• This record comes from PubMed

Effect of Substrate and Thickness on the Photoconductivity of Nanoparticle Titanium Dioxide Thin Film Vacuum Ultraviolet Photoconductive Detector

. 2021 Dec 21 ; 12 (1) : . [epub] 20211221

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CSG-MAU2003 Ministry of Business, Innovation and Employment
2021B1-004 Osaka University
MPO TRIO II no. FV20580 Ministry of Industry and Trade

Vacuum ultraviolet radiation (VUV, from 100 nm to 200 nm wavelength) is indispensable in many applications, but its detection is still challenging. We report the development of a VUV photoconductive detector, based on titanium dioxide (TiO2) nanoparticle thin films. The effect of crystallinity, optical quality, and crystallite size due to film thickness (80 nm, 500 nm, 1000 nm) and type of substrate (silicon Si, quartz SiO2, soda lime glass SLG) was investigated to explore ways of enhancing the photoconductivity of the detector. The TiO2 film deposited on SiO2 substrate with a film thickness of 80 nm exhibited the best photoconductivity, with a photocurrent of 5.35 milli-Amperes and a photosensitivity of 99.99% for a bias voltage of 70 V. The wavelength response of the detector can be adjusted by changing the thickness of the film as the cut-off shifts to a longer wavelength, as the film becomes thicker. The response time of the TiO2 detector is about 5.8 μs and is comparable to the 5.4 μs response time of a diamond UV sensor. The development of the TiO2 nanoparticle thin film detector is expected to contribute to the enhancement of the use of VUV radiation in an increasing number of important technological and scientific applications.

See more in PubMed

Yanagihara M., Yusop M.Z., Tanemura M., Ono S., Nagami T., Fukuda K., Suyama T., Yokota Y., Yanagida T., Yoshikawa A. Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor. APL Mater. 2014;2:046110. doi: 10.1063/1.4871915. PubMed DOI PMC

Yanagihara M., Tsuji T., Yusop M., Tanemura Z.M., Ono S., Nagami T., Fukuda K., Suyama T., Yokota Y., Yanagida T., et al. Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor. Nanomater. Nanodevices. 2014;2014:309091. doi: 10.1155/2014/309091. PubMed DOI PMC

Yamanoi K., Nishi R., Takeda K., Shinzato Y., Tsuboi M., Mui Viet L., Nakazato T., Shimizu T., Sarukura N., Cadatal-Raduban M., et al. Perovskite fluoride crystals as light emitting materials in vacuum ultraviolet region. Opt. Mater. 2014;36:769–772. doi: 10.1016/j.optmat.2013.11.023. DOI

Watanabe K., Arikawa Y., Yamanoi K., Cadatal_Raduban M., Nagai T., Kouno M., Sakai K., Nakazato T., Shimizu T., Sarukura N., et al. Pr or Ce-doped, fast-response and low-afterglow cross-section-enhanced scintillator with 6Li for down-scattered neutron originated from laser fusion. J. Cryst. Growth. 2013;362:288. doi: 10.1016/j.jcrysgro.2011.11.092. DOI

Shendrik Y.R., Radzhabov A., Nepomnyashchikh A.I. Scintillation properties of SrF2 and SrF2-Ce3+ crystals. Tech. Phys. Lett. 2013;39:587–590. doi: 10.1134/S1063785013070109. DOI

Nakazato T., Cadatal-Raduban M., Yamanoi K., Tsuboi M., Furukawa Y., Pham M., Estacio E., Shimizu T., Sarukura N., Fukuda K., et al. Nd3+:LaF3 as a step-wise excited scintillator for femtosecond ultraviolet pulses. IEEE Trans. Nucl. Sci. 2010;57:1208. doi: 10.1109/TNS.2010.2041362. DOI

Salazar K.A., Agulto V.C., Empizo M.J.F., Shinohara K., Yamanoi K., Shimizu T., Sarukura N., Yago A.C.C., Kidkhunthod P., Sattayaporn S., et al. Picosecond UV emissions of hydrothermal grown Fe3+-doped ZnO microrods. J. Cryst. Growth. 2021;574:126332. doi: 10.1016/j.jcrysgro.2021.126332. DOI

