Effect of Substrate and Thickness on the Photoconductivity of Nanoparticle Titanium Dioxide Thin Film Vacuum Ultraviolet Photoconductive Detector
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CSG-MAU2003
Ministry of Business, Innovation and Employment
2021B1-004
Osaka University
MPO TRIO II no. FV20580
Ministry of Industry and Trade
PubMed
35009959
PubMed Central
PMC8746592
DOI
10.3390/nano12010010
PII: nano12010010
Knihovny.cz E-resources
- Keywords
- nanoparticle, photoconductive detector, semiconductor, thin film, titanium dioxide, vacuum ultraviolet, wide band gap,
- Publication type
- Journal Article MeSH
Vacuum ultraviolet radiation (VUV, from 100 nm to 200 nm wavelength) is indispensable in many applications, but its detection is still challenging. We report the development of a VUV photoconductive detector, based on titanium dioxide (TiO2) nanoparticle thin films. The effect of crystallinity, optical quality, and crystallite size due to film thickness (80 nm, 500 nm, 1000 nm) and type of substrate (silicon Si, quartz SiO2, soda lime glass SLG) was investigated to explore ways of enhancing the photoconductivity of the detector. The TiO2 film deposited on SiO2 substrate with a film thickness of 80 nm exhibited the best photoconductivity, with a photocurrent of 5.35 milli-Amperes and a photosensitivity of 99.99% for a bias voltage of 70 V. The wavelength response of the detector can be adjusted by changing the thickness of the film as the cut-off shifts to a longer wavelength, as the film becomes thicker. The response time of the TiO2 detector is about 5.8 μs and is comparable to the 5.4 μs response time of a diamond UV sensor. The development of the TiO2 nanoparticle thin film detector is expected to contribute to the enhancement of the use of VUV radiation in an increasing number of important technological and scientific applications.
See more in PubMed
Yanagihara M., Yusop M.Z., Tanemura M., Ono S., Nagami T., Fukuda K., Suyama T., Yokota Y., Yanagida T., Yoshikawa A. Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor. APL Mater. 2014;2:046110. doi: 10.1063/1.4871915. PubMed DOI PMC
Yanagihara M., Tsuji T., Yusop M., Tanemura Z.M., Ono S., Nagami T., Fukuda K., Suyama T., Yokota Y., Yanagida T., et al. Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor. Nanomater. Nanodevices. 2014;2014:309091. doi: 10.1155/2014/309091. PubMed DOI PMC
Yamanoi K., Nishi R., Takeda K., Shinzato Y., Tsuboi M., Mui Viet L., Nakazato T., Shimizu T., Sarukura N., Cadatal-Raduban M., et al. Perovskite fluoride crystals as light emitting materials in vacuum ultraviolet region. Opt. Mater. 2014;36:769–772. doi: 10.1016/j.optmat.2013.11.023. DOI
Watanabe K., Arikawa Y., Yamanoi K., Cadatal_Raduban M., Nagai T., Kouno M., Sakai K., Nakazato T., Shimizu T., Sarukura N., et al. Pr or Ce-doped, fast-response and low-afterglow cross-section-enhanced scintillator with 6Li for down-scattered neutron originated from laser fusion. J. Cryst. Growth. 2013;362:288. doi: 10.1016/j.jcrysgro.2011.11.092. DOI
Shendrik Y.R., Radzhabov A., Nepomnyashchikh A.I. Scintillation properties of SrF2 and SrF2-Ce3+ crystals. Tech. Phys. Lett. 2013;39:587–590. doi: 10.1134/S1063785013070109. DOI
Nakazato T., Cadatal-Raduban M., Yamanoi K., Tsuboi M., Furukawa Y., Pham M., Estacio E., Shimizu T., Sarukura N., Fukuda K., et al. Nd3+:LaF3 as a step-wise excited scintillator for femtosecond ultraviolet pulses. IEEE Trans. Nucl. Sci. 2010;57:1208. doi: 10.1109/TNS.2010.2041362. DOI
Salazar K.A., Agulto V.C., Empizo M.J.F., Shinohara K., Yamanoi K., Shimizu T., Sarukura N., Yago A.C.C., Kidkhunthod P., Sattayaporn S., et al. Picosecond UV emissions of hydrothermal grown Fe3+-doped ZnO microrods. J. Cryst. Growth. 2021;574:126332. doi: 10.1016/j.jcrysgro.2021.126332. DOI
Kano M., Wakamiya A., Yamanoi K., Sakai K., Takeda K., Cadatal-Raduban M., Nakazato T., Shimizu T., Sarukura N., Fukuda T. Fabrication of In-Doped ZnO Scintillator Mounted on a Vacuum Flange. IEEE Trans. Nucl. Sci. 2012;59:2290–2293. doi: 10.1109/TNS.2012.2190145. DOI
