Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36056079
PubMed Central
PMC9440260
DOI
10.1038/s41598-022-19109-4
PII: 10.1038/s41598-022-19109-4
Knihovny.cz E-zdroje
- MeSH
- glióza komplikace etiologie MeSH
- hyperalgezie komplikace etiologie MeSH
- mícha metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední ICR MeSH
- myši MeSH
- neuralgie * komplikace etiologie MeSH
- poranění míchy * komplikace farmakoterapie metabolismus MeSH
- Vitis * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
More than half of spinal cord injury (SCI) patients develop central neuropathic pain (CNP), which is largely refractory to current treatments. Considering the preclinical evidence showing that polyphenolic compounds may exert antinociceptive effects, the present work aimed to study preventive effects on SCI-induced CNP development by repeated administration of two vegetal polyphenolic extracts: grape stalk extract (GSE) and coffee extract (CE). Thermal hyperalgesia and mechanical allodynia were evaluated at 7, 14 and 21 days postinjury. Then, gliosis, ERK phosphorylation and the expression of CCL2 and CX3CL1 chemokines and their receptors, CCR2 and CX3CR1, were analyzed in the spinal cord. Gliosis and CX3CL1/CX3CR1 expression were also analyzed in the anterior cingulate cortex (ACC) and periaqueductal gray matter (PAG) since they are supraspinal structures involved in pain perception and modulation. GSE and CE treatments modulated pain behaviors accompanied by reduced gliosis in the spinal cord and both treatments modulated neuron-glia crosstalk-related biomolecules expression. Moreover, both extracts attenuated astrogliosis in the ACC and PAG as well as microgliosis in the ACC with an increased M2 subpopulation of microglial cells in the PAG. Finally, GSE and CE prevented CX3CL1/CX3CR1 upregulation in the PAG, and modulated their expression in ACC. These findings suggest that repeated administrations of either GSE or CE after SCI may be suitable pharmacologic strategies to attenuate SCI-induced CNP development by means of spinal and supraspinal neuroinflammation modulation.
Zobrazit více v PubMed
Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain. 2017;21:29–44. doi: 10.1002/ejp.905. PubMed DOI
Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003;103:249–257. doi: 10.1016/S0304-3959(02)00452-9. PubMed DOI
Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: A systematic review. J. Rehabil. Res. Dev. 2009;46:13–29. doi: 10.1682/JRRD.2008.04.0053. PubMed DOI
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat. Rev. Dis. Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18. PubMed DOI
Colloca L, et al. Neuropathic pain. Nat. Rev. Dis. Primers. 2017;3:17002. doi: 10.1038/nrdp.2017.2. PubMed DOI PMC
Gwak YS, Hulsebosch CE, Leem JW. Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast. 2017;2017:2480689. doi: 10.1155/2017/2480689. PubMed DOI PMC
Attal N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev. Neurol. 2019;175:46–50. doi: 10.1016/j.neurol.2018.08.005. PubMed DOI
Boadas-Vaello P, Vela JM, Verdu E. New pharmacological approaches using polyphenols on the physiopathology of neuropathic pain. Curr. Drug Targets. 2017;18:160–173. doi: 10.2174/1389450117666160527142423. PubMed DOI
Wang Y, et al. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J. Neuroinflamm. 2020;17:311. doi: 10.1186/s12974-020-01991-2. PubMed DOI PMC
