Voltammetric determination of heavy metals in honey bee venom using hanging mercury drop electrode and PLA/carbon conductive filament for 3D printer
Status PubMed-not-MEDLINE Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33487754
PubMed Central
PMC7811382
DOI
10.1007/s00706-020-02725-z
PII: 2725
Knihovny.cz E-zdroje
- Klíčová slova
- Anodic stripping voltammetry, Heavy metals, Honeybee venom, Mineralization, PLA filament with carbon conductive admixture (PLA-C) for 3D printer, Pen-type hanging mercury drop electrode,
- Publikační typ
- časopisecké články MeSH
A new method for determination of selected heavy metals (Cd, Pb, Cu, Zn, and Ni) in honey bee venom was developed. Heavy metals are metabolized and incorporated into bee products, including honey and honey bee venom (apitoxin). Their composition reflects contamination of "bee environment", providing information about heavy metal contamination in the neighborhood of human dwellings. Moreover, assessment of bee products contamination is relevant for medicine, as they are a tool for promising therapeutic and chemoprophylactic strategies against COVID-19 (SARS-CoV-2). Owing to the complicated matrix, the developed method consists of wet mineralization with sulfuric acid, nitric acid, under increased temperature, and pressure and subsequent repeated boiling with concentrated nitric acid. Determination of the selected metals was carried out by anodic or cathodic stripping voltammetry on two types of electrodes: pen-type hanging mercury drop electrode (HMDE) and PLA filament with carbon conductive admixture (PLA-C) for 3D printer. Contents of lead and cadmium in all analyzed bee venom samples were on the level of mg kg-1, of nickel and copper about ten times higher, and of zinc on the level of g kg-1. The results achieved using HMDE were recorded with average relative standard deviation (RSD) 5.4% (from 3.2% to 8.6%) and using PLA-C 11.8% (from 6.5% to 18.0%). The results achieved using both electrodes proved to be equivalent with statistical probability higher than 95%.
Zobrazit více v PubMed
Meier J, White J. Handbook of clinical toxicology of animal venoms and poisons. New York: Informa HealthCare; 1995.
Schumacher MJ, Tveten MS, Egen NB. J Allergy Clin Immun. 1994;93:831. doi: 10.1016/0091-6749(94)90373-5. PubMed DOI
Haberman E. Science. 1972;177:314. doi: 10.1126/science.177.4046.314. PubMed DOI
Comparative Toxicogenomics Database (2017) Adolapin. MDI Biological Laboratory and North Carolina State University. http://ctdbase.org/detail.go?type=chem&acc=C034201. Accessed 29 Aug 2020
Lima WG, Brito JCM, da Cruz Nizer WS. Phytother Res. 2020 doi: 10.1002/ptr.6872. PubMed DOI PMC
Evain L. Future of food. J Food Agric Soc. 2020;8:79.
Yang W, Hu FL, Xu XF. Toxicon. 2020;181:69. doi: 10.1016/j.toxicon.2020.04.105. PubMed DOI PMC
Kumar V, Dhanjal JK, Bhargava P, Kaul A, Wang J, Zhang H, Kaul SC, Wadhwa R, Sundar D. J Biomol Struct Dyn. 2020 doi: 10.1080/07391102.2020.1775704. PubMed DOI PMC
Männle H, Hübner J, Münstedt K. Toxicon. 2020;187:279. doi: 10.1016/j.toxicon.2020.10.004. PubMed DOI PMC
Ali H, Khan E. Toxicol Environ Chem. 2018;100:6. doi: 10.1080/02772248.2017.1413652. DOI
Brezina M, Zuman P. Polarography in medicine, biochemistry and pharmacy. New York: Interscience Publishers; 1952.
