Effects of Sub-Lethal Doses of Selenium Nanoparticles on the Health Status of Rats

. 2021 Feb 03 ; 9 (2) : . [epub] 20210203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33546233

Grantová podpora
IGA 2019-IP078 Mendelova Univerzita v Brně

Selenium nanoparticles (SeNPs) are fast becoming a key instrument in several applications such as medicine or nutrition. Questions have been raised about the safety of their use. Male rats were fed for 28 days on a monodiet containing 0.5, 1.5, 3.0 and 5.0 mg Se/kg. Se content in blood and liver, liver panel tests, blood glucose, total antioxidant capacity (TAC), the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were analysed. Liver and duodenum were subjected to histopathology examination. The weight gain of rats showed no differences between tested groups. Se content in blood was higher in all treated groups compared to the control group. The liver concentration of Se in the treated groups varied in the range from 222 to 238 ng/g. No differences were observed in the activity of AST (aspartate aminotransferase), ALP (alkaline phosphatase) and TAS (total antioxidant status). A significant decrease in ALT activity compared to the control group was observed in the treated groups. GPx activity varied from 80 to 88 U/mL through tested groups. SOD activity in liver was decreased in the SeNP-treated group with 5 mg Se/kg (929 ± 103 U/mL). Histopathological examination showed damage to the liver parenchyma and intestinal epithelium in a dose-dependent manner. This study suggests that short-term SeNP supplementation can be safe and beneficial in Se deficiency or specific treatment.

Zobrazit více v PubMed

Bodnar M., Konieczka P., Namiesnik J. The Properties, Functions, and Use of Selenium Compounds in Living Organisms. J. Environ. Sci. Health Part C Environ. Carcinogen. Ecotoxicol. Rev. 2012;30:225–252. doi: 10.1080/10590501.2012.705164. PubMed DOI

Avery J.C., Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10:1203. doi: 10.3390/nu10091203. PubMed DOI PMC

Whanger P., Vendeland S., Park Y.C., Xia Y.M. Metabolism of subtoxic levels of selenium in animals and humans. Ann. Clin. Lab. Sci. 1996;26:99–113. PubMed

Seko Y., Imura N. Active oxygen generation as a possible mechanism of selenium toxicity. Biomed. Environ. Sci. 1997;10:333–339. PubMed

Bhattacharjee A., Basu A., Bhattacharya S. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. Nucl. Ind. 2019;62:259–268. doi: 10.1007/s13237-019-00303-1. DOI

Chaudhary S., Umar A., Mehta S.K. Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Prog. Mater. Sci. 2016;83:270–329. doi: 10.1016/j.pmatsci.2016.07.001. DOI

Khurana A., Tekula S., Saifi M.A., Venkatesh P., Godugu C. Therapeutic applications of selenium nanoparticles. Biomed. Pharm. 2019;111:802–812. doi: 10.1016/j.biopha.2018.12.146. PubMed DOI

Skalickova S., Milosavljevic V., Cihalova K., Horky P., Richtera L., Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001. PubMed DOI

Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI

Indumathy M., Raj S.S., Arumugham I.M., Kumar R.P. Assessment of Toxicity of Selenium Nanoparticle Varnish Using HepG2 Cell Lines: In vitro Study. J. Pharm. Res. Int. 2020;32:33–39. doi: 10.9734/jpri/2020/v32i2730853. DOI

Qamar N., John P., Hatti A.B. Toxicological and Anti-Rheumatic Potential of Trachyspermum ammi Derived Biogenic Selenium Nanoparticles in Arthritic Balb/c Mice. Int. J. Nanomed. 2020;15:3497–3509. doi: 10.2147/IJN.S243718. PubMed DOI PMC

Hadrup N., Loeschner K., Mandrup K., Ravn-Haren G., Frandsen H.L., Larsen E.H., Lam H.R., Mortensen A. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem. Toxicol. 2019;42:76–83. doi: 10.1080/01480545.2018.1491589. PubMed DOI

Kumar N., Krishnani K.K., Singh N.P. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ. Sci. Pollut. Res. 2018;25:8914–8927. doi: 10.1007/s11356-017-1165-x. PubMed DOI

Gangadoo S., Dinev I., Willson N.L., Moore R.J., Chapman J., Stanley D. Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ. Sci. Pollut. Res. 2020;27:16159–16166. doi: 10.1007/s11356-020-07962-7. PubMed DOI

Caracciolo G., Farokhzad O.C., Mahmoudi M. Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona. Trends Biotechnol. 2017;35:257–264. doi: 10.1016/j.tibtech.2016.08.011. PubMed DOI

Urbankova L., Pribilova M., Horky P. The Influence of Different Forms of Selenium on Vitality of Laboratory Rats; Proceedings of the 26th International PhD Students Conference for Undergraduate and Postgraduate (MendelNet); Brno, Czech Republic. 6–7 November 2019; pp. 206–210.

