Toxicological effects of nanoselenium in animals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TJ04000198
Technologická Agentura České Republiky
PubMed
35710460
PubMed Central
PMC9204874
DOI
10.1186/s40104-022-00722-2
PII: 10.1186/s40104-022-00722-2
Knihovny.cz E-zdroje
- Klíčová slova
- Nanoparticles, Organism, Selenium, Toxicity, Trace minerals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The productivity and sustainability of livestock production systems are heavily influenced by animal nutrition. To maintain homeostatic balance in the body of the animal at different phases of life, the percentage of organically active minerals in livestock feed must be optimized. Selenium (Se) is a crucial trace mineral that is required for the maintenance of many functions of the body. Se nanoparticles (SeNPs) attracted considerable interest from researchers for a variety of applications a decade ago, owing to their extraordinary properties. SeNPs offer significant advantages over larger-sized materials, by having a comparatively wider surface area, increased surface energy, and high volume. Despite its benefits, SeNP also has toxic effects, therefore safety concerns must be taken for a successful application. The toxicological effects of SeNPs in animals are characterized by weight loss, and increased mortality rate. A safe-by-strategy to certify animal, human and environmental safety will contribute to an early diagnosis of all risks associated with SeNPs. This review is aimed at describing the beneficial uses and potential toxicity of SeNPs in various animals. It will also serve as a summary of different levels of SeNPs which should be added in the feed of animals for better performance.
Zobrazit více v PubMed
Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep. 2017;15:11–23. doi: 10.1016/j.btre.2017.03.002. PubMed DOI PMC
De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater. 2008;20(22):4225–4241. doi: 10.1002/adma.200703183. DOI
Wang L, Hu C, Shao L. The-antimicrobial-activity-of-nanoparticles--present-situati. Int J Nanomedicine. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Livingstone MBE, Black AE. Biomarkers of nutritional exposure and nutritional status. J Nutr. 2003;133(3):895S–920S. doi: 10.1093/jn/133.3.895S. PubMed DOI
Papp LV, Holmgren A, Khanna KK. Selenium and selenoproteins in health and disease. Antioxid Redox Signal, vol. 12. New York: Mary Ann Liebert, Inc.; 2010. p. 793–5. PubMed
Nogueira CW, Zeni G, Rocha JBT. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004;104(12):6255–6285. doi: 10.1021/cr0406559. PubMed DOI
Ikram M, Javed B, Raja NI, Mashwani Z-U-R. Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine. 2021;16:249–268. doi: 10.2147/IJN.S295053. PubMed DOI PMC
Bisht N, Phalswal P, Khanna PK. Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv Royal Soc Chem. 2022;3(3):1415–1431. doi: 10.1039/D1MA00639H. DOI
Lin X, Wang L, Zhao J, He L, Cui L, Gao Y, Chen C, Fan Y, Li B, Li YF. Nanosafety evaluation through feces: a comparison between selenium nanoparticles and selenite in rats. Nano Today. 2021;36:101010. doi: 10.1016/j.nantod.2020.101010. DOI
Lv Q, Liang X, Nong K, Gong Z, Qin T, Qin X, Wang D, Zhu Y. Advances in research on the toxicological effects of selenium. Bull Environ Contam Toxicol. 2021;106(5):715–726. doi: 10.1007/s00128-020-03094-3. PubMed DOI
Saha U, Fayiga A, Hancock D, Sonon L. Selenium in animal nutrition: deficiencies in soils and forages, requirements, supplementation and toxicity. Int J appl agric Sci. 2016;2(6):112–125. doi: 10.11648/j.ijaas.20160206.15. DOI
Mehdi Y, Hornick J-L, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18(3):3292–3311. doi: 10.3390/molecules18033292. PubMed DOI PMC
Nuttall KL. Evaluating selenium poisoning. Ann Clin Lab Sci. 2006;36:409–420. PubMed
Levander OA, Morris VC, Ferretti RJ. Comparative effects of selenium and vitamin E in lead poisoned rats. J Nutr. 1977;107(3):378–382. doi: 10.1093/jn/107.3.378. PubMed DOI
Harr JR, Muth OH. Selenium poisoning in domestic animals and its relationship to man. Clin Toxicol. 1972;5(2):175–186. doi: 10.3109/15563657208990997. PubMed DOI
Fordyce FM. Selenium deficiency and toxicity in the environment. In: Selinus O, editor. Essentials of medical geology. Dordrecht: Springer; 2013. p. 375–416. 10.1007/978-94-007-4375-5_16.
