Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice

. 2022 Sep 02 ; 12 (1) : 14980. [epub] 20220902

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36056079
Odkazy

PubMed 36056079
PubMed Central PMC9440260
DOI 10.1038/s41598-022-19109-4
PII: 10.1038/s41598-022-19109-4
Knihovny.cz E-zdroje

More than half of spinal cord injury (SCI) patients develop central neuropathic pain (CNP), which is largely refractory to current treatments. Considering the preclinical evidence showing that polyphenolic compounds may exert antinociceptive effects, the present work aimed to study preventive effects on SCI-induced CNP development by repeated administration of two vegetal polyphenolic extracts: grape stalk extract (GSE) and coffee extract (CE). Thermal hyperalgesia and mechanical allodynia were evaluated at 7, 14 and 21 days postinjury. Then, gliosis, ERK phosphorylation and the expression of CCL2 and CX3CL1 chemokines and their receptors, CCR2 and CX3CR1, were analyzed in the spinal cord. Gliosis and CX3CL1/CX3CR1 expression were also analyzed in the anterior cingulate cortex (ACC) and periaqueductal gray matter (PAG) since they are supraspinal structures involved in pain perception and modulation. GSE and CE treatments modulated pain behaviors accompanied by reduced gliosis in the spinal cord and both treatments modulated neuron-glia crosstalk-related biomolecules expression. Moreover, both extracts attenuated astrogliosis in the ACC and PAG as well as microgliosis in the ACC with an increased M2 subpopulation of microglial cells in the PAG. Finally, GSE and CE prevented CX3CL1/CX3CR1 upregulation in the PAG, and modulated their expression in ACC. These findings suggest that repeated administrations of either GSE or CE after SCI may be suitable pharmacologic strategies to attenuate SCI-induced CNP development by means of spinal and supraspinal neuroinflammation modulation.

Zobrazit více v PubMed

Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain. 2017;21:29–44. doi: 10.1002/ejp.905. PubMed DOI

Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003;103:249–257. doi: 10.1016/S0304-3959(02)00452-9. PubMed DOI

Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: A systematic review. J. Rehabil. Res. Dev. 2009;46:13–29. doi: 10.1682/JRRD.2008.04.0053. PubMed DOI

Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat. Rev. Dis. Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18. PubMed DOI

Colloca L, et al. Neuropathic pain. Nat. Rev. Dis. Primers. 2017;3:17002. doi: 10.1038/nrdp.2017.2. PubMed DOI PMC

Gwak YS, Hulsebosch CE, Leem JW. Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast. 2017;2017:2480689. doi: 10.1155/2017/2480689. PubMed DOI PMC

Attal N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev. Neurol. 2019;175:46–50. doi: 10.1016/j.neurol.2018.08.005. PubMed DOI

Boadas-Vaello P, Vela JM, Verdu E. New pharmacological approaches using polyphenols on the physiopathology of neuropathic pain. Curr. Drug Targets. 2017;18:160–173. doi: 10.2174/1389450117666160527142423. PubMed DOI

Wang Y, et al. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J. Neuroinflamm. 2020;17:311. doi: 10.1186/s12974-020-01991-2. PubMed DOI PMC

Limcharoen T, et al. Improved antiallodynic, antihyperalgesic and anti-inflammatory response achieved through potential prodrug of curcumin, curcumin diethyl diglutarate in a mouse model of neuropathic pain. Eur. J. Pharmacol. 2021;899:174008. doi: 10.1016/j.ejphar.2021.174008. PubMed DOI

Song Y, et al. Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway. Life Sci. 2013;92:1215–1221. doi: 10.1016/j.lfs.2013.05.007. PubMed DOI

Tian F, Xu LH, Zhao W, Tian LJ, Ji XL. The neuroprotective mechanism of puerarin treatment of acute spinal cord injury in rats. Neurosci. Lett. 2013;543:64–68. doi: 10.1016/j.neulet.2013.03.039. PubMed DOI