Kano M., Wakamiya A., Yamanoi K., Sakai K., Takeda K., Cadatal-Raduban M., Nakazato T., Shimizu T., Sarukura N., Fukuda T. Fabrication of In-Doped ZnO Scintillator Mounted on a Vacuum Flange. IEEE Trans. Nucl. Sci. 2012;59:2290–2293. doi: 10.1109/TNS.2012.2190145. DOI

Lin R., Zheng W., Chen L., Zhu Y., Xu M., Ouyang X., Huang F. X-ray radiation excited ultralong (>20,000 s) intrinsic phosphorescence in aluminum nitride single-crystal scintillators. Nat. Commun. 2020;11:4351. doi: 10.1038/s41467-020-18221-1. PubMed DOI PMC

Jia L., Zheng W., Huang F. Vacuum-ultraviolet photodetectors. PhotoniX. 2020;1:22. doi: 10.1186/s43074-020-00022-w. DOI

Zheng W., Jia L., Huang F. Vacuum-ultraviolet photon detections. iScience. 2020;23:101145. doi: 10.1016/j.isci.2020.101145. PubMed DOI PMC

Bedikyan L., Zakhariev S., Kejzlar P., Volesky L., Zakharieva M., Petkov N., Louda P. Preparation and characterization of TiO2 thin films for UV sensor. MM Sci. J. 2015;12:201520. doi: 10.17973/MMSJ.2015_12_201520. DOI

Pearton S.J., Zopler J.C., Shul R.J., Ren F. GaN: Processing, defects, and devices. J. Appl. Phys. 1999;86:114. doi: 10.1063/1.371145. DOI

Li J., Fan Z.Y. 200 nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett. 2006;89:213510. doi: 10.1063/1.2397021. DOI

Shaikh S.K., Inamdar S.I., Ganbavle V.V., Rajpure K.Y. Chemical bath deposited ZnO thin film based UV photoconductive detector. J. Alloys Comp. 2016;664:242–249. doi: 10.1016/j.jallcom.2015.12.226. DOI

Balducci A., Marinelli M., Milani E., Morgada M.E., Tucciarone A., Verona-Rinati G., Angelone M., Pillon M. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett. 2005;86:193509. doi: 10.1063/1.1927709. DOI

Uchida K., Ishihara H., Nippashi K., Matsuoka M., Hayashi K. Measurement of vacuum ultraviolet radiation with diamond photo detectors. J. Light Vis. Eng. 2004;28:97. doi: 10.2150/jlve.28.97. DOI

Lin C.-N., Lu Y.-J., Yang X., Tian Y.-Z., Gao C.-J., Sun J.-L., Dong L., Zhong F., Hu W.-D., Shan C.-X. Diamond-based all-carbon Photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018;6:1800068. doi: 10.1002/adom.201800068. DOI

Zhang W.J., Chong Y.M., Bello I., Lee S.T. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J. Phys. D Appl. Phys. 2007;40:6159. doi: 10.1088/0022-3727/40/20/S03. DOI

Samantaray C.B., Singh R.N. Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Int. Mater. Rev. 2005;50:313–344. doi: 10.1179/174328005X67160. DOI

Zheng W., Huang F., Zheng R., Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) Photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater. 2015;27:3921–3927. PubMed

Li Y., Guo J., Zheng W., Huang F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl. Phys. Lett. 2020;117:023504. doi: 10.1063/5.0007606. DOI

Zheng W., Lin R., Zhang Z., Huang F. Vacuum-ultraviolet Photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces. 2018;10:27116–27123. doi: 10.1021/acsami.8b07189. PubMed DOI

Watanabe K., Taniguchi T., Niiyama T., Miya K., Taniguchi M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics. 2009;3:591. doi: 10.1038/nphoton.2009.167. DOI

Zheng W., Lin R., Zhu Y., Zhang Z., Ji X., Huang F. Vacuum ultraviolet Photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces. 2018;10:20696–20702. doi: 10.1021/acsami.8b04866. PubMed DOI

