3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36200526
PubMed Central
PMC9951178
DOI
10.1021/acs.analchem.2c03191
Knihovny.cz E-zdroje
- MeSH
- 3D tisk MeSH
- chlorid draselný MeSH
- ethanol MeSH
- mikrofluidika * MeSH
- pitná voda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid draselný MeSH
- ethanol MeSH
- pitná voda * MeSH
Fused deposition modeling 3D printing (FDM-3DP) employing electrically conductive filaments has recently been recognized as an exceptionally attractive tool for the manufacture of sensing devices. However, capabilities of 3DP electrodes to measure electric properties of materials have not yet been explored. To bridge this gap, we employ bimaterial FDM-3DP combining electrically conductive and insulating filaments to build an integrated platform for sensing conductivity and permittivity of liquids by impedance measurements. The functionality of the device is demonstrated by measuring conductivity of aqueous potassium chloride solution and bottled water samples and permittivity of water, ethanol, and their mixtures. We further implement an original idea of applying impedance measurements to investigate dimensions of 3DP channels as base structures of microfluidic devices, complemented by their optical microscopic analysis. We demonstrate that FDM-3DP allows the manufacture of microchannels of width down to 80 μm.
Zobrazit více v PubMed
Kwok S. W.; Goh K. H. H.; Tan Z. D.; Tan S. T. M.; Tjiu W. W.; Soh J. Y.; Ng Z. J. G.; Chan Y. Z.; Hui H. K.; Goh K. E. J. Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today 2017, 9, 167–175. 10.1016/j.apmt.2017.07.001. DOI
Kennedy Z. C.; Christ J. F.; Evans K. A.; Arey B. W.; Sweet L. E.; Warner M. G.; Erikson R. L.; Barrett C. A. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform. Nanoscale 2017, 9, 5458–5466. 10.1039/c7nr00617a. PubMed DOI
Kalsoom U.; Waheed S.; Paull B. Fabrication of Humidity Sensor Using 3D Printable Polymer Composite Containing Boron-Doped Diamonds and LiCl. ACS Appl. Mater. Interfaces 2020, 12, 4962–4969. 10.1021/acsami.9b22519. PubMed DOI
Dawoud M.; Taha I.; Ebeid S. J. Strain sensing behaviour of 3D printed carbon black filled ABS. J. Manuf. Process. 2018, 35, 337–342. 10.1016/j.jmapro.2018.08.012. DOI
Kim K.; Park J.; Suh J.-h.; Kim M.; Jeong Y.; Park I. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 2017, 263, 493–500. 10.1016/j.sna.2017.07.020. DOI
Rymansaib Z.; Iravani P.; Emslie E.; Medvidović-Kosanović M.; Sak-Bosnar M.; Verdejo R.; Marken F. All-Polystyrene 3D-Printed Electrochemical Device with Embedded Carbon Nanofiber-Graphite-Polystyrene Composite Conductor. Electroanal 2016, 28, 1517–1523. 10.1002/elan.201600017. DOI
Cardoso R. M.; Mendonça D. M. H.; Silva W. P.; Silva M. N. T.; Nossol E.; da Silva R. A. B.; Richter E. M.; Muñoz R. A. A. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors. Anal. Chim. Acta 2018, 1033, 49–57. 10.1016/j.aca.2018.06.021. PubMed DOI
O’Neil G. D.; Ahmed S.; Halloran K.; Janus J. N.; Rodriguez A.; Rodriguez I. M. T. Single-step fabrication of electrochemical flow cells utilizing multi-material 3D printing. Electrochem. Commun. 2019, 99, 56–60. 10.1016/j.elecom.2018.12.006. DOI
Vaněčková E.; Bousa M.; Vivaldi F.; Gal M.; Rathousky J.; Kolivoska V.; Sebechlebska T. UV/VIS spectroelectrochemistry with 3D printed electrodes. J. Electroanal. Chem. 2020, 857, 113760.10.1016/j.jelechem.2019.113760. DOI
Vaněčková E.; Bousa M.; Novakova-Lachmanova S.; Rathousky J.; Gal M.; Sebechlebska T.; Kolivoska V. 3D printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J. Electroanal. Chem. 2020, 857, 113745.10.1016/j.jelechem.2019.113745. DOI
Vaněčková E.; Bousa M.; Sokolova R.; Moreno-Garcia P.; Broekmann P.; Shestivska V.; Rathousky J.; Gal M.; Sebechlebska T.; Kolivoska V. Copper electroplating of 3D printed composite electrodes. J. Electroanal. Chem. 2020, 858, 113763.10.1016/j.jelechem.2019.113763. DOI