Urbankova L., Horky P., Skladanka J., Pribilova M., Smolikova V., Nevrkla P., Cernei N., Lackova Z., Hedbavny J., Ridoskova A., et al. Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium nanoparticles. PeerJ. 2018;6 doi: 10.7717/peerj.4862. PubMed DOI PMC

Horky P., Ruttkay-Nedecky B., Nejdl L., Richtera L., Cernei N., Pohanka M., Kopel P., Skladanka J., Hloucalova P., Slama P., et al. Electrochemical Methods for Study of Influence of Selenium Nanoparticles on Antioxidant Status of Rats. Int. J. Electr. Sci. 2016;11:2799–2824. doi: 10.20964/110402799. DOI

Horky P., Jancikova P., Sochor J., Hynek D., Chavis G.J., Ruttkay-Nedecky B., Cernei N., Zitka O., Zeman L., Adam V., et al. Effect of Organic and Inorganic Form of Selenium on Antioxidant Status of Breeding Boars Ejaculate Revealed by Electrochemistry. Int. J. Electrochem. Sci. 2012;7:9643–9657.

Horky P., Skladanka J., Nevrkla P., Slama P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins e and c) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI

Horky P., Sochor J., Skladanka J., Klusonova I., Nevrkla P. Effect of selenium, vitamins E and C on antioxidant potential and quality of boar ejaculate. J. Anim. Feed Sci. 2016;25:29–36. doi: 10.22358/jafs/65584/2016. DOI

Pardechi A., Tabeidian S.A., Habibian M. Comparative assessment of sodium selenite, selenised yeast and nanosized elemental selenium on performance response, immunity and antioxidative function of broiler chickens. It. J. Anim. Sci. 2020;19:1109–1122. doi: 10.1080/1828051X.2020.1819896. DOI

Shen X.Y., Huo B., Gan S.Q. Effects of Nano-Selenium on Antioxidant Capacity in Se-Deprived Tibetan Gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biol. Trace Element Res. 2020;199:981–988. doi: 10.1007/s12011-020-02206-8. PubMed DOI

Lee J., Hosseindoust A., Kim M., Kim K., Choi Y., Lee S., Cho H., Chae B. Supplemental hot melt extruded nano-selenium increases expression profiles of antioxidant enzymes in the livers and spleens of weanling pigs. Anim. Feed Sci. Technol. 2020;262 doi: 10.1016/j.anifeedsci.2019.114381. DOI

Zheng Y.L., Dai W.Z., Hu X.L., Hong Z.P. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim. Feed Sci. Technol. 2020;260 doi: 10.1016/j.anifeedsci.2019.114345. DOI

Reed J.J., Ward M.A., Vonnahme K.A., Neville T.L., Julius S.L., Borowicz P.P., Taylor J.B., Redmer D.A., Grazul-Bilska A.T., Reynolds L.P., et al. Effects of selenium supply and dietary restriction on maternal and fetal body weight, visceral organ mass and cellularity estimates, and jejunal vascularity in pregnant ewe lambs. J. Anim. Sci. 2007;85:2721–2733. doi: 10.2527/jas.2006-785. PubMed DOI

Strubelt O., Kremer J., Tilse A., Keogh J., Pentz R., Younes M. Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver. J. Toxicol. Environ. Health. 1996;47:267–283. doi: 10.1080/009841096161780. PubMed DOI

Hall J.A., Bobe G., Nixon B.K., Vorachek W.R., Hugejiletu, Nichols T., Mosher W.D., Pirelli G.J. Effect of transport on blood selenium and glutathione status in feeder lambs. J. Anim. Sci. 2014;92:4115–4122. doi: 10.2527/jas.2014-7753. PubMed DOI

Zheng S.F., Xing H.J., Zhang Q.J., Xue H., Zhu F.T., Xