Endocytic trafficking promotes vacuolar enlargements for fast cell expansion rates in plants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35686734
PubMed Central
PMC9187339
DOI
10.7554/elife.75945
PII: 75945
Knihovny.cz E-zdroje
- Klíčová slova
- A. thaliana, cell biology, cell elongation, plasma membrane, small molecules, vacuole,
- MeSH
- Arabidopsis * metabolismus MeSH
- buněčná membrána metabolismus MeSH
- cytosol metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- transport proteinů MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku * MeSH
The vacuole has a space-filling function, allowing a particularly rapid plant cell expansion with very little increase in cytosolic content (Löfke et al., 2015; Scheuring et al., 2016; Dünser et al., 2019). Despite its importance for cell size determination in plants, very little is known about the mechanisms that define vacuolar size. Here, we show that the cellular and vacuolar size expansions are coordinated. By developing a pharmacological tool, we enabled the investigation of membrane delivery to the vacuole during cellular expansion. Our data reveal that endocytic membrane sorting from the plasma membrane to the vacuole is enhanced in the course of rapid root cell expansion. While this 'compromise' mechanism may theoretically at first decelerate cell surface enlargements, it fuels vacuolar expansion and, thereby, ensures the coordinated augmentation of vacuolar occupancy in dynamically expanding plant cells.
Cell Biology Faculty of Biology University of Freiburg Freiburg Germany
Center for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
Molecular Plant Physiology Faculty of Biology University of Freiburg Freiburg Germany
Zobrazit více v PubMed
Abe H, Uchiyama M, Sato R. Isolation of Phenylacetic Acid and Its p -Hydroxy Derivative as Auxin-like Substances from Undaria pinnatifida. Agricultural and Biological Chemistry. 1974;38:897–898. doi: 10.1080/00021369.1974.10861257. DOI
Berger F, Hung CY, Dolan L, Schiefelbein J. Control of cell division in the root epidermis of Arabidopsis thaliana. Developmental Biology. 1998;194:235–245. doi: 10.1006/dbio.1997.8813. PubMed DOI
Buček J, Zatloukal M, Havlíček L, Plíhalová L, Pospíšil T, Novák O, Doležal K, Strnad M. Total synthesis of [15N]-labelled C6-substituted purines from [15N]-formamide-easy preparation of isotopically labelled cytokinins and derivatives. Royal Society Open Science. 2018;5:181322. doi: 10.1098/rsos.181322. PubMed DOI PMC
Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. The Plant Cell. 2006;18:715–730. doi: 10.1105/tpc.105.037978. PubMed DOI PMC
Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrásek J, Seifertová D, Tejos R, Meisel LA, Zazímalová E, Gadella TWJ, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. PNAS. 2008;105:4489–4494. doi: 10.1073/pnas.0711414105. PubMed DOI PMC
Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, Van Damme D, Leonard M, Yang Z, Girke T, Schmid SL, Russinova E, Friml J, Raikhel NV, Hicks GR. Clusters of bioactive compounds target dynamic endomembrane networks in vivo. PNAS. 2011;108:17850–17855. doi: 10.1073/pnas.1108581108. PubMed DOI PMC
Dünser K., Kleine-Vehn J. Differential growth regulation in plants--the acid growth balloon theory. Current Opinion in Plant Biology. 2015;28:55–59. doi: 10.1016/j.pbi.2015.08.009. PubMed DOI
Dünser Kai, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. The EMBO Journal. 2019;38:e100353. doi: 10.15252/embj.2018100353. PubMed DOI PMC
Ebine K, Ueda T. Roles of membrane trafficking in plant cell wall dynamics. Frontiers in Plant Science. 2015;6:878. doi: 10.3389/fpls.2015.00878. PubMed DOI PMC
Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant & Cell Physiology. 2009;50:1041–1048. doi: 10.1093/pcp/pcp055. PubMed DOI PMC
Fujiwara M, Uemura T, Ebine K, Nishimori Y, Ueda T, Nakano A, Sato MH, Fukao Y. Interactomics of Qa-SNARE in Arabidopsis thaliana. Plant & Cell Physiology. 2014;55:781–789. doi: 10.1093/pcp/pcu038. PubMed DOI
Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413:425–428. doi: 10.1038/35096571. PubMed DOI
Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. The Plant Journal. 2009;59:169–178. doi: 10.1111/j.1365-313X.2009.03851.x. PubMed DOI PMC
Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A. Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. The Plant Journal. 2011;69:204–216. doi: 10.1111/j.1365-313X.2011.04782.x. PubMed DOI