Walters J. G.; Ahmed S.; Terrero Rodríguez I. M.; O’Neil G. D. Trace analysis of heavy metals (Cd, Pb, Hg) using native and modified 3D printed graphene/poly(lactic acid) composite electrodes. Electroanal 2020, 32, 859–866. 10.1002/elan.201900658. DOI
João A. F.; Squissato A. L.; Richter E. M.; Muñoz R. A. A. Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode. Anal. Bioanal. Chem. 2020, 412, 2755–2762. 10.1007/s00216-020-02513-y. PubMed DOI
Foster C. W.; Elbardisy H. M.; Down M. P.; Keefe E. M.; Smith G. C.; Banks C. E. Additively manufactured graphitic electrochemical sensing platforms. Chem. Eng. J. 2020, 381, 122343.10.1016/j.cej.2019.122343. DOI
Rocha D. P.; Squissato A. L.; da Silva S. M.; Richter E. M.; Munoz R. A. A. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim. Acta 2020, 335, 135688.10.1016/j.electacta.2020.135688. DOI
Choinska M.; Hrdlička V.; Šestáková I.; Navrátil T. Voltammetric determination of heavy metals in honey bee venom using hanging mercury drop electrode and PLA/carbon conductive filament for 3D printer. Monatsh. Chem.- Chem. Mont. 2021, 152, 35–41. 10.1007/s00706-020-02725-z. PubMed DOI PMC
Escobar J. G.; Vaneckova E.; Novakova-Lachmanova S.; Vivaldi F.; Heyda J.; Kubista J.; Shestivska V.; Spanel P.; Schwarzova-Peckova K.; Rathousky J.; Sebechlebska T.; Kolivoska V. The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine. Electrochim. Acta 2020, 360, 136984.10.1016/j.electacta.2020.136984. PubMed DOI PMC
Cardoso R. M.; Silva P. R. L.; Lima A. P.; Rocha D. P.; Oliveira T. C.; do Prado T. M.; Fava E. L.; Fatibello-Filho O.; Richter E. M.; Muñoz R. A. A. 3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sens. Actuators, B 2020, 307, 127621.10.1016/j.snb.2019.127621. DOI
López Marzo A. M.; Mayorga-Martinez C. C.; Pumera M. 3D-printed graphene direct electron transfer enzyme biosensors. Biosens. Bioelectron. 2020, 151, 111980.10.1016/j.bios.2019.111980. PubMed DOI
Rocha R. G.; Cardoso R. M.; Zambiazi P. J.; Castro S. V. F.; Ferraz T. V. B.; Aparecido G. d. O.; Bonacin J. A.; Munoz R. A. A.; Richter E. M. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Anal. Chim. Acta 2020, 1132, 1–9. 10.1016/j.aca.2020.07.028. PubMed DOI
Richter E. M.; Rocha D. P.; Cardoso R. M.; Keefe E. M.; Foster C. W.; Munoz R. A. A.; Banks C. E. Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Anal. Chem. 2019, 91, 12844–12851. 10.1021/acs.analchem.9b02573. PubMed DOI
Palenzuela C. L. M.; Novotny F.; Krupicka P.; Sofer Z.; Pumera M. 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Anal. Chem. 2018, 90, 5753–5757. 10.1021/acs.analchem.8b00083. PubMed DOI
Cardoso R. M.; Castro S. V. F.; Silva M. N. T.; Lima A. P.; Santana M. H. P.; Nossol E.; Silva R. A. B.; Richter E. M.; Paixão T. R. L. C.; Muñoz R. A. A. 3D-printed flexible device combining sampling and detection of explosives. Sens. Actuators, B 2019, 292, 308–313. 10.1016/j.snb.2019.04.126. DOI
Rabboh F. M.; O’Neil G. D. Voltammetric pH measurements in unadulterated foodstuffs, urine, and serum with 3D-Printed graphene/poly(lactic acid) electrodes. Anal. Chem. 2020, 92, 14999–15006. 10.1021/acs.analchem.0c02902. PubMed DOI
Guima K.-E.; Souza V. H. R.; Martins C. A. Insulating 3D-printed templates are turned into metallic electrodes: application as electrodes for glycerol electrooxidation. RSC Adv. 2019, 9, 15158–15161. 10.1039/c9ra01436e. PubMed DOI PMC
Hudkins J. R.; Wheeler D. G.; Peña B.; Berlinguette C. P. Rapid prototyping of electrolyzer flow field plates. Energy Environ. Sci. 2016, 9, 3417–3423. 10.1039/c6ee01997h. DOI
Vaneckova E.; Bousa M.; Shestivska V.; Kubista J.; Moreno-Garcia P.; Broekmann P.; Rahaman M.; Zlamal M.; Heyda J.; Bernauer M.; Sebechlebska T.; Kolivoska V. Electrochemical Reduction of Carbon Dioxide on 3D Printed Electrodes. Chemelectrochem 2021, 8, 2137–2149. 10.1002/celc.202100261. DOI
Canali C.; Heiskanen A.; Muhammad H. B.; Dufva M.; Emnéus J.. An innovative EIS based 3D printed conductometer. 15th International Conference on Electroanalysis, 2014.