Zhang D, et al. The neuroprotective effect of puerarin in acute spinal cord injury rats. Cell Physiol. Biochem. 2016;39:1152–1164. doi: 10.1159/000447822. PubMed DOI

Wang X, Wang YY, Zhang LL, Li GT, Zhang HT. Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2876–2887. PubMed

Hassler SN, Johnson KM, Hulsebosch CE. Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J. Neurochem. 2014;131:413–417. doi: 10.1111/jnc.12830. PubMed DOI PMC

Renno WM, et al. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and chronically injured spinal cord of adult rats. Neuropharmacology. 2014;77:100–119. doi: 10.1016/j.neuropharm.2013.09.013. PubMed DOI

Álvarez-Pérez B, et al. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur. J. Pain. 2016;20:341–352. doi: 10.1002/ejp.722. PubMed DOI

Ma L, Mu Y, Zhang Z, Sun Q. Eugenol promotes functional recovery and alleviates inflammation, oxidative stress, and neural apoptosis in a rat model of spinal cord injury. Restor. Neurol. Neurosci. 2018;36:659–668. PubMed

Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int. J. Mol Sci. 2010;11:622–646. doi: 10.3390/ijms11020622. PubMed DOI PMC

Król K, Gantner M, Tatarak A, Hallmann E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur. Food Res. Technol. 2020;246:33–39. doi: 10.1007/s00217-019-03388-9. DOI

Lindia JA, McGowan E, Jochnowitz N, Abbadie C. Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J. Pain. 2005;6:434–438. doi: 10.1016/j.jpain.2005.02.001. PubMed DOI

Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–159. doi: 10.1016/j.pain.2004.12.022. PubMed DOI

Thacker MA, et al. CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur. J. Pain. 2009;13:263–272. doi: 10.1016/j.ejpain.2008.04.017. PubMed DOI

Gao YJ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci. 2009;29:4096–4108. doi: 10.1523/JNEUROSCI.3623-08.2009. PubMed DOI PMC

Singleton, V.L., Orthofer, R. & Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods Enzymology, Vol. 299, 152–178.

Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–110. doi: 10.1016/0304-3959(83)90201-4. PubMed DOI

Castany S, et al. Repeated sigma-1 receptor antagonist MR309 administration modulates central neuropathic pain development after spinal cord injury in mice. Front. Pharmacol. 2019;10:222. doi: 10.3389/fphar.2019.00222. PubMed DOI PMC

Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci. Rep. 2018;8:3873. doi: 10.1038/s41598-018-22217-9. PubMed DOI PMC

Basso DM, et al. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma. 2006;23:635–659. doi: 10.1089/neu.2006.23.635. PubMed DOI

Dixon WJ. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 1980;20:441–462. doi: 10.1146/annurev.pa.20.040180.002301. PubMed DOI

Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI

De Martino C, Zamboni L. Silver methenamine stain for electron microscopy. J. Ultrastruct. Res. 1967;19:273–282. doi: 10.1016/S0022-5320(67)80221-1. PubMed DOI

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press; 1997.

Morton DB, Griffiths PH. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet. Rec. 1985;116:431–436. doi: 10.1136/vr.116.16.431. PubMed DOI

Hall BJ, et al. Spinal cord injuries containing asymmetrical damage in the ventrolateral funiculus is associated with a higher incidence of at-level allodynia. J. Pain. 2010;11:864–875. doi: 10.1016/j.jpain.2009.12.008. PubMed DOI PMC

Knerlich-Lukoschus F, et al. Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. J. Neurotrauma. 2008;25:427–448. doi: 10.1089/neu.2007.0431. PubMed DOI

Batista CM, et al. Characterization of traumatic spinal cord injury model in relation to neuropathic pain in the rat. Somatosens Mot. Res. 2019;36:14–23. doi: 10.1080/08990220.2018.1563537. PubMed DOI