Limcharoen T, et al. Improved antiallodynic, antihyperalgesic and anti-inflammatory response achieved through potential prodrug of curcumin, curcumin diethyl diglutarate in a mouse model of neuropathic pain. Eur. J. Pharmacol. 2021;899:174008. doi: 10.1016/j.ejphar.2021.174008. PubMed DOI
Song Y, et al. Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway. Life Sci. 2013;92:1215–1221. doi: 10.1016/j.lfs.2013.05.007. PubMed DOI
Tian F, Xu LH, Zhao W, Tian LJ, Ji XL. The neuroprotective mechanism of puerarin treatment of acute spinal cord injury in rats. Neurosci. Lett. 2013;543:64–68. doi: 10.1016/j.neulet.2013.03.039. PubMed DOI
Zhang D, et al. The neuroprotective effect of puerarin in acute spinal cord injury rats. Cell Physiol. Biochem. 2016;39:1152–1164. doi: 10.1159/000447822. PubMed DOI
Wang X, Wang YY, Zhang LL, Li GT, Zhang HT. Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2876–2887. PubMed
Hassler SN, Johnson KM, Hulsebosch CE. Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J. Neurochem. 2014;131:413–417. doi: 10.1111/jnc.12830. PubMed DOI PMC
Renno WM, et al. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and chronically injured spinal cord of adult rats. Neuropharmacology. 2014;77:100–119. doi: 10.1016/j.neuropharm.2013.09.013. PubMed DOI
Álvarez-Pérez B, et al. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur. J. Pain. 2016;20:341–352. doi: 10.1002/ejp.722. PubMed DOI
Ma L, Mu Y, Zhang Z, Sun Q. Eugenol promotes functional recovery and alleviates inflammation, oxidative stress, and neural apoptosis in a rat model of spinal cord injury. Restor. Neurol. Neurosci. 2018;36:659–668. PubMed
Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int. J. Mol Sci. 2010;11:622–646. doi: 10.3390/ijms11020622. PubMed DOI PMC
Król K, Gantner M, Tatarak A, Hallmann E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur. Food Res. Technol. 2020;246:33–39. doi: 10.1007/s00217-019-03388-9. DOI
Lindia JA, McGowan E, Jochnowitz N, Abbadie C. Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J. Pain. 2005;6:434–438. doi: 10.1016/j.jpain.2005.02.001. PubMed DOI
Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–159. doi: 10.1016/j.pain.2004.12.022. PubMed DOI
Thacker MA, et al. CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur. J. Pain. 2009;13:263–272. doi: 10.1016/j.ejpain.2008.04.017. PubMed DOI
Gao YJ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci. 2009;29:4096–4108. doi: 10.1523/JNEUROSCI.3623-08.2009. PubMed DOI PMC
Singleton, V.L., Orthofer, R. & Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods Enzymology, Vol. 299, 152–178.
Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–110. doi: 10.1016/0304-3959(83)90201-4. PubMed DOI
Castany S, et al. Repeated sigma-1 receptor antagonist MR309 administration modulates central neuropathic pain development after spinal cord injury in mice. Front. Pharmacol. 2019;10:222. doi: 10.3389/fphar.2019.00222. PubMed DOI PMC
Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci. Rep. 2018;8:3873. doi: 10.1038/s41598-018-22217-9. PubMed DOI PMC
Basso DM, et al. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma. 2006;23:635–659. doi: 10.1089/neu.2006.23.635. PubMed DOI
Dixon WJ. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 1980;20:441–462. doi: 10.1146/annurev.pa.20.040180.002301. PubMed DOI
Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI
De Martino C, Zamboni L. Silver methenamine stain for electron microscopy. J. Ultrastruct. Res. 1967;19:273–282. doi: 10.1016/S0022-5320(67)80221-1. PubMed DOI
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press; 1997.
Morton DB, Griffiths PH. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet. Rec. 1985;116:431–436. doi: 10.1136/vr.116.16.431. PubMed DOI
Hall BJ, et al. Spinal cord injuries containing asymmetrical damage in the ventrolateral funiculus is associated with a higher incidence of at-level allodynia. J. Pain. 2010;11:864–875. doi: 10.1016/j.jpain.2009.12.008. PubMed DOI PMC
Knerlich-Lukoschus F, et al. Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. J. Neurotrauma. 2008;25:427–448. doi: 10.1089/neu.2007.0431. PubMed DOI
Batista CM, et al. Characterization of traumatic spinal cord injury model in relation to neuropathic pain in the rat. Somatosens Mot. Res. 2019;36:14–23. doi: 10.1080/08990220.2018.1563537. PubMed DOI
Trevisan G, et al. Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2014;387:679–689. doi: 10.1007/s00210-014-0978-0. PubMed DOI
Quiñonez-Bastidas GN, et al. Antinociceptive effect of (−)-epicatechin in inflammatory and neuropathic pain in rats. Behav. Pharmacol. 2018;29:270–279. doi: 10.1097/FBP.0000000000000320. PubMed DOI
Kaur S, Muthuraman A. Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicol. Rep. 2019;6:505–513. doi: 10.1016/j.toxrep.2019.06.001. PubMed DOI PMC
Bagdas D, Cinkilic N, Ozboluk HY, Ozyigit MO, Gurun MS. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J. Nat. Med. 2013;67:698–704. doi: 10.1007/s11418-012-0726-z. PubMed DOI
Hara K, et al. Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur. J. Pharmacol. 2014;723:459–464. doi: 10.1016/j.ejphar.2013.10.046. PubMed DOI
Bagdas D, Ozboluk HY, Cinkilic N, Gurun MS. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J. Med. Food. 2014;17:730–732. doi: 10.1089/jmf.2013.2966. PubMed DOI
Semaoui R, et al. Infusion of aerial parts of Salvia chudaei Batt. & Trab. from Algeria: Chemical, toxicological and bioactivities characterization. J. Ethnopharmacol. 2021;280:114455. doi: 10.1016/j.jep.2021.114455. PubMed DOI
Yang YH, Wang Z, Zheng J, Wang R. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol. Med. Rep. 2015;12:3017–3024. doi: 10.3892/mmr.2015.3738. PubMed DOI
Park CS, et al. Gallic acid attenuates blood-spinal cord barrier disruption by inhibiting Jmjd3 expression and activation after spinal cord injury. Neurobiol. Dis. 2020;145:105077. doi: 10.1016/j.nbd.2020.105077. PubMed DOI
Park CS, et al. Protocatechuic acid improves functional recovery after spinal cord injury by attenuating blood-spinal cord barrier disruption and hemorrhage in rats. Neurochem. Int. 2019;124:181–192. doi: 10.1016/j.neuint.2019.01.013. PubMed DOI
Chen D, et al. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF-κB and p38 signaling pathway anti-inflammatory activity. Mol. Med. Rep. 2018;17:1340–1346. PubMed
Liu YL, et al. Gallic acid attenuated LPS-induced neuroinflammation: Protein aggregation and necroptosis. Mol. Neurobiol. 2020;57:96–104. doi: 10.1007/s12035-019-01759-7. PubMed DOI
Wang HY, et al. Protocatechuic acid inhibits inflammatory responses in LPS-stimulated BV2 microglia via NF-κB and MAPKs signaling pathways. Neurochem. Res. 2015;40:1655–1660. doi: 10.1007/s11064-015-1646-6. PubMed DOI
Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J. Neuroimmunol. 2020;341:577164. doi: 10.1016/j.jneuroim.2020.577164. PubMed DOI
Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 2014;63:81–90. doi: 10.1007/s00011-013-0674-4. PubMed DOI
Kim M, Choi SY, Lee P, Hur J. Neochlorogenic acid inhibits lipopolysaccharide-induced activation and pro-inflammatory responses in BV2 microglial cells. Neurochem. Res. 2015;40:1792–1798. doi: 10.1007/s11064-015-1659-1. PubMed DOI