Canali C.; Larsen L. B.; Martinsen O. G.; Heiskanen A. Conductometric analysis in bio-applications: A universal impedance spectroscopy-based approach using modified electrodes. Sens. Actuators, B 2015, 212, 544–550. 10.1016/j.snb.2015.02.029. DOI
Banna M.; Bera K.; Sochol R.; Lin L.; Najjaran H.; Sadiq R.; Hoorfar M. 3D Printing-Based Integrated Water Quality Sensing System. Sensors 2017, 17, 1336.10.3390/s17061336. PubMed DOI PMC
Banna M. H.; Najjaran H.; Sadiq R.; Imran S. A.; Rodriguez M. J.; Hoorfar M. Miniaturized water quality monitoring pH and conductivity sensors. Sens. Actuators, B 2014, 193, 434–441. 10.1016/j.snb.2013.12.002. DOI
Duarte L. C.; Chagas C. L. S.; Ribeiro L. E. B.; Coltro W. K. T. 3D printing of microfluidic devices with embedded sensing electrodes for generating and measuring the size of microdroplets based on contactless conductivity detection. Sens. Actuators, B 2017, 251, 427–432. 10.1016/j.snb.2017.05.011. DOI
Duarte L. C.; Figueredo F.; Ribeiro L. E. B.; Cortón E.; Coltro W. K. T. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Anal. Chim. Acta 2019, 1071, 36–43. 10.1016/j.aca.2019.04.045. PubMed DOI
Radonic V.; Birgermajer S.; Kitic G. Microfluidic EBG sensor based on phase-shift method realized using 3D printing technology. Sensors 2017, 17, 892.10.3390/s17040892. PubMed DOI PMC
Nielsen A. V.; Beauchamp M. J.; Nordin G. P.; Woolley A. T. 3D Printed Microfluidics. Annu. Rev. Anal. Chem. 2020, 13, 45–65. 10.1146/annurev-anchem-091619-102649. PubMed DOI PMC
Balakrishnan H. K.; Badar F.; Doeven E. H.; Novak J. I.; Merenda A.; Dumée L. F.; Loy J.; Guijt R. M. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Anal. Chem. 2021, 93, 350–366. 10.1021/acs.analchem.0c04672. PubMed DOI
Mehta V.; Rath S. N. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021, 4, 311–343. 10.1007/s42242-020-00112-5. DOI
Gong H.; Bickham B. P.; Woolley A. T.; Nordin G. P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 2017, 17, 2899–2909. 10.1039/c7lc00644f. PubMed DOI PMC
Gong H.; Woolley A. T.; Nordin G. P. 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab Chip 2018, 18, 639–647. 10.1039/c7lc01113j. PubMed DOI PMC
Kim Y. T.; Bohjanen S.; Bhattacharjee N.; Folch A. Partitioning of hydrogels in 3D-printed microchannels. Lab Chip 2019, 19, 3086–3093. 10.1039/c9lc00535h. PubMed DOI PMC
van der Linden P. J. E. M.; Popov A. M.; Pontoni D. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer. Lab Chip 2020, 20, 4128–4140. 10.1039/d0lc00767f. PubMed DOI
Bazaz S. R.; Rouhi O.; Raoufi M. A.; Ejeian F.; Asadnia M.; Jin D.; Warkiani M. E. 3D printing of inertial microfluidic devices. Sci. Rep. 2020, 10, 5929.10.1038/s41598-020-62569-9. PubMed DOI PMC
Costa B. M. C.; Coelho A. G.; Beauchamp M. J.; Nielsen J. B.; Nordin G. P.; Woolley A. T.; da Silva J. A. F. 3D-printed microchip electrophoresis device containing spiral electrodes for integrated capacitively coupled contactless conductivity detection. Anal. Bioanal. Chem. 2021, 414, 545–550. 10.1007/s00216-021-03494-2. PubMed DOI PMC
Weigel N.; Männel M. J.; Thiele J. Flexible Materials for High-Resolution 3D Printing of Microfluidic Devices with Integrated Droplet Size Regulation. ACS Appl. Mater. Interfaces 2021, 13, 31086–31101. 10.1021/acsami.1c05547. PubMed DOI PMC
He Y.; Gao Q.; Wu W.-B.; Nie J.; Fu J.-Z. 3D printed paper-based microfluidic analytical devices. Micromachines 2016, 7, 108.10.3390/mi7070108. PubMed DOI PMC
Nelson M. D.; Ramkumar N.; Gale B. K. Flexible, transparent, sub-100 μm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane. J. Micromech. Microeng. 2019, 29, 095010.10.1088/1361-6439/ab2f26. DOI
Bressan L. P. A simple procedure to produce FDM-based 3D-printed microfluidic devices with an integrated PMMA optical window. Anal. Methods 2019, 11, 1014–1020. 10.1039/C8AY02092B. DOI
Kozlov A. G.; Fadina E. A.. Analysis of planar interdigitated electrode system used in impedance measurements of liquid materials. 2017 2nd International Ural Conference on Measumerent (Uralcon), 2017; pp 294–299.
