Effects of Sub-Lethal Doses of Selenium Nanoparticles on the Health Status of Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 2019-IP078
Mendelova Univerzita v Brně
PubMed
33546233
PubMed Central
PMC7913318
DOI
10.3390/toxics9020028
PII: toxics9020028
Knihovny.cz E-zdroje
- Klíčová slova
- diet, glucose, glutathione peroxidase, growth performance, histopathology, liver enzymes, nanotoxicity, superoxide dismutase,
- Publikační typ
- časopisecké články MeSH
Selenium nanoparticles (SeNPs) are fast becoming a key instrument in several applications such as medicine or nutrition. Questions have been raised about the safety of their use. Male rats were fed for 28 days on a monodiet containing 0.5, 1.5, 3.0 and 5.0 mg Se/kg. Se content in blood and liver, liver panel tests, blood glucose, total antioxidant capacity (TAC), the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were analysed. Liver and duodenum were subjected to histopathology examination. The weight gain of rats showed no differences between tested groups. Se content in blood was higher in all treated groups compared to the control group. The liver concentration of Se in the treated groups varied in the range from 222 to 238 ng/g. No differences were observed in the activity of AST (aspartate aminotransferase), ALP (alkaline phosphatase) and TAS (total antioxidant status). A significant decrease in ALT activity compared to the control group was observed in the treated groups. GPx activity varied from 80 to 88 U/mL through tested groups. SOD activity in liver was decreased in the SeNP-treated group with 5 mg Se/kg (929 ± 103 U/mL). Histopathological examination showed damage to the liver parenchyma and intestinal epithelium in a dose-dependent manner. This study suggests that short-term SeNP supplementation can be safe and beneficial in Se deficiency or specific treatment.
Zobrazit více v PubMed
Bodnar M., Konieczka P., Namiesnik J. The Properties, Functions, and Use of Selenium Compounds in Living Organisms. J. Environ. Sci. Health Part C Environ. Carcinogen. Ecotoxicol. Rev. 2012;30:225–252. doi: 10.1080/10590501.2012.705164. PubMed DOI
Avery J.C., Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10:1203. doi: 10.3390/nu10091203. PubMed DOI PMC
Whanger P., Vendeland S., Park Y.C., Xia Y.M. Metabolism of subtoxic levels of selenium in animals and humans. Ann. Clin. Lab. Sci. 1996;26:99–113. PubMed
Seko Y., Imura N. Active oxygen generation as a possible mechanism of selenium toxicity. Biomed. Environ. Sci. 1997;10:333–339. PubMed
Bhattacharjee A., Basu A., Bhattacharya S. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. Nucl. Ind. 2019;62:259–268. doi: 10.1007/s13237-019-00303-1. DOI
Chaudhary S., Umar A., Mehta S.K. Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Prog. Mater. Sci. 2016;83:270–329. doi: 10.1016/j.pmatsci.2016.07.001. DOI
Khurana A., Tekula S., Saifi M.A., Venkatesh P., Godugu C. Therapeutic applications of selenium nanoparticles. Biomed. Pharm. 2019;111:802–812. doi: 10.1016/j.biopha.2018.12.146. PubMed DOI
Skalickova S., Milosavljevic V., Cihalova K., Horky P., Richtera L., Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001. PubMed DOI
Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI
Indumathy M., Raj S.S., Arumugham I.M., Kumar R.P. Assessment of Toxicity of Selenium Nanoparticle Varnish Using HepG2 Cell Lines: In vitro Study. J. Pharm. Res. Int. 2020;32:33–39. doi: 10.9734/jpri/2020/v32i2730853. DOI
Qamar N., John P., Hatti A.B. Toxicological and Anti-Rheumatic Potential of Trachyspermum ammi Derived Biogenic Selenium Nanoparticles in Arthritic Balb/c Mice. Int. J. Nanomed. 2020;15:3497–3509. doi: 10.2147/IJN.S243718. PubMed DOI PMC
Hadrup N., Loeschner K., Mandrup K., Ravn-Haren G., Frandsen H.L., Larsen E.H., Lam H.R., Mortensen A. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem. Toxicol. 2019;42:76–83. doi: 10.1080/01480545.2018.1491589. PubMed DOI
Kumar N., Krishnani K.K., Singh N.P. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ. Sci. Pollut. Res. 2018;25:8914–8927. doi: 10.1007/s11356-017-1165-x. PubMed DOI
Gangadoo S., Dinev I., Willson N.L., Moore R.J., Chapman J., Stanley D. Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ. Sci. Pollut. Res. 2020;27:16159–16166. doi: 10.1007/s11356-020-07962-7. PubMed DOI
Caracciolo G., Farokhzad O.C., Mahmoudi M. Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona. Trends Biotechnol. 2017;35:257–264. doi: 10.1016/j.tibtech.2016.08.011. PubMed DOI
Urbankova L., Pribilova M., Horky P. The Influence of Different Forms of Selenium on Vitality of Laboratory Rats; Proceedings of the 26th International PhD Students Conference for Undergraduate and Postgraduate (MendelNet); Brno, Czech Republic. 6–7 November 2019; pp. 206–210.