Lin R., Zheng W., Chen L., Zhu Y., Xu M., Ouyang X., Huang F. X-ray radiation excited ultralong (>20,000 s) intrinsic phosphorescence in aluminum nitride single-crystal scintillators. Nat. Commun. 2020;11:4351. doi: 10.1038/s41467-020-18221-1. PubMed DOI PMC
Jia L., Zheng W., Huang F. Vacuum-ultraviolet photodetectors. PhotoniX. 2020;1:22. doi: 10.1186/s43074-020-00022-w. DOI
Zheng W., Jia L., Huang F. Vacuum-ultraviolet photon detections. iScience. 2020;23:101145. doi: 10.1016/j.isci.2020.101145. PubMed DOI PMC
Bedikyan L., Zakhariev S., Kejzlar P., Volesky L., Zakharieva M., Petkov N., Louda P. Preparation and characterization of TiO2 thin films for UV sensor. MM Sci. J. 2015;12:201520. doi: 10.17973/MMSJ.2015_12_201520. DOI
Pearton S.J., Zopler J.C., Shul R.J., Ren F. GaN: Processing, defects, and devices. J. Appl. Phys. 1999;86:114. doi: 10.1063/1.371145. DOI
Li J., Fan Z.Y. 200 nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett. 2006;89:213510. doi: 10.1063/1.2397021. DOI
Shaikh S.K., Inamdar S.I., Ganbavle V.V., Rajpure K.Y. Chemical bath deposited ZnO thin film based UV photoconductive detector. J. Alloys Comp. 2016;664:242–249. doi: 10.1016/j.jallcom.2015.12.226. DOI
Balducci A., Marinelli M., Milani E., Morgada M.E., Tucciarone A., Verona-Rinati G., Angelone M., Pillon M. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett. 2005;86:193509. doi: 10.1063/1.1927709. DOI
Uchida K., Ishihara H., Nippashi K., Matsuoka M., Hayashi K. Measurement of vacuum ultraviolet radiation with diamond photo detectors. J. Light Vis. Eng. 2004;28:97. doi: 10.2150/jlve.28.97. DOI
Lin C.-N., Lu Y.-J., Yang X., Tian Y.-Z., Gao C.-J., Sun J.-L., Dong L., Zhong F., Hu W.-D., Shan C.-X. Diamond-based all-carbon Photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018;6:1800068. doi: 10.1002/adom.201800068. DOI
Zhang W.J., Chong Y.M., Bello I., Lee S.T. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J. Phys. D Appl. Phys. 2007;40:6159. doi: 10.1088/0022-3727/40/20/S03. DOI
Samantaray C.B., Singh R.N. Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Int. Mater. Rev. 2005;50:313–344. doi: 10.1179/174328005X67160. DOI
Zheng W., Huang F., Zheng R., Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) Photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater. 2015;27:3921–3927. PubMed
Li Y., Guo J., Zheng W., Huang F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl. Phys. Lett. 2020;117:023504. doi: 10.1063/5.0007606. DOI
Zheng W., Lin R., Zhang Z., Huang F. Vacuum-ultraviolet Photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces. 2018;10:27116–27123. doi: 10.1021/acsami.8b07189. PubMed DOI
Watanabe K., Taniguchi T., Niiyama T., Miya K., Taniguchi M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics. 2009;3:591. doi: 10.1038/nphoton.2009.167. DOI
Zheng W., Lin R., Zhu Y., Zhang Z., Ji X., Huang F. Vacuum ultraviolet Photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces. 2018;10:20696–20702. doi: 10.1021/acsami.8b04866. PubMed DOI
Yu X., Cadatal-Raduban M., Kato S., Kase M., Ono S. Femtosecond PLD-grown YF3 nanoparticle thin films as improved filterless VUV photoconductive detectors. Nanotechnology. 2020;32:015501. doi: 10.1088/1361-6528/abb84e. PubMed DOI
Yu X., Kato S., Ito H., Ono S., Kase M., Cadatal-Raduban M. Filterless tunable photoconductive ultraviolet radiation detector using CeF3 thin films grown by pulsed laser deposition. AIP Adv. 2020;10:045309. doi: 10.1063/1.5140827. DOI
Cadatal-Raduban M., Yamanoi K., Olejníček J., Kohout M., Kato S., Horiuchi Y., Kato T., Haoze Y., Sarukura N., Ono S. Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Films. 2021;726:138637. doi: 10.1016/j.tsf.2021.138637. DOI
Pan A., Zhu X. Optoelectronic properties of semiconductor nanowires. Semicon. Nanowires. 2015;12:327–363.