Kallman NJ, Liu C, Yates MH, Linder RJ, Ruble JC, Kogut EF, Patterson LE, Laird DL, Hansen MM. Route design and development of A MET kinase inhibitor: A copper-catalyzed preparation of an N 1-methylindazole. Organic Process Research & Development. 2014;18:501–510. doi: 10.1021/op400317z. DOI
Kang B-H, Anderson CT, Arimura S, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. The Plant Cell. 2022;34:10–52. doi: 10.1093/plcell/koab247. PubMed DOI PMC
Ketelaar T, Galway ME, Mulder BM, Emons AMC. Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. Journal of Microscopy. 2008;231:265–273. doi: 10.1111/j.1365-2818.2008.02031.x. PubMed DOI
Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. PNAS. 2008;105:17812–17817. doi: 10.1073/pnas.0808073105. PubMed DOI PMC
Kolotuev I. Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production. Microscopy and Microanalysis. 2014;20:1392–1403. doi: 10.1017/S1431927614012999. PubMed DOI
Krüger F, Schumacher K. Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana. Seminars in Cell & Developmental Biology. 2018;80:106–112. doi: 10.1016/j.semcdb.2017.07.008. PubMed DOI
Liang YM, Xu QH, Wu XL, Ma YX. H2SO4: an efficient catalyst for esterification. Journal of Chemical Research. 2004;1:226–227. doi: 10.3184/0308234041640708. PubMed DOI
Löfke C, Dünser K, Scheuring D, Kleine-Vehn J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife. 2015;4:e05868. doi: 10.7554/eLife.05868. PubMed DOI PMC
Marshall WF, Young KD, Swaffer M, Wood E, Nurse P, Kimura A, Frankel J, Wallingford J, Walbot V, Qu X, Roeder AHK. What determines cell size? BMC Biology. 2012;10:1–22. doi: 10.1186/1741-7007-10-101. PubMed DOI PMC
Owens T, Poole RJ. Regulation of cytoplasmic and vacuolar volumes by plant cells in suspension culture. Plant Physiology. 1979;64:900–904. doi: 10.1104/pp.64.5.900. PubMed DOI PMC
Pařízková B, Žukauskaitė A, Vain T, Grones P, Raggi S, Kubeš MF, Kieffer M, Doyle SM, Strnad M, Kepinski S, Napier R, Doležal K, Robert S, Novák O. New fluorescent auxin probes visualise tissue-specific and subcellular distributions of auxin in Arabidopsis. The New Phytologist. 2021;230:535–549. doi: 10.1111/nph.17183. PubMed DOI
Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology. 1963;17:208–212. doi: 10.1083/jcb.17.1.208. PubMed DOI PMC
Robert S, Bichet A, Grandjean O, Kierzkowski D, Satiat-Jeunemaître B, Pelletier S, Hauser MT, Höfte H, Vernhettes S. An Arabidopsis endo-1,4-beta-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. The Plant Cell. 2005;17:3378–3389. doi: 10.1105/tpc.105.036228. PubMed DOI PMC
Robert S, Chary SN, Drakakaki G, Li S, Yang Z, Raikhel NV, Hicks GR. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. PNAS. 2008;105:8464–8469. doi: 10.1073/pnas.0711650105. PubMed DOI PMC
Scheuring D, Schöller M, Kleine-Vehn J, Löfke C. In: In Plant Cell Expansion. Estevez JM, editor. New York, NY: Humana Press; 2015. Vacuolar staining methods in plant cells; pp. 83–92. PubMed DOI
Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. PNAS. 2016;113:452–457. doi: 10.1073/pnas.1517445113. PubMed DOI PMC
Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. The Plant Cell. 2003;15:2885–2899. doi: 10.1105/tpc.016121. PubMed DOI PMC
Takemoto K, Ebine K, Askani JC, Krüger F, Gonzalez ZA, Ito E, Goh T, Schumacher K, Nakano A, Ueda T. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. PNAS. 2018;115:E2457–E2466. doi: 10.1073/pnas.1717839115. PubMed DOI PMC
Ueda T, Yamaguchi M, Uchimiya H, Nakano A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. The EMBO Journal. 2001;20:4730–4741. doi: 10.1093/emboj/20.17.4730. PubMed DOI PMC
Uemura T, Morita MT, Ebine K, Okatani Y, Yano D, Saito C, Ueda T, Nakano A. Vacuolar/pre-vacuolar compartment Qa-SNAREs VAM3/SYP22 and PEP12/SYP21 have interchangeable functions in Arabidopsis. The Plant Journal. 2010;64:864–873. doi: 10.1111/j.1365-313X.2010.04372.x. PubMed DOI
Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. The Journal of Cell Biology. 1995;128:779–792. doi: 10.1083/jcb.128.5.779. PubMed DOI PMC
Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. PNAS. 2003;100:8589–8594. doi: 10.1073/pnas.1430749100. PubMed DOI PMC
Zheng J, Han SW, Rodriguez-Welsh MF, Rojas-Pierce M. Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides. Molecular Plant. 2014;7:1026–1040. doi: 10.1093/mp/ssu019. PubMed DOI