New fluorescent auxin probes visualise tissue-specific and subcellular distributions of auxin in Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33438224
DOI
10.1111/nph.17183
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, distribution, fluorescent auxin, in vivo visualisation, subcellular localisation, transport,
- MeSH
- Arabidopsis * metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- regulátory růstu rostlin MeSH
In a world that will rely increasingly on efficient plant growth for sufficient food, it is important to learn about natural mechanisms of phytohormone action. In this work, the introduction of a fluorophore to an auxin molecule represents a sensitive and non-invasive method to directly visualise auxin localisation with high spatiotemporal resolution. The state-of-the-art multidisciplinary approaches of genetic and chemical biology analysis together with live cell imaging, liquid chromatography-mass spectrometry (LC-MS) and surface plasmon resonance (SPR) methods were employed for the characterisation of auxin-related biological activity, distribution and stability of the presented compounds in Arabidopsis thaliana. Despite partial metabolisation in vivo, these fluorescent auxins display an uneven and dynamic distribution leading to the formation of fluorescence maxima in tissues known to concentrate natural auxin, such as the concave side of the apical hook. Importantly, their distribution is altered in response to different exogenous stimuli in both roots and shoots. Moreover, we characterised the subcellular localisation of the fluorescent auxin analogues as being present in the endoplasmic reticulum and endosomes. Our work provides powerful tools to visualise auxin distribution within different plant tissues at cellular or subcellular levels and in response to internal and environmental stimuli during plant development.
Centre for Plant Sciences University of Leeds Leeds LS2 9JT UK
School of Life Sciences The University of Warwick Coventry CV4 7AL UK
Zobrazit více v PubMed
Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C. 2006. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biology 8: 249-256.
Abbas M, Alabadí D, Blázquez MA. 2013. Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science 4: 441.
Adamowski M, Friml J. 2015. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell 27: 20-32.
Atta S, Bera M, Chattopadhyay T, Paul A, Ikbal M, Maiti MK, Pradeep Singh ND. 2015. Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: for controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Advances 5: 86990-86996.
Atta S, Ikbal M, Boda N, Gauri SS, Singh ND. 2013. Photoremovable protecting groups as controlled-release device for sex pheromone. Photochemical and Photobiological Sciences 12: 393-403.
Atta S, Jana A, Ananthakirshnan R, Narayana Dhuleep PS. 2010. Fluorescent Caged Compounds of 2,4-Dichlorophenoxyacetic Acid (2,4-D): photorelease technology for controlled release of 2,4-D. Journal of Agricultural and Food Chemistry 58: 11844-11851.
Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M. 2008. Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. Journal of Biological Chemistry 283: 21817-21826.
Baluška F, Šamaj J, Menzel D. 2003. Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends in Cell Biology 13: 282-285.
Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y et al. 2012. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485: 119-122.
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591-602.
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950.
Bertorelle F, Dondon R, Fery-Forgues S. 2002. Compared behavior of hydrophobic fluorescent NBD probes in micelles and in cyclodextrins. Journal of Fluorescence 12: 205-207.
Bieleszová K, Pařízková B, Kubeš M, Husičková A, Kubala M, Ma Q, Sedlářová M, Robert S, Doležal K, Strnad M et al. 2019. New fluorescently labeled auxins exhibit promising anti-auxin activity. New Biotechnology 48: 44-52.
Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482: 103-106.
Cho M, Lee SH, Cho HT. 2007. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19: 3930-3943.
Delbarre A, Muller P, Imhoff V, Guern J. 1996. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532-541.
Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R et al. 2012. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications 3: 941.
Enders TA, Strader LC. 2016. Auxin activity: past, present, and future. American Journal of Botany 102: 180-196.
Eyer L, Vain T, Pařízková B, Oklestkova J, Barbez E, Kozubíková H, Pospíšil T, Wierzbicka R, Kleine-Vehn J, Fránek M et al. 2016. 2,4-D and IAA amino acid conjugates show distinct metabolism in Arabidopsis. PLoS ONE 11: e0159269.
Friml J. 2003. Auxin transport-shaping the plant. Current Opinion in Plant Biology 6: 7-12.
Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K. 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806-809.
Geisler M, Murphy AS. 2006. The ABC of auxin transport: The role of p-glycoproteins in plant development. FEBS Letters 580: 1094-1102.
Grones P, Friml J. 2015. Auxin transporters and binding proteins at a glance. Journal of Cell Science 128: 1-7.
