patel M., Nguyen T.T., Kim S., Kim J. Effect of TiO2 layer thickness of TiO2/NiO transparent photovoltaics. Photovoltaics. 2021;29:943–952. doi: 10.1002/pip.3419. DOI

Jia L., Zheng W., Huang F. Vacuum-ultraviolet photodetectors. PhotoniX. 2020;1:22. doi: 10.1186/s43074-020-00022-w. DOI

Xing J., Wei H., Guo E.-J., Yang F. Highly sensitive fast-response UV photodetectors based on epitaxial TiO2 films. J. Phys. D Appl. Phys. 2011;44:375104. doi: 10.1088/0022-3727/44/37/375104. DOI

Liu M., Kim H.K. Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 2004;84:173–175. doi: 10.1063/1.1640468. DOI

Liang S., Sheng H., Liu Y., Huo Z., Lu Y., Shen H. ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth. 2001;225:110–113. doi: 10.1016/S0022-0248(01)00830-2. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Impact of electron cyclotron wave resonance plasma on defect reduction in ZnO thin films

. 2025 Feb 14 ; 15 (1) : 5555. [epub] 20250214

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...