Yang H, Jia X. Safety evaluation of Se-methylselenocysteine as nutritional selenium supplement: Acute toxicity, genotoxicity and subchronic toxicity. Regul Toxicol Pharmacol. 2014;70:720–727. doi: 10.1016/j.yrtph.2014.10.014. PubMed DOI
Ohlendorf HM, Heinz GH. Selenium in Birds. In: Beyer WN, Meador JP, editors. Environmental contaminants in biota. Boca Raton: CRC Press; 2011. p. 669–702. 10.1201/b10598-22.
Hoffman DJ. Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol. 2002;57(1-2):11–26. doi: 10.1016/S0166-445X(01)00263-6. PubMed DOI
Sun H, Rathinasabapathi B, Wu B, Luo J, Pu L, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. Environ Int. 2014;69:148–158. doi: 10.1016/j.envint.2014.04.019. PubMed DOI
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts. 2017;8(2):93–104. doi: 10.1515/bmc-2017-0007. PubMed DOI
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab. 2021;32(11):916–28. doi: 10.1016/j.tem.2021.08.004. PubMed DOI PMC
Abul-Hassan KS, Lehnert BE, Guant L, Walmsley R. Abnormal DNA repair in selenium-treated human cells. Mutat Res Toxicol Environ Mutagen. 2004;565(1):45–51. doi: 10.1016/j.mrgentox.2004.09.004. PubMed DOI
Ali W, Zhang H, Junaid M, Mao K, Xu N, Rasool A, et al. Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review. Crit Rev Environ Sci Technol. 2020;51(7):704–50. doi: 10.1080/10643389.2020.1740042. DOI
Baregamian N, Song J, Papaconstantinou J, Hawkins HK, Evers BM, Chung DH. Intestinal mitochondrial apoptotic signaling is activated during oxidative stress. Pediatr Surg Int. 2011;27(8):871–877. doi: 10.1007/s00383-011-2880-x. PubMed DOI PMC
Dwivedi P. ROS mediated apoptotic pathways in primary effusion lymphoma: Comment on induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic pathways in primary effusion lymphoma. Transl Oncol. 2021;14(7):101061. PubMed PMC
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48(6):749–762. doi: 10.1016/j.freeradbiomed.2009.12.022. PubMed DOI PMC
Wischhusen P, Larroquet L, Durand T, Oger C, Galano JM, Rocher A, Vigor C, Antony Jesu Prabhu P, Véron V, Briens M, Roy J, Kaushik SJ, Fauconneau B, Fontagné-Dicharry S. Oxidative stress and antioxidant response in rainbow trout fry exposed to acute hypoxia is affected by selenium nutrition of parents and during first exogenous feeding. Free Radic Biol Med. 2020;155:99–113. doi: 10.1016/j.freeradbiomed.2020.05.006. PubMed DOI
Wilber CG. Toxicology of selenium: a review. Clin Toxicol. 1980;17(2):171–230. doi: 10.3109/15563658008985076. PubMed DOI
Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol. 2005;15(6):319–326. doi: 10.1016/j.tcb.2005.04.003. PubMed DOI
Abbas WT. Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. Environ Sci Pollut Res. 2021;28(7):7669–90. 10.1007/s11356-020-12166-0. PubMed
Dawood MAO, El Basuini MF, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, et al. Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants. 2021;10(9):1364. doi: 10.3390/antiox10091364. PubMed DOI PMC
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta. 1850;2015(8):1642–1660. doi: 10.1016/j.bbagen.2014.10.008. PubMed DOI
Hadrup N, Loeschner K, Mandrup K, Ravn-Haren G, Frandsen HL, Larsen EH, Lam HR, Mortensen A. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem Toxicol. 2019;42(1):76–83. doi: 10.1080/01480545.2018.1491589. PubMed DOI
Qin F, Chen F, Zhao F, Jin T, Ma J. Effects of nanoselenium on blood biochemistry, liver antioxidant activity and GPx-1 mRNA expression in rabbits. In: International Conference on Biomedical and Biological Engineering. Atlantis Press; 2016. p. 166–71. 10.2991/bbe-16.2016.28.
He Y, Chen S, Liu Z, Cheng C, Li H, Wang M. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci. 2014;115(1-2):44–51. doi: 10.1016/j.lfs.2014.08.023. PubMed DOI
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107–2128. doi: 10.2147/IJN.S157541. PubMed DOI PMC
Zhang J, Wang X, Xu TT. Elemental selenium at nano size (Nano-se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008;101(1):22–31. doi: 10.1093/toxsci/kfm221. PubMed DOI
Xiao H, Parkin KL. Induction of phase II enzyme activity by various selenium compounds. Nutr Cancer. 2006;55(2):210–223. doi: 10.1207/s15327914nc5502_13. PubMed DOI
Mohammadinejad R, Karimi S, Iravani S, Varma RS. Plant-derived nanostructures: types and applications. Green Chem. 2015;18(1):20–52. doi: 10.1039/C5GC01403D. DOI
Lesnichaya M, Shendrik R, Titov E, Sukhov B. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ-carrageenan-capped selenium nanoparticles of different size: in vivo and in vitro study. IET Nanobiotechnology. 2020;14(6):519–526. doi: 10.1049/iet-nbt.2020.0023. PubMed DOI PMC
Guo L, Xiao J, Liu H, Liu H. Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics Roy Soc Chem. 2020;12(2):204–217. doi: 10.1039/c9mt00215d. PubMed DOI
Xiao J, Cao H, Guo S, Xiao S, Li N, Li M, Wu Y, Liu H. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem Biol Interact. 2021;347:109601. doi: 10.1016/j.cbi.2021.109601. PubMed DOI
Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomedicine. 2017;12:4527–4539. doi: 10.2147/IJN.S129958. PubMed DOI PMC
Zhang Z, Du Y, Liu T, Wong KH, Chen T. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater Sci. 2019;7(12):5112–5123. doi: 10.1039/C9BM01104H. PubMed DOI
Bhattacharjee A, Basu A, Bhattacharya S. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. Nucl. 2019;62(3):259–268. doi: 10.1007/s13237-019-00303-1. DOI
Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem. 2012;31(12):2812–2820. doi: 10.1002/etc.1995. PubMed DOI
Kondaparthi P, Deore M, Naqvi S, Flora SJS. Dose-dependent hepatic toxicity and oxidative stress on exposure to nano and bulk selenium in mice. Environ Sci Pollut Res. 2021;28(38):53034–53044. doi: 10.1007/s11356-021-14400-9. PubMed DOI
Bai K, Hong B, Hong Z, Sun J, Wang C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in d-galactose-induced aging mice. J Nanobiotechnology BioMed Central. 2017;15:92 10.1186/s12951-017-0324-z. PubMed PMC
Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-se and selenite in mice. Life Sci. 2005;76(10):1099–1109. doi: 10.1016/j.lfs.2004.08.015. PubMed DOI
Wang HL, Zhang JS, Yu HQ. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42(10):1524–1533. doi: 10.1016/j.freeradbiomed.2007.02.013. PubMed DOI
Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51(1):58–63. doi: 10.3109/13880209.2012.710241. PubMed DOI
Wang H, He Y, Liu L, Tao W, Wang G, Sun W, et al. Prooxidation and cytotoxicity of selenium nanoparticles at nonlethal level in Sprague-Dawley rats and Buffalo rat liver cells. Oxid Med Cell Longev. 2020;2020:7680276. doi: 10.1155/2020/7680276. PubMed DOI PMC
Chandramohan S, Naveenkumar S, Kaviyarasu K, Lavakumar V, Sowmya C, Santhanakumar M, Muthukumaran A. Bio-distribution of selenium nanoparticles (SeNPs) to the Wistar rats and its breastfed offspring. J Drug Deliv Sci Technol. 2021;61:102299. doi: 10.1016/j.jddst.2020.102299. DOI
Urbankova L, Horky P, Skladanka J, Pribilova M, Smolikova V, Nevrkla P, et al. Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium nanoparticles. PeerJ. 2018;6:e4862. 10.7717/peerj.4862. PubMed PMC