Grossmann K. 2009. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science 66: 113-120.
Hayashi K, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T. 2014. Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proceedings of the National Academy of Sciences, USA 111: 11557-11562.
Hille S, Akhmanova M, Glanc M, Johnson A, Friml J. 2018. Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: theoretical estimation. International Journal of Molecular Sciences 19: 3566.
Hošek P, Kubeš M, Lanková M, Dobrev PI, Klíma P, Kohoutová M, Petrášek J, Hoyerová K, Jiřina M, Zažímalová E. 2012. Auxin transport at cellular level: new insights supported by mathematical modelling. Journal of Experimental Botany 63: 3815-3827.
Hoyerová K, Hošek P, Quareshy M, Li J, Klíma P, Kubeš M, Yemm AA, Neve P, Tripathi A, Bennett MJ et al. 2018. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates. New Phytologist 217: 1625-1639.
Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B et al. 2012. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant and Cell Physiology 53: 2090-2100.
Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S et al. 2011. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Molecular Systems Biology 7: 540.
Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, Wang X, Blakeslee JJ, Carraro N, Petrášek J, Zažímalová E et al. 2012. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. The Plant Journal 69: 640-654.
Lace B, Prandi C. 2016. Shaping small bioactive molecules to untangle their biological function: a focus on fluorescent plant hormones. Molecular Plant 9: 1099-1118.
Lavy M, Estelle M. 2016. Mechanisms of auxin signaling. Development 143: 3226-3229.
Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM. 2014. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chemical Biology 9: 673-682.
Lehman A, Black R, Ecker JR. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85: 183-194.
Lewis DR, Muday GK. 2009. Measurement of auxin transport in Arabidopsis thaliana. Nature Protocols 4: 437-451.
Liscum E, Hangarter RP. 1993. Light-stimulated apical hook opening in wild-type Arabidopsis thaliana seedlings. Plant Physiology 101: 567-572.
Liu JT, Hu LS, Liu YL, Chen RS, Cheng Z, Chen SJ, Amatore C, Huang WH, Huo KF. 2014. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires. Angewandte Chemie International Edition 53: 2643-2647.
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140: 943-950.
Lomax TL, Muday GK, Rubery PH. 1995. Auxin transport. In: Davies PJ, ed. Plant hormones. Dordrecht, Netherlands: Springer, 509-530.
Ludwig-Müller J. 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany 62: 1757-1773.
Ma Q, Robert S. 2014. Auxin biology revealed by small molecules. Physiologia Plantarum 151: 25-42.
Mancuso S, Marras AM, Mugnai S, Schlicht M, Žárský V, Li G, Song L, Xue HW, Baluška F. 2007. Phospholipase Dζ2 drives vesicular secretion of auxin for its polar cell-cell transport in the transition zone of the root apex. Plant Signaling & Behavior 2: 240-244.
Mao H, Nakamura M, Viotti C, Grebe M. 2016. A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-binding cassette transporter. Plant Physiology 172: 2245-2260.
Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A. 2010. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22: 1104-1117.
Mettbach U, Strnad M, Mancuso S, Baluška F. 2017. Immunogold-EM analysis reveal brefeldin a-sensitive clusters of auxin in Arabidopsis root apex cells. Communicative & Integrative Biology 10: e1327105.
Middleton AM, Dal Bosco C, Chlap P, Bensch R, Harz H, Ren F, Bergmann S, Wend S, Weber W, Hayashi KI et al. 2018. Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Reports 22: 3044-3057.
Mitchison G. 2015. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism. PLoS Computational Biology 11: e1004487.
Montesinos JC, Sturm S, Langhans M, Hillmer S, Marcote MJ, Robinson DG, Aniento F. 2012. Coupled transport of Arabidopsis p24 proteins at the ER-Golgi interace. Journal of Experimental Botany 63: 4243-4261.
Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S. 2007. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology 33: 115-129.
Pařízková B, Pernisová M, Novák O. 2017. What has been seen cannot be unseen - detecting auxin in vivo. International Journal of Molecular Sciences 18: 2736.
Péret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, et al. 2012. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24: 2874-2885.
Petrášek J, Friml J. 2009. Auxin transport routes in plant development. Development 136: 2675-2688.
Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubeš M, Covanová M et al. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914-918.
Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin TI. 2010. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22: 1762-1776.
Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S et al. 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications 4: 2625.
Robert S, Chary SN, Drakakaki G, Li S, Yang Z, Raikhel NV, Hicks GR. 2008. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proceedings of the National Academy of Sciences, USA 105: 8464-8469.
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472.
Sánchez WC, García-Ponce B, de la Paz SM, Álvarez-Buylla ER. 2018. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots. Communicative & Integrative Biology 11: e1395993.
Santa T, Matsumura D, Huang CZ, Kitada C, Imai K. 2002. Design and synthesis of a hydrophilic fluorescent derivatization reagent for carboxylic acids, 4-N-(4-N-aminoethyl)piperazino-7-nitro-2,1,3-benzoxadiazole (NBD-PZ-NH2), and its application to capillary electrophoresis with laser-induced fluorescence detection. Biomedical Chromatography 16: 523-528.
Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: simply complicated. Journal of Experimental Botany 64: 2565-2577.
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development 82: 518-529.
Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluška F. 2006. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signaling & Behavior 1: 122-133.
Schwark A, Schierle J. 1992. Interaction of ethylene and auxin in the regulation of hook growth I: the role of auxin in different growing regions of the hypocotyl hook of Phaseolus vulgaris. Journal of Plant Physiology 140: 562-570.
Seifertová D, Skůpa P, Rychtář J, Laňková M, Pařezová M, Dobrev PI, Hoyerová K, Petrášek J, Zažímalová E. 2014. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. Journal of Plant Physiology 171: 429-437.
Simon S, Petrášek J. 2010. Why plants need more than one type of auxin. Plant Science 180: 454-460.
Simon S, Skůpa P, Viaene T, Zwiewka M, Tejos R, Klíma P, Čarná M, Rolčík J, De Rycke R, Moreno I et al. 2016. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist 211: 65-74.
Skalický V, Kubeš M, Napier R, Novák O. 2018. Auxins and cytokinins-the role of subcellular organization on homeostasis. International Journal of Molecular Sciences 19: 3115.
Sokołowska K, Kizińska J, Szewczuk Z, Banasiak A. 2014. Auxin conjugated to fluorescent dyes-a tool for the analysis of auxin transport pathways. Plant Biology 16: 866-877.
Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G. 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318.
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S et al. 2008. The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology 10: 946-954.
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640-645.
Thimann KV. 1977. Hormone action in the whole life of plants. Amherst, MA, USA: University of Massachusetts Press.
Tsuda E, Yang H, Nishimura T, Uehara Y, Sakai T, Furutani M, Koshiba T, Hirose M, Nozaki H, Murphy AS et al. 2011. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. Journal of Biological Chemistry 286: 2354-2364.
Ulmasov T, Hagen G, Guilfoyle TJ. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865-1868.
Vain T, Raggi S, Ferro N, Barange DK, Kieffer M, Ma Q, Doyle SM, Thelander M, Pařízková B, Novák O et al. 2019. Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proceedings of the National Academy of Sciences, USA 116: 6463-6472.
Vandenbussche F, Petrášek J, Žádníková P, Hoyerová K, Pešek B, Raz V, Swarup R, Bennett M, Zažímalová E, Benková E et al. 2010. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137: 597-606.
Vanneste S, Friml J. 2009. Auxin: a trigger for change in plant development. Cell 136: 1005-1016.
Vieten A, Sauer M, Brewer PB, Friml J. 2007. Molecular and cellular aspects of auxin-transport-mediated development. Trends in Plant Science 12: 160-168.
Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, Duan D, Peralta AG, Domozych DS, Hahn MG, Drakakaki G. 2019. A hybrid approach enabling large-scale glycomic analysis of post-golgi vesicles reveals a transport route for polysaccharides. Plant Cell 31: 627-644.
Woodward AW, Bartel B. 2005. Auxin: regulation, action, and interaction. Annals of Botany 95: 707-735.
Yang H, Murphy AS. 2009. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. The Plant Journal 59: 179-191.
Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. 2006. High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology 16: 1123-1127.
Žádníková P, Petrášek J, Marhavý P, Raz V, Vandenbussche F, Ding Z, Schwarzerová K, Morita MT, Tasaka M, Hejátko J. 2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137: 607-617.
Zažímalová E, Murphy AS, Yang H, Hoyerová K, Hošek P. 2010. Auxin transporters-why so many? Cold Spring Harbor Perspectives in Biology 2: a001552.