Trevisan G, et al. Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2014;387:679–689. doi: 10.1007/s00210-014-0978-0. PubMed DOI

Quiñonez-Bastidas GN, et al. Antinociceptive effect of (−)-epicatechin in inflammatory and neuropathic pain in rats. Behav. Pharmacol. 2018;29:270–279. doi: 10.1097/FBP.0000000000000320. PubMed DOI

Kaur S, Muthuraman A. Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicol. Rep. 2019;6:505–513. doi: 10.1016/j.toxrep.2019.06.001. PubMed DOI PMC

Bagdas D, Cinkilic N, Ozboluk HY, Ozyigit MO, Gurun MS. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J. Nat. Med. 2013;67:698–704. doi: 10.1007/s11418-012-0726-z. PubMed DOI

Hara K, et al. Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur. J. Pharmacol. 2014;723:459–464. doi: 10.1016/j.ejphar.2013.10.046. PubMed DOI

Bagdas D, Ozboluk HY, Cinkilic N, Gurun MS. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J. Med. Food. 2014;17:730–732. doi: 10.1089/jmf.2013.2966. PubMed DOI

Semaoui R, et al. Infusion of aerial parts of Salvia chudaei Batt. & Trab. from Algeria: Chemical, toxicological and bioactivities characterization. J. Ethnopharmacol. 2021;280:114455. doi: 10.1016/j.jep.2021.114455. PubMed DOI

Yang YH, Wang Z, Zheng J, Wang R. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol. Med. Rep. 2015;12:3017–3024. doi: 10.3892/mmr.2015.3738. PubMed DOI

Park CS, et al. Gallic acid attenuates blood-spinal cord barrier disruption by inhibiting Jmjd3 expression and activation after spinal cord injury. Neurobiol. Dis. 2020;145:105077. doi: 10.1016/j.nbd.2020.105077. PubMed DOI

Park CS, et al. Protocatechuic acid improves functional recovery after spinal cord injury by attenuating blood-spinal cord barrier disruption and hemorrhage in rats. Neurochem. Int. 2019;124:181–192. doi: 10.1016/j.neuint.2019.01.013. PubMed DOI

Chen D, et al. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF-κB and p38 signaling pathway anti-inflammatory activity. Mol. Med. Rep. 2018;17:1340–1346. PubMed

Liu YL, et al. Gallic acid attenuated LPS-induced neuroinflammation: Protein aggregation and necroptosis. Mol. Neurobiol. 2020;57:96–104. doi: 10.1007/s12035-019-01759-7. PubMed DOI

Wang HY, et al. Protocatechuic acid inhibits inflammatory responses in LPS-stimulated BV2 microglia via NF-κB and MAPKs signaling pathways. Neurochem. Res. 2015;40:1655–1660. doi: 10.1007/s11064-015-1646-6. PubMed DOI

Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J. Neuroimmunol. 2020;341:577164. doi: 10.1016/j.jneuroim.2020.577164. PubMed DOI

Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 2014;63:81–90. doi: 10.1007/s00011-013-0674-4. PubMed DOI

Kim M, Choi SY, Lee P, Hur J. Neochlorogenic acid inhibits lipopolysaccharide-induced activation and pro-inflammatory responses in BV2 microglial cells. Neurochem. Res. 2015;40:1792–1798. doi: 10.1007/s11064-015-1659-1. PubMed DOI

Zhu YL, et al. Neuroprotective effects of Astilbin on MPTP-induced Parkinson's disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int. Immunopharmacol. 2019;66:19–27. doi: 10.1016/j.intimp.2018.11.004. PubMed DOI

Kho AR, et al. Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. Int. J. Mol. Sci. 2018;19:1420. doi: 10.3390/ijms19051420. PubMed DOI PMC

He Y, Tan D, Mi Y, Zhou Q, Ji S. Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food Funct. 2017;8:2275–2282. doi: 10.1039/C6FO01823H. PubMed DOI