Yu X., Cadatal-Raduban M., Kato S., Kase M., Ono S. Femtosecond PLD-grown YF3 nanoparticle thin films as improved filterless VUV photoconductive detectors. Nanotechnology. 2020;32:015501. doi: 10.1088/1361-6528/abb84e. PubMed DOI

Yu X., Kato S., Ito H., Ono S., Kase M., Cadatal-Raduban M. Filterless tunable photoconductive ultraviolet radiation detector using CeF3 thin films grown by pulsed laser deposition. AIP Adv. 2020;10:045309. doi: 10.1063/1.5140827. DOI

Cadatal-Raduban M., Yamanoi K., Olejníček J., Kohout M., Kato S., Horiuchi Y., Kato T., Haoze Y., Sarukura N., Ono S. Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Films. 2021;726:138637. doi: 10.1016/j.tsf.2021.138637. DOI

Pan A., Zhu X. Optoelectronic properties of semiconductor nanowires. Semicon. Nanowires. 2015;12:327–363.

Zheng X.G., Li Q.S., Zhao J.P., Chen D., Zhao B., Yang Y.J., Zhang L.C. Photoconductive ultraviolet detectors based on ZnO films. Appl. Surface Sci. 2006;253:2264–2267. doi: 10.1016/j.apsusc.2006.04.031. DOI

Zhang M., Zhang H., Lv K., Chen W., Zhou J., Shen L., Ruan S. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction. Opt. Exp. 2012;20:5936–5941. doi: 10.1364/OE.20.005936. PubMed DOI

Mercado C.C., Knorr F.J., McHale J.L., Usmani S.M., Ichimura A.S., Saraf L.V. Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2. J. Phys. Chem. C. 2012;116:10796–10804. doi: 10.1021/jp301680d. DOI

Singh C., Panda E. Variation of electrical properties in thickening Al-doped ZnO films: Role of defect chemistry. RSC Adv. 2016;6:48910–48918. doi: 10.1039/C6RA06513A. DOI

Tseng Z.-L., Kao P.-C., Chen Y.-C., Juang Y.-D., Kuo Y.-M., Chu S.-Y. Effect of thicknesses on the structure, conductivity, and transparency of Al-doped ZnO anodes in organic light-emitting diodes. J. Electrochem. Soc. 2011;158:J310–J315. doi: 10.1149/1.3615847. DOI

Saravanan K., Krishnan R., Hsieh S.H., Wang H.T., Wang Y.F., Pong W.F., Asoka K., Avasthi D.K., Kanjilal D. Effect of defects and film thickness on the optical properties of ZnO–Au hybrid films. RSC Adv. 2015;5:40813–40819. doi: 10.1039/C5RA02144H. DOI

Cheng L.-C., Wu M.-R., Huang C.-Y., Juang T.-K., Liu P.-L., Horng R.-H. Effect of defects on the properties of ZnGa2O4 thin-film transistors. ACS Appl. Electron. Mater. 2019;1:253–259. doi: 10.1021/acsaelm.8b00093. DOI

Kumar N., Patel M., Nguyen T.T., Kim S., Kim J. Effect of TiO2 layer thickness of TiO2/NiO transparent photovoltaics. Photovoltaics. 2021;29:943–952. doi: 10.1002/pip.3419. DOI

Navarro-Pardo F., Martínez-Barrera G., Martínez-Hernández A.L., Castaño V.M., Rivera-Armenta J.L., Medellín-Rodríguez F., Velasco-Santos C. Effects on the thermo-mechanical and crystallinity properties of nylon 6, 6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials. 2013;6:3494–3513. doi: 10.3390/ma6083494. PubMed DOI PMC

Khan A., Toufiq A.M., Tariq F., Khan Y., Hissain R., Akhtar N., Rahman S.U. Influence of Fe doping on the structural, optical and thermal properties of α-MnO2 nanowires. Mater. Res. Exp. 2019;6:065043. doi: 10.1088/2053-1591/ab0aaf. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...