Liu L, He Y, Xiao Z, Tao W, Zhu J, Wang B, Liu Z, Wang M. Effects of selenium nanoparticles on reproductive performance of male Sprague-Dawley rats at Supranutritional and nonlethal levels. Biol Trace Elem Res. 2017;180(1):81–89. doi: 10.1007/s12011-017-0980-8. PubMed DOI
Urbankova L, Skalickova S, Pribilova M, Ridoskova A, Pelcova P, Skladanka J, et al. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats. Toxics. 2021;9(2):28. 10.3390/toxics9020028. PubMed PMC
Mercan Yücel U, Başbuğan Y, Uyar A, Kömüroğlu AU, Keleş ÖF. Use of an antiarrhythmic drug against acute selenium toxicity. J Trace Elem Med Biol. 2020;59:126471. doi: 10.1016/j.jtemb.2020.126471. PubMed DOI
Jia X, Li N, Chen J. A subchronic toxicity study of elemental Nano-se in Sprague-Dawley rats. Life Sci. 2005;76(17):1989–2003. doi: 10.1016/j.lfs.2004.09.026. PubMed DOI
Zhang JS, Gao XY, Zhang LD, Bao YP. Biological effects of a nano red elemental selenium. Biofactors. 2001;15(1):27–38. doi: 10.1002/biof.5520150103. PubMed DOI
Bami MK, Afsharmanesh M, Espahbodi M, Angkanaporn K. Dietary supplementation with biosynthesised nano-selenium affects growth, carcass characteristics, meat quality and blood parameters of broiler chickens. Anim Prod Sci. 2021;62(3):254–262. doi: 10.1071/AN21192. DOI
Hu CH, Li YL, Xiong L. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol. 2012;177(3-4):204–210. doi: 10.1016/j.anifeedsci.2012.08.010. DOI
Bakhshalinejad R, Hassanabadi A, Swick RA. Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Anim Nutr. 2019;5(3):256–263. doi: 10.1016/j.aninu.2019.03.003. PubMed DOI PMC
Gangadoo S, Dinev I, Willson NL, Moore RJ, Chapman J, Stanley D. Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ Sci Pollut Res. 2020;27:16159–66. 10.1007/s11356-020-07962-7. PubMed
Lee J, Hosseindoust A, Kim M, Kim K, Choi Y, Lee S, Lee SY, Cho HJ, Kang WS, Chae BJ. Biological evaluation of hot-melt extruded Nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biol Trace Elem Res. 2020;194(2):536–544. doi: 10.1007/s12011-019-01801-8. PubMed DOI
Li Y, He J, Shen X. Effects of Nano-selenium poisoning on immune function in the Wumeng semi-fine wool sheep. Biol Trace Elem Res. 2021;199(8):2919–2924. doi: 10.1007/s12011-020-02408-0. PubMed DOI
Lee J, Hosseindoust A, Kim M, Kim K, Choi Y, Lee S, et al. Supplemental hot melt extruded nano-selenium increases expression profiles of antioxidant enzymes in the livers and spleens of weanling pigs. Anim Feed Sci Technol. 2020;262:114381. doi: 10.1016/j.anifeedsci.2019.114381. DOI
Zheng Y, Dai W, Hu X, Hong Z. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim Feed Sci Technol. 2020;260:114345. doi: 10.1016/j.anifeedsci.2019.114345. DOI
Xun W, Shi L, Yue W, Zhang C, Ren Y, Liu Q. Effect of high-dose nano-selenium and selenium–yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol Trace Elem Res. 2012;150(1-3):130–136. doi: 10.1007/s12011-012-9452-3. PubMed DOI
Han L, Pang K, Fu T, Phillips CJC, Gao T. Nano-selenium supplementation increases selenoprotein (Sel) gene expression profiles and milk selenium concentration in lactating dairy cows. Biol Trace Elem Res. 2021;199(1):113–119. doi: 10.1007/s12011-020-02139-2. PubMed DOI PMC
Bai K, Hong B, Tan R, He J, Hong Z. Selenium nanoparticles-embedded chitosan microspheres and their effects upon alcohol-induced gastric mucosal injury in rats: Rapid preparation, oral delivery, and gastroprotective potential of selenium nanoparticles. Int J Nanomedicine. 2020;15:1187. doi: 10.2147/IJN.S237089. PubMed DOI PMC