Zheng X.G., Li Q.S., Zhao J.P., Chen D., Zhao B., Yang Y.J., Zhang L.C. Photoconductive ultraviolet detectors based on ZnO films. Appl. Surface Sci. 2006;253:2264–2267. doi: 10.1016/j.apsusc.2006.04.031. DOI
Zhang M., Zhang H., Lv K., Chen W., Zhou J., Shen L., Ruan S. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction. Opt. Exp. 2012;20:5936–5941. doi: 10.1364/OE.20.005936. PubMed DOI
Mercado C.C., Knorr F.J., McHale J.L., Usmani S.M., Ichimura A.S., Saraf L.V. Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2. J. Phys. Chem. C. 2012;116:10796–10804. doi: 10.1021/jp301680d. DOI
Singh C., Panda E. Variation of electrical properties in thickening Al-doped ZnO films: Role of defect chemistry. RSC Adv. 2016;6:48910–48918. doi: 10.1039/C6RA06513A. DOI
Tseng Z.-L., Kao P.-C., Chen Y.-C., Juang Y.-D., Kuo Y.-M., Chu S.-Y. Effect of thicknesses on the structure, conductivity, and transparency of Al-doped ZnO anodes in organic light-emitting diodes. J. Electrochem. Soc. 2011;158:J310–J315. doi: 10.1149/1.3615847. DOI
Saravanan K., Krishnan R., Hsieh S.H., Wang H.T., Wang Y.F., Pong W.F., Asoka K., Avasthi D.K., Kanjilal D. Effect of defects and film thickness on the optical properties of ZnO–Au hybrid films. RSC Adv. 2015;5:40813–40819. doi: 10.1039/C5RA02144H. DOI
Cheng L.-C., Wu M.-R., Huang C.-Y., Juang T.-K., Liu P.-L., Horng R.-H. Effect of defects on the properties of ZnGa2O4 thin-film transistors. ACS Appl. Electron. Mater. 2019;1:253–259. doi: 10.1021/acsaelm.8b00093. DOI
Kumar N., Patel M., Nguyen T.T., Kim S., Kim J. Effect of TiO2 layer thickness of TiO2/NiO transparent photovoltaics. Photovoltaics. 2021;29:943–952. doi: 10.1002/pip.3419. DOI
Navarro-Pardo F., Martínez-Barrera G., Martínez-Hernández A.L., Castaño V.M., Rivera-Armenta J.L., Medellín-Rodríguez F., Velasco-Santos C. Effects on the thermo-mechanical and crystallinity properties of nylon 6, 6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials. 2013;6:3494–3513. doi: 10.3390/ma6083494. PubMed DOI PMC
Khan A., Toufiq A.M., Tariq F., Khan Y., Hissain R., Akhtar N., Rahman S.U. Influence of Fe doping on the structural, optical and thermal properties of α-MnO2 nanowires. Mater. Res. Exp. 2019;6:065043. doi: 10.1088/2053-1591/ab0aaf. DOI
Impact of electron cyclotron wave resonance plasma on defect reduction in ZnO thin films