Ettcheto M, et al. Epigallocatechin-3-gallate (EGCG) improves cognitive deficits aggravated by an obesogenic diet through modulation of unfolded protein response in APPswe/PS1dE9 mice. Mol. Neurobiol. 2020;57:1814–1827. doi: 10.1007/s12035-019-01849-6. PubMed DOI

Grabert K, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 2016;19:504–516. doi: 10.1038/nn.4222. PubMed DOI PMC

Dando SJ, Kazanis R, Chinnery HR, McMenamin PG. Regional and functional heterogeneity of antigen presenting cells in the mouse brain and meninges. Glia. 2019;67:935–949. doi: 10.1002/glia.23581. PubMed DOI

Latremoliere A, Woolf CJ. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012. PubMed DOI PMC

Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 2014;13:924–935. doi: 10.1016/S1474-4422(14)70102-4. PubMed DOI

Komiya H, et al. CCR2 is localized in microglia and neurons, as well as infiltrating monocytes, in the lumbar spinal cord of ALS mice. Mol. Brain. 2020;13:64. doi: 10.1186/s13041-020-00607-3. PubMed DOI PMC

Rong Y, et al. Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury. J. Neuroinflamm. 2021;18:196. doi: 10.1186/s12974-021-02268-y. PubMed DOI PMC

Xie RG, et al. Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: Further insights into molecular, synaptic, and cellular mechanisms. Neurosci. Bull. 2018;34:13–21. doi: 10.1007/s12264-017-0106-5. PubMed DOI PMC

Chen G, et al. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int. J. Mol. Med. 2020;45:1373–1384. PubMed PMC

Milligan ED, et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 2004;20:2294–2302. doi: 10.1111/j.1460-9568.2004.03709.x. PubMed DOI

Clark AK, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. USA. 2007;104:10655–10660. doi: 10.1073/pnas.0610811104. PubMed DOI PMC

Milligan E, et al. An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur. J. Neurosci. 2005;22:2775–2782. doi: 10.1111/j.1460-9568.2005.04470.x. PubMed DOI

Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 2009;29:6945–6954. doi: 10.1523/JNEUROSCI.0828-09.2009. PubMed DOI PMC

Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Pain symptom profiles in persons with spinal cord injury. Pain Med. 2009;10:1246–1259. doi: 10.1111/j.1526-4637.2009.00713.x. PubMed DOI

Yu CG, Yezierski RP. Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res. Mol. Brain Res. 2005;138:244–255. doi: 10.1016/j.molbrainres.2005.04.013. PubMed DOI

Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005;579:200–213. doi: 10.1016/j.mrfmmm.2005.03.023. PubMed DOI

Sánchez-Carranza JN, et al. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation. Oncol. Rep. 2018;39:3007–3014. PubMed

Shanmuganathan S, Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul. Pharmacol. 2018;108:23–35. doi: 10.1016/j.vph.2018.04.005. PubMed DOI

Chen YJ, et al. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem. Biol. Interact. 2016;252:131–140. doi: 10.1016/j.cbi.2016.04.025. PubMed DOI

Knerlich-Lukoschus F, et al. Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions. J. Neurotrauma. 2011;28:619–634. doi: 10.1089/neu.2010.1652. PubMed DOI

Clark AK, Staniland AA, Malcangio M. Fractalkine/CX3CR1 signalling in chronic pain and inflammation. Curr. Pharm. Biotechnol. 2011;12:1707–1714. doi: 10.2174/138920111798357465. PubMed DOI

Clark AK, Malcangio M. Microglial signalling mechanisms: Cathepsin S and fractalkine. Exp. Neurol. 2012;234:283–292. doi: 10.1016/j.expneurol.2011.09.012. PubMed DOI

Clark AK, Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell Neurosci. 2014;8:121. doi: 10.3389/fncel.2014.00121. PubMed DOI PMC