Karami M, Asri-Rezaei S, Dormanesh B, Nazarizadeh A. Comparative study of radioprotective effects of selenium nanoparticles and sodium selenite in irradiation-induced nephropathy of mice model. Int J Radiat Biol. 2018;94:17–27. doi: 10.1080/09553002.2018.1400709. PubMed DOI
Wang H, Wei W, Zhang S, Shen Y, Yue L, Wang N, et al. Melatonin-selenium nanoparticles inhibit oxidative stress and protect against hepatic injury induced by Bacillus Calmette–Guérin/lipopolysaccharide in mice. J Pineal Res. 2005;39:156–163. doi: 10.1111/j.1600-079X.2005.00231.x. PubMed DOI
Dahdouh F, Bendjeffal H, Nouacer Z, Moumene W, Zeminour ME-H, Naous M, Djebar H. Selenium nanoparticles attenuate gentamycin-induced nephrotoxicity and Hematotoxicity in female Swiss albino mice. Bionanoscience. 2019;9(2):356–364. doi: 10.1007/s12668-019-0598-8. DOI
Alkhudhayri AA, Dkhil MA, Al-Quraishy S. Nanoselenium prevents eimeriosis-induced inflammation and regulates mucin gene expression in mice jejunum. Int J Nanomedicine. 2018;13:1993. doi: 10.2147/IJN.S162355. PubMed DOI PMC
Sohrabi A, Tehrani AA, Asri-Rezaei S, Zeinali A, Norouzi M. Histopathological assessment of protective effects of selenium nanoparticles on rat hepatocytes exposed to Gamma radiation. Vet Res Forum. 2020;11(4):347–53. 10.30466/vrf.2018.93499.2260. PubMed PMC
Hassanin KMA, Abd El-Kawi SH, Hashem KS. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int J Nanomedicine. 2013;8:1713. PubMed PMC
Hozyen HF, Khalil HMA, Ghandour RA, Al-Mokaddem AK, Amer MS, Azouz RA. Nano selenium protects against deltamethrin-induced reproductive toxicity in male rats. Toxicol Appl Pharmacol. 2020;408:115274. doi: 10.1016/j.taap.2020.115274. PubMed DOI
Al-Brakati A, Alsharif KF, Alzahrani KJ, Kabrah S, Al-Amer O, Oyouni AA, et al. Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. Int J Nanomedicine. 2021;16:4335. PubMed PMC
Al-Kahtani M, Morsy K. Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats. Environ Sci Pollut Res. 2019;26(31):32189–32197. doi: 10.1007/s11356-019-06417-y. PubMed DOI
Fakhr Almobasheri N, Shahanipour K, Monajemi R. The protective effect of selenium nanoparticles and selenium against paracetamol. Nanomedicine J. 2018;5:52–56.
Nasirpour M, Sadeghi AA, Chamani M. Effects of nano-selenium on the liver antioxidant enzyme activity and immunoglobolins in male rats exposed to oxidative stress. J Livest Sci. 2017;8:81–87.
Rezaei-Kelishadi M, Ghasemi A, Abdolyosefi NN, Zamani-Doabi S, Ramezani M, Changizi-Ashtiyani S, et al. Effects of selenium nanoparticles on kidney and liver functional disorders in streptozotocin-induced diabetic rats. Physiol Pharmacol. 2017;21:155–162.
Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol. 2019;38:398–408. 10.1177/0960327118816134. PubMed
Vekariya KK, Kaur J, Tikoo K. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats. Toxicol Appl Pharmacol. 2013;268(2):212–220. doi: 10.1016/j.taap.2013.01.028. PubMed DOI
Yue D, Zeng C, Okyere SK, Chen Z, Hu Y. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. J Trace Elem Med Biol. 2021;64:126680. doi: 10.1016/j.jtemb.2020.126680. PubMed DOI
El-Megharbel SM, Al-Salmi FA, Al-Harthi S, Alsolami K, Hamza RZ. Chitosan/Selenium nanoparticles attenuate diclofenac sodium-induced testicular toxicity in male rats. Crystals. 2021;11:1477. 10.3390/cryst11121477.