Kopanica M, Navratil T, Sestakova I, Heyrovsky M (2010) Methods for Eco-Tribo Polarograph. Polaro-Sensors, spol. s r. o., Prague, p 99
Sestakova I, Navratil T. Bioinorg Chem Appl. 2005;3:43. doi: 10.1155/BCA.2005.43. PubMed DOI PMC
Navratil T, Novakova K, Josypcuk B, Sokolova R, Sestakova I. Monatsh Chem. 2016;147:165. doi: 10.1007/s00706-015-1591-8. DOI
Sestakova I, Skalova S, Navratil T. J Electroanal Chem. 2018;821:92. doi: 10.1016/j.jelechem.2017.11.052. DOI
Navratil T, Sestakova I, Marecek V. Int J Electrochem Sci. 2011;6:6032.
Parisova M, Navratil T, Sestakova I, Jaklova Dytrtova J, Marecek V. Int J Electrochem Sci. 2013;8:27.
Novakova K, Navratil T, Sestakova I, Le MP, Vodickova H, Zamecnikova B, Sokolova R, Bulickova J, Gal M. Monatsh Chem. 2015;146:819. doi: 10.1007/s00706-014-1384-5. DOI
Sestakova I, Navratil T, Josypcuk B. Electroanalysis. 2016;28:2754. doi: 10.1002/elan.201600135. DOI
Mader P, Szakova J, Miholova D. Analusis. 1998;26:121. doi: 10.1051/analusis:1998121. DOI
Hynek D, Prasek J, Pikula J, Adam V, Hajkova P, Krejcova L, Trnkova L, Sochor J, Pohanka M, Hubalek J, Beklova M, Vrba R, Kizek R. Int J Electrochem Sci. 2011;6:5980.
Veverkova L, Hradilova S, Milde D, Panacek A, Skopalova J, Kvitek L, Petrzlova K, Zboril R. Spectrochim Acta B. 2014;102:7. doi: 10.1016/j.sab.2014.10.002. DOI
Cadkova Z, Szakova J, Miholova D, Horakova B, Kopecky O, Krivska D, Langrova I, Tlustos P. J Agric Food Chem. 2015;63:2344. doi: 10.1021/jf5058099. PubMed DOI
Mader P, Curdova E. Chem Listy. 1997;91:227.
Cizkova P, Navratil T, Sestakova I, Yosypchuk B. Electroanalysis. 2007;19:161. doi: 10.1002/elan.200603687. DOI
Navratil T, Vlckova S, Mrazova K, Novakova K, Zakharov S, Honsova S, Pelclova D (2015) Information on several interesting case reports of liquid mercury intoxication. In: XXXV Moderni Elektrochemicke Metody (Modern Electrochemical Methods XXXV), p 156
Peckova K, Barek J, Navratil T, Yosypchuk B, Zima J. Anal Lett. 2009;42:2339. doi: 10.1080/00032710903142442. DOI
Rathore M, Singh A, Pant VA. Toxicol Int. 2012;19:81. doi: 10.4103/0971-6580.97191. PubMed DOI PMC
Vaneckova E, Bousa M, Lachmanova SN, Rathousky J, Gal M, Sebechlebska T, Kolivoska V. J Electroanal Chem. 2020;857:113760. doi: 10.1016/j.jelechem.2019.113760. DOI
Vaneckova E, Bousa M, Sokolova R, Moreno-Garcia P, Broekmann P, Shestivska V, Rathousky J, Gal M, Sebechlebska T, Kolivoska V. J Electroanal Chem. 2020;858:113763. doi: 10.1016/j.jelechem.2019.113763. DOI
Vaneckova E, Bousa M, Vivaldi F, Gal M, Rathousky J, Kolivoska V, Sebechlebska T. J Electroanal Chem. 2020;857:113760. doi: 10.1016/j.jelechem.2019.113760. DOI
Navratil T, Yosypchuk B, Barek J. Chem Anal-Warsaw. 2009;54:3.
Walters JG, Ahmed S, Rodriguez IMT, O'Neil GD. Electroanalysis. 2020;32:859. doi: 10.1002/elan.201900658. DOI
Kanderal OM, Kozlowski H, Dobosz A, Swiatek-Kozlowska J, Meyer F, Fritsky IO (2005) Dalton Trans 8 PubMed
3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels
Applicability of Selected 3D Printing Materials in Electrochemistry