Zhu YL, et al. Neuroprotective effects of Astilbin on MPTP-induced Parkinson's disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int. Immunopharmacol. 2019;66:19–27. doi: 10.1016/j.intimp.2018.11.004. PubMed DOI
Kho AR, et al. Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. Int. J. Mol. Sci. 2018;19:1420. doi: 10.3390/ijms19051420. PubMed DOI PMC
He Y, Tan D, Mi Y, Zhou Q, Ji S. Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food Funct. 2017;8:2275–2282. doi: 10.1039/C6FO01823H. PubMed DOI
Ettcheto M, et al. Epigallocatechin-3-gallate (EGCG) improves cognitive deficits aggravated by an obesogenic diet through modulation of unfolded protein response in APPswe/PS1dE9 mice. Mol. Neurobiol. 2020;57:1814–1827. doi: 10.1007/s12035-019-01849-6. PubMed DOI
Grabert K, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 2016;19:504–516. doi: 10.1038/nn.4222. PubMed DOI PMC
Dando SJ, Kazanis R, Chinnery HR, McMenamin PG. Regional and functional heterogeneity of antigen presenting cells in the mouse brain and meninges. Glia. 2019;67:935–949. doi: 10.1002/glia.23581. PubMed DOI
Latremoliere A, Woolf CJ. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012. PubMed DOI PMC
Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 2014;13:924–935. doi: 10.1016/S1474-4422(14)70102-4. PubMed DOI
Komiya H, et al. CCR2 is localized in microglia and neurons, as well as infiltrating monocytes, in the lumbar spinal cord of ALS mice. Mol. Brain. 2020;13:64. doi: 10.1186/s13041-020-00607-3. PubMed DOI PMC
Rong Y, et al. Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury. J. Neuroinflamm. 2021;18:196. doi: 10.1186/s12974-021-02268-y. PubMed DOI PMC
Xie RG, et al. Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: Further insights into molecular, synaptic, and cellular mechanisms. Neurosci. Bull. 2018;34:13–21. doi: 10.1007/s12264-017-0106-5. PubMed DOI PMC
Chen G, et al. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int. J. Mol. Med. 2020;45:1373–1384. PubMed PMC
Milligan ED, et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 2004;20:2294–2302. doi: 10.1111/j.1460-9568.2004.03709.x. PubMed DOI
Clark AK, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. USA. 2007;104:10655–10660. doi: 10.1073/pnas.0610811104. PubMed DOI PMC
Milligan E, et al. An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur. J. Neurosci. 2005;22:2775–2782. doi: 10.1111/j.1460-9568.2005.04470.x. PubMed DOI
Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 2009;29:6945–6954. doi: 10.1523/JNEUROSCI.0828-09.2009. PubMed DOI PMC
Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Pain symptom profiles in persons with spinal cord injury. Pain Med. 2009;10:1246–1259. doi: 10.1111/j.1526-4637.2009.00713.x. PubMed DOI
Yu CG, Yezierski RP. Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res. Mol. Brain Res. 2005;138:244–255. doi: 10.1016/j.molbrainres.2005.04.013. PubMed DOI
Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005;579:200–213. doi: 10.1016/j.mrfmmm.2005.03.023. PubMed DOI
Sánchez-Carranza JN, et al. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation. Oncol. Rep. 2018;39:3007–3014. PubMed
Shanmuganathan S, Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul. Pharmacol. 2018;108:23–35. doi: 10.1016/j.vph.2018.04.005. PubMed DOI
Chen YJ, et al. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem. Biol. Interact. 2016;252:131–140. doi: 10.1016/j.cbi.2016.04.025. PubMed DOI
Knerlich-Lukoschus F, et al. Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions. J. Neurotrauma. 2011;28:619–634. doi: 10.1089/neu.2010.1652. PubMed DOI
Clark AK, Staniland AA, Malcangio M. Fractalkine/CX3CR1 signalling in chronic pain and inflammation. Curr. Pharm. Biotechnol. 2011;12:1707–1714. doi: 10.2174/138920111798357465. PubMed DOI
Clark AK, Malcangio M. Microglial signalling mechanisms: Cathepsin S and fractalkine. Exp. Neurol. 2012;234:283–292. doi: 10.1016/j.expneurol.2011.09.012. PubMed DOI
Clark AK, Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell Neurosci. 2014;8:121. doi: 10.3389/fncel.2014.00121. PubMed DOI PMC
Ericson AC, Blomqvist A, Craig AD, Ottersen OP, Broman J. Evidence for glutamate as neurotransmitter in trigemino-and spinothalamic tract terminals in the nucleus submedius of cats. Eur. J. Neurosci. 1995;7:305–317. doi: 10.1111/j.1460-9568.1995.tb01066.x. PubMed DOI
Tsuda M, Koga K, Chen T, Zhuo M. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J. Neurochem. 2017;141:486–498. doi: 10.1111/jnc.14001. PubMed DOI
Ceprian M, Fulton D. Glial cell AMPA receptors in nervous system health, injury and disease. Int. J. Mol. Sci. 2019;20:2450. doi: 10.3390/ijms20102450. PubMed DOI PMC
Noda M, Nakanishi H, Nabekura J, Akaike N. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 2000;20:251–258. doi: 10.1523/JNEUROSCI.20-01-00251.2000. PubMed DOI PMC
Liang J, et al. Glutamate induces neurotrophic factor production from microglia via protein kinase C pathway. Brain Res. 2010;1322:8–23. doi: 10.1016/j.brainres.2010.01.083. PubMed DOI
Sánchez-Melgar A, Albasanz JL, Griñán-Ferré C, Pallàs M, Martín M. Adenosine and metabotropic glutamate receptors are present in blood serum and exosomes from SAMP8 mice: Modulation by aging and resveratrol. Cells. 2020;9:1628. doi: 10.3390/cells9071628. PubMed DOI PMC
Sheng N, et al. 4,5 caffeoylquinic acid and scutellarin, identified by integrated metabolomics and proteomics approach as the active ingredients of Dengzhan Shengmai, act against chronic cerebral hypoperfusion by regulating glutamatergic and GABAergic synapses. Pharmacol. Res. 2020;152:104636. doi: 10.1016/j.phrs.2020.104636. PubMed DOI
Ramaiah SK. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem. Toxicol. 2007;45:1551–1557. doi: 10.1016/j.fct.2007.06.007. PubMed DOI
Kobayashi A, Suzuki Y, Sugai S. Specificity of transaminase activities in the prediction of drug-induced hepatotoxicity. J. Toxicol. Sci. 2020;45:515–537. doi: 10.2131/jts.45.515. PubMed DOI
Stonard MD. Assessment of renal function and damage in animal species. A review of the current approach of the academic, governmental and industrial institutions represented by the Animal Clinical Chemistry Association. J. Appl. Toxicol. 1990;10:267–274. doi: 10.1002/jat.2550100407. PubMed DOI
Bovee KC. Renal function and laboratory evaluation. Toxicol. Pathol. 1986;14:26–36. doi: 10.1177/019262338601400104. PubMed DOI
Meucci O, Fatatis A, Simen AA, Miller RJ. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA. 2000;97:8075–8080. doi: 10.1073/pnas.090017497. PubMed DOI PMC
Ragozzino D, et al. Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J. Neurosci. 2006;26:10488–10498. doi: 10.1523/JNEUROSCI.3192-06.2006. PubMed DOI PMC
Goesling J, Clauw DJ, Hassett AL. Pain and depression: An integrative review of neurobiological and psychological factors. Curr. Psychiatry Rep. 2013;15:421. doi: 10.1007/s11920-013-0421-0. PubMed DOI
Miller LR, Cano A. Comorbid chronic pain and depression: Who is at risk? J. Pain. 2009;2009(10):619–627. doi: 10.1016/j.jpain.2008.12.007. PubMed DOI
Joshi K, Parrish A, Grunz-Borgmann EA, Gerkovich M, Folk WR. Toxicology studies of aqueous-alcohol extracts of Harpagophytum procumbens subsp. procumbens (Burch.) DC.Ex Meisn. (Pedaliaceae) in female and male rats. BMC Complement Med. Ther. 2020;20:9. doi: 10.1186/s12906-019-2789-9. PubMed DOI PMC
Juybari KB, et al. Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol. Teratol. 2020;81:106905. doi: 10.1016/j.ntt.2020.106905. PubMed DOI