AlBasher G, Alfarraj S, Alarifi S, Alkhtani S, Almeer R, Alsultan N, Alharthi M, Alotibi N, al-dbass A, Abdel Moneim AE. Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats. Biol Trace Elem Res. 2020;194(2):444–454. doi: 10.1007/s12011-019-01793-5. PubMed DOI
Khiralla G, Elhariry H, Selim SM. Chitosan-stabilized selenium nanoparticles attenuate acrylamide-induced brain injury in rats. J Food Biochem. 2020;44:e13413. doi: 10.1111/jfbc.13413. PubMed DOI
Dkhil MA, Zrieq R, Al-Quraishy S, Abdel Moneim AE. Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules. 2016;21:1517. doi: 10.3390/molecules21111517. PubMed DOI PMC
Alhazza IM, Ebaid H, Omar MS, Hassan I, Habila MA, Al-Tamimi J, et al. Supplementation with selenium nanoparticles alleviates diabetic nephropathy during pregnancy in the diabetic female rats. Environ Sci Pollut Res. 2022;29(4):5517–5525. doi: 10.1007/s11356-021-15905-z. PubMed DOI
Lesnichaya M, Karpova E, Sukhov B. Effect of high dose of selenium nanoparticles on antioxidant system and biochemical profile of rats in correction of carbon tetrachloride-induced toxic damage of liver. Colloids Surf B Biointerfaces. 2021;197:111381. doi: 10.1016/j.colsurfb.2020.111381. PubMed DOI
Ebaid H, Al-Tamimi J, Hassan I, Habila MA, Rady AM, Alhazza IM, et al. Effect of selenium nanoparticles on carbon tetrachloride-induced hepatotoxicity in the swiss albino rats. Appl Sci. 2021;11(7):3044. 10.3390/app11073044. PubMed
Ali HFH, El-Sayed NM, khodeer DM, AAM A, Hanna PA, YMA M. Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicol Environ Saf. 2020;195:110479. doi: 10.1016/j.ecoenv.2020.110479. PubMed DOI
Hassan I, Ebaid H, Al-Tamimi J, Habila MA, Alhazza IM, Rady AM. Selenium nanoparticles mitigate diabetic nephropathy and pancreatopathy in rat offspring via inhibition of oxidative stress. J King Saud Univ - Sci. 2021;33(1):101265. doi: 10.1016/j.jksus.2020.101265. DOI
Sadek KM, Lebda MA, Abouzed TK, Nasr SM, Shoukry M. Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metab Brain Dis. 2017;32(5):1659–1673. doi: 10.1007/s11011-017-0053-x. PubMed DOI
Ebokaiwe AP, Okori S, Nwankwo JO, Ejike CECC, Osawe SO. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. Naunyn Schmiedeberg's Arch Pharmacol. 2021;394(4):591–602. doi: 10.1007/s00210-020-02000-2. PubMed DOI PMC
Abu-Zeid EH, Abdel Fattah DM, Arisha AH, Ismail TA, Alsadek DM, Metwally MMM, el-Sayed AA, Khalil AT. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. Ecotoxicol Environ Saf. 2021;221:112424. doi: 10.1016/j.ecoenv.2021.112424. PubMed DOI
Sheiha AM, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Metwally KA, Ajarem JS, et al. Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals. 2020;10(3):430. PubMed PMC
Hassan RA, Soliman ES, Hamad RT, El-Borady OM, Ali AA, Helal MS. Selenium and nano-selenium ameliorations in two breeds of broiler chickens exposed to heat stress. South African J Anim Sci. 2020;50(2):215–232. doi: 10.4314/sajas.v50i2.5. DOI
Shirsat S, Kadam A, Mane RS, Jadhav VV, Zate MK, Naushad M, et al. Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in broiler chicken. Dalton Trans. 2016;45:8845–8853. doi: 10.1039/C6DT00120C. PubMed DOI
Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N. Effects of organic, inorganic, and nano-se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci. 2015;178:330–336. doi: 10.1016/j.livsci.2015.05.004. DOI
Zhang T, Zhao Y, Li L, Zhou D. Antagonistic effects of nano-selenium on broilers hepatic injury induced by Cr(VI) poisoning in AMPK pathway. Environ Sci Pollut Res. 2020;27(33):41585–41595. doi: 10.1007/s11356-020-08501-0. PubMed DOI
Li Y, Fan M, Qiu Q, Wang Y, Shen X, Zhao K. Nano-selenium and Macleaya cordata extracts improved immune function and reduced oxidative damage of sows and IUGR piglets after heat stress of sows in late gestation. Biol Trace Elem Res. 2022. 10.1007/s12011-022-03103-y. PubMed
Liu C, Li Y, Li H, Wang Y, Zhao K. Nano-selenium and Macleaya cordata extracts improved immune functions of intrauterine growth retardation piglets under maternal oxidation stress. Biol Trace Elem Res. 2021. 10.1007/s12011-021-03009-1. PubMed