Urbankova L., Horky P., Skladanka J., Pribilova M., Smolikova V., Nevrkla P., Cernei N., Lackova Z., Hedbavny J., Ridoskova A., et al. Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium nanoparticles. PeerJ. 2018;6 doi: 10.7717/peerj.4862. PubMed DOI PMC
Horky P., Ruttkay-Nedecky B., Nejdl L., Richtera L., Cernei N., Pohanka M., Kopel P., Skladanka J., Hloucalova P., Slama P., et al. Electrochemical Methods for Study of Influence of Selenium Nanoparticles on Antioxidant Status of Rats. Int. J. Electr. Sci. 2016;11:2799–2824. doi: 10.20964/110402799. DOI
Horky P., Jancikova P., Sochor J., Hynek D., Chavis G.J., Ruttkay-Nedecky B., Cernei N., Zitka O., Zeman L., Adam V., et al. Effect of Organic and Inorganic Form of Selenium on Antioxidant Status of Breeding Boars Ejaculate Revealed by Electrochemistry. Int. J. Electrochem. Sci. 2012;7:9643–9657.
Horky P., Skladanka J., Nevrkla P., Slama P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins e and c) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI
Horky P., Sochor J., Skladanka J., Klusonova I., Nevrkla P. Effect of selenium, vitamins E and C on antioxidant potential and quality of boar ejaculate. J. Anim. Feed Sci. 2016;25:29–36. doi: 10.22358/jafs/65584/2016. DOI
Pardechi A., Tabeidian S.A., Habibian M. Comparative assessment of sodium selenite, selenised yeast and nanosized elemental selenium on performance response, immunity and antioxidative function of broiler chickens. It. J. Anim. Sci. 2020;19:1109–1122. doi: 10.1080/1828051X.2020.1819896. DOI
Shen X.Y., Huo B., Gan S.Q. Effects of Nano-Selenium on Antioxidant Capacity in Se-Deprived Tibetan Gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biol. Trace Element Res. 2020;199:981–988. doi: 10.1007/s12011-020-02206-8. PubMed DOI
Lee J., Hosseindoust A., Kim M., Kim K., Choi Y., Lee S., Cho H., Chae B. Supplemental hot melt extruded nano-selenium increases expression profiles of antioxidant enzymes in the livers and spleens of weanling pigs. Anim. Feed Sci. Technol. 2020;262 doi: 10.1016/j.anifeedsci.2019.114381. DOI
Zheng Y.L., Dai W.Z., Hu X.L., Hong Z.P. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim. Feed Sci. Technol. 2020;260 doi: 10.1016/j.anifeedsci.2019.114345. DOI
Reed J.J., Ward M.A., Vonnahme K.A., Neville T.L., Julius S.L., Borowicz P.P., Taylor J.B., Redmer D.A., Grazul-Bilska A.T., Reynolds L.P., et al. Effects of selenium supply and dietary restriction on maternal and fetal body weight, visceral organ mass and cellularity estimates, and jejunal vascularity in pregnant ewe lambs. J. Anim. Sci. 2007;85:2721–2733. doi: 10.2527/jas.2006-785. PubMed DOI
Strubelt O., Kremer J., Tilse A., Keogh J., Pentz R., Younes M. Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver. J. Toxicol. Environ. Health. 1996;47:267–283. doi: 10.1080/009841096161780. PubMed DOI
Hall J.A., Bobe G., Nixon B.K., Vorachek W.R., Hugejiletu, Nichols T., Mosher W.D., Pirelli G.J. Effect of transport on blood selenium and glutathione status in feeder lambs. J. Anim. Sci. 2014;92:4115–4122. doi: 10.2527/jas.2014-7753. PubMed DOI
Zheng S.F., Xing H.J., Zhang Q.J., Xue H., Zhu F.T., Xu S.W. Pharmacokinetics of Sodium Selenite Administered Orally in Blood and Tissues of Selenium-Deficient Ducklings. Biol. Trace Element Res. 2019;190:509–516. doi: 10.1007/s12011-018-1567-8. PubMed DOI
Shang N.N., Wang X.F., Shu Q.M., Wang H., Zhao L.N. The Functions of Selenium and Selenoproteins Relating to the Liver Diseases. J. Nanosci. Nanotechnol. 2019;19:1875–1888. doi: 10.1166/jnn.2019.16287. PubMed DOI
Ozardali I., Bitiren M., Karakilcik A.Z., Zerin M., Aksoy N., Musa D. Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Exp. Toxicol. Pathol. 2004;56:59–64. doi: 10.1016/j.etp.2004.05.001. PubMed DOI
Zwolak I., Zaporowska H. Selenium interactions and toxicity: A review Selenium interactions and toxicity. Cell Biol. Toxicol. 2012;28:31–46. doi: 10.1007/s10565-011-9203-9. PubMed DOI