Mehta V.; Vilikkathala Sudhakaran S. V.; Rath S. N. Facile route for 3D printing of transparent PETg-based hybrid biomicrofluidic devices promoting cell adhesion. ACS Biomater. Sci. Eng. 2021, 7, 3947–3963. 10.1021/acsbiomaterials.1c00633. PubMed DOI
Shreiner R.; Pratt K. Standard reference materials: primary standards and standard reference materials for electrolytic conductivity. NIST Spec. Publ. 2004, 260, 142.
Moriyoshi T.; Ishii T.; Tamai Y.; Tado M. Static dielectric constants of water+ ethanol and water+ 2-methyl-2-propanol mixtures from 0.1 to 300 MPa at 298.15 K. J. Chem. Eng. Data 1990, 35, 17–20. 10.1021/je00059a005. DOI
Choińska M.; Hrdlicka V.; Dejmkova H.; Fischer J.; Mika L.; Vaneckova E.; Kolivoska V.; Navratil T. Applicability of Selected 3D Printing Materials in Electrochemistry. Biosensors 2022, 12, 308.10.3390/bios12050308. PubMed DOI PMC
Poltorak L.; Rudnicki K.; Kolivoška V.; Sebechlebská T.; Krzyczmonik P.; Skrzypek S. Electrochemical study of ephedrine at the polarized liquid-liquid interface supported with a 3D printed cell. J. Hazard. Mater. 2021, 402, 123411.10.1016/j.jhazmat.2020.123411. PubMed DOI
Anciaux S. K.; Geiger M.; Bowser M. T. 3D printed micro free-flow electrophoresis device. Anal. Chem. 2016, 88, 7675–7682. 10.1021/acs.analchem.6b01573. PubMed DOI
Salentijn G. I. J.; Oomen P. E.; Grajewski M.; Verpoorte E. Fused deposition modeling 3D printing for (bio)analytical device fabrication: procedures, materials, and applications. Anal. Chem. 2017, 89, 7053–7061. 10.1021/acs.analchem.7b00828. PubMed DOI PMC
Romanov V.; Samuel R.; Chaharlang M.; Jafek A. R.; Frost A.; Gale B. K. FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal. Chem. 2018, 90, 10450–10456. 10.1021/acs.analchem.8b02356. PubMed DOI PMC
Kotz F.; Mader M.; Dellen N.; Risch P.; Kick A.; Helmer D.; Rapp B. E. Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 2020, 11, 873.10.3390/mi11090873. PubMed DOI PMC
Macdonald N. P.; Cabot J. M.; Smejkal P.; Guijt R. M.; Paull B.; Breadmore M. C. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 2017, 89, 3858–3866. 10.1021/acs.analchem.7b00136. PubMed DOI
PrintaGuide. https://printaguide.aprintapro.com/ (accessed Oct 11, 2021).
Sebechlebská T.; Neogrády P.; Valent I. A three-ions model of electrodiffusion kinetics in a nanochannel. Chem. Phys. Lett. 2016, 663, 33–39. 10.1016/j.cplett.2016.09.051. DOI
Kolivoska V.; Weiss V. U.; Kremser L.; Gas B.; Blaas D.; Kenndler E. Electrophoresis on a microfluidic chip for analysis of fluorescence-labeled human rhinovirus. Electrophoresis 2007, 28, 4734–4740. 10.1002/elps.200700397. PubMed DOI PMC
Weiss V. U.; Kolivoška V.; Kremser L.; Gaš B.; Blaas D.; Kenndler E. Virus analysis by electrophoresis on a microfluidic chip. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2007, 860, 173–179. 10.1016/j.jchromb.2007.10.026. PubMed DOI
Gál M.; Híveš J.; Sokolová R.; Hromadová M.; Kolivoška V.; Pospíšil L. Impedance study of hypoxic cells radiosensitizer etanidazole radical anion in water. Collect. Czech. Chem. Commun. 2009, 74, 1571–1581. 10.1135/cccc2009118. PubMed DOI