Ericson AC, Blomqvist A, Craig AD, Ottersen OP, Broman J. Evidence for glutamate as neurotransmitter in trigemino-and spinothalamic tract terminals in the nucleus submedius of cats. Eur. J. Neurosci. 1995;7:305–317. doi: 10.1111/j.1460-9568.1995.tb01066.x. PubMed DOI

Tsuda M, Koga K, Chen T, Zhuo M. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J. Neurochem. 2017;141:486–498. doi: 10.1111/jnc.14001. PubMed DOI

Ceprian M, Fulton D. Glial cell AMPA receptors in nervous system health, injury and disease. Int. J. Mol. Sci. 2019;20:2450. doi: 10.3390/ijms20102450. PubMed DOI PMC

Noda M, Nakanishi H, Nabekura J, Akaike N. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 2000;20:251–258. doi: 10.1523/JNEUROSCI.20-01-00251.2000. PubMed DOI PMC

Liang J, et al. Glutamate induces neurotrophic factor production from microglia via protein kinase C pathway. Brain Res. 2010;1322:8–23. doi: 10.1016/j.brainres.2010.01.083. PubMed DOI

Sánchez-Melgar A, Albasanz JL, Griñán-Ferré C, Pallàs M, Martín M. Adenosine and metabotropic glutamate receptors are present in blood serum and exosomes from SAMP8 mice: Modulation by aging and resveratrol. Cells. 2020;9:1628. doi: 10.3390/cells9071628. PubMed DOI PMC

Sheng N, et al. 4,5 caffeoylquinic acid and scutellarin, identified by integrated metabolomics and proteomics approach as the active ingredients of Dengzhan Shengmai, act against chronic cerebral hypoperfusion by regulating glutamatergic and GABAergic synapses. Pharmacol. Res. 2020;152:104636. doi: 10.1016/j.phrs.2020.104636. PubMed DOI

Ramaiah SK. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem. Toxicol. 2007;45:1551–1557. doi: 10.1016/j.fct.2007.06.007. PubMed DOI

Kobayashi A, Suzuki Y, Sugai S. Specificity of transaminase activities in the prediction of drug-induced hepatotoxicity. J. Toxicol. Sci. 2020;45:515–537. doi: 10.2131/jts.45.515. PubMed DOI

Stonard MD. Assessment of renal function and damage in animal species. A review of the current approach of the academic, governmental and industrial institutions represented by the Animal Clinical Chemistry Association. J. Appl. Toxicol. 1990;10:267–274. doi: 10.1002/jat.2550100407. PubMed DOI

Bovee KC. Renal function and laboratory evaluation. Toxicol. Pathol. 1986;14:26–36. doi: 10.1177/019262338601400104. PubMed DOI

Meucci O, Fatatis A, Simen AA, Miller RJ. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA. 2000;97:8075–8080. doi: 10.1073/pnas.090017497. PubMed DOI PMC

Ragozzino D, et al. Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J. Neurosci. 2006;26:10488–10498. doi: 10.1523/JNEUROSCI.3192-06.2006. PubMed DOI PMC

Goesling J, Clauw DJ, Hassett AL. Pain and depression: An integrative review of neurobiological and psychological factors. Curr. Psychiatry Rep. 2013;15:421. doi: 10.1007/s11920-013-0421-0. PubMed DOI

Miller LR, Cano A. Comorbid chronic pain and depression: Who is at risk? J. Pain. 2009;2009(10):619–627. doi: 10.1016/j.jpain.2008.12.007. PubMed DOI

Joshi K, Parrish A, Grunz-Borgmann EA, Gerkovich M, Folk WR. Toxicology studies of aqueous-alcohol extracts of Harpagophytum procumbens subsp. procumbens (Burch.) DC.Ex Meisn. (Pedaliaceae) in female and male rats. BMC Complement Med. Ther. 2020;20:9. doi: 10.1186/s12906-019-2789-9. PubMed DOI PMC

Juybari KB, et al. Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol. Teratol. 2020;81:106905. doi: 10.1016/j.ntt.2020.106905. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...