Nardo B., Puviani L., Caraceni P., Pacile V., Bertelli R., Beltempo P., Cavallari G., Chieco P., Pariali M., Pertosa A.M., et al. Portal vein arterialization for the treatment of post resection acute liver failure in the rat. Transpl. Proc. 2006;38:1185–1186. doi: 10.1016/j.transproceed.2006.03.061. PubMed DOI
Schemitt E.G., Hartmann R.M., Colares J.R., Licks F., Salvi J.O., Marroni C.A., Marroni N.P. Protective action of glutamine in rats with severe acute liver failure. World J. Hepatol. 2019;11:273–286. doi: 10.4254/wjh.v11.i3.273. PubMed DOI PMC
Li B.Z., Li D., Jing W.X., Fan J.H., Dahms H.U., Lee S.C., Wang L. Biogenic selenium and its hepatoprotective activity. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13636-1. PubMed DOI PMC
Wang X.L., Yang T.B., Wei J., Lei G.H., Zeng C. Association between serum selenium level and type 2 diabetes mellitus: A non-linear dose-response meta-analysis of observational studies. Nutr. J. 2016;15 doi: 10.1186/s12937-016-0169-6. PubMed DOI PMC
Zeng M.S., Li X., Liu Y., Zhao H., Zhou J.C., Li K., Huang J.Q., Sun L.H., Tang J.Y., Xia X.J., et al. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Rad. Biol. Med. 2012;52:1335–1342. doi: 10.1016/j.freeradbiomed.2012.01.017. PubMed DOI PMC
Kiersztan A., Lukasinska I., Baranska A., Lebiedzinska M., Nagalski A., Derlacz R.A., Bryla J. Differential effects of selenium compounds on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies. J. Inorganic Biochem. 2007;101:493–505. doi: 10.1016/j.jinorgbio.2006.11.012. PubMed DOI
Ebokaiwe A.P., Okori S., Nwankwo J.O., Ejike C., Osawe S.O. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020:1–12. doi: 10.1007/s00210-020-02000-2. PubMed DOI PMC
Deng W.J., Wang H., Wu B.J., Zhang X.W. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm. Sinica B. 2019;9:74–86. doi: 10.1016/j.apsb.2018.09.009. PubMed DOI PMC
Liu Y.T., Zeng S.G., Liu Y.X., Wu W.J., Shen Y.B., Zhang L., Li C., Chen H., Liu A.P., Shen L., et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol. 2018;114:632–639. doi: 10.1016/j.ijbiomac.2018.03.161. PubMed DOI
Al-Quraishy S., Dkhil M.A., Moneim A.E.A. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int. J. Nanomed. 2015;10:6741–6756. doi: 10.2147/ijn.s91377. PubMed DOI PMC
Eid S.Y., El-Zaher H.M., Emara S.S., Farid O.A., Michael M.I. Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits. World Rabbit Sci. 2019;27:93–100. doi: 10.4995/wrs.2019.11251. DOI
Wang Z.N., Li H., Tang H., Zhang S.J., Pauline M., Bi C.L. Short Communication: Effects of Dietary Selenium Supplementation on Selenium Deposition and Antioxidant Status in Postpartum Mice. Biol. Trace Element Res. 2020:1–5. doi: 10.1007/s12011-020-02032-y. PubMed DOI
Zidkova J., Melcova M., Mlejnek P., Zidek V., Szakova J., Koplik R., Mestek O. The effect of dietary selenium on antioxidative status in rats. Ann. Nutr. Metab. 2015;67:207.
Nasirpour M., Sadeghi A.A., Chamani M. Effects of nano-selenium on the liver antioxidant enzyme activity and immunoglobolins in male rats exposed to oxidative stress. J. Livestock Sci. 2017;8:81–87.
Culotta V.C. Current Topics in Cellular Regulation. Volume 36. Selsevier Academic Press Inc.; San Diego, CA, USA: 2000. Superoxide dismutase, oxidative stress, and cell metabolism; pp. 117–132. PubMed
Lucca G., Comim C.M., Valvassori S.S., Reus G.Z., Vuolo F., Petronilho F., Dal-Pizzol F., Gavioli E.C., Quevedo J. Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem. Int. 2009;54:358–362. doi: 10.1016/j.neuint.2009.01.001. PubMed DOI
Guo L.L., Xiao J.Y., Liu H.J., Liu H.M. Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics. 2020;12:204–217. doi: 10.1039/C9MT00215D. PubMed DOI
Hamza R.Z., Diab A.E.-A.A. Testicular protective and antioxidant effects of selenium nanoparticles on Monosodium glutamate-induced testicular structure alterations in male mice. Toxicol. Rep. 2020;7:254–260. doi: 10.1016/j.toxrep.2020.01.012. PubMed DOI PMC
He Y.D., Chen S.Y., Liu Z.X., Cheng C., Li H., Wang M.Q. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci. 2014;115:44–51. doi: 10.1016/j.lfs.2014.08.023. PubMed DOI
Selenium Nanoparticles as Potential Antioxidants to Improve Semen Quality in Boars
Toxicological effects of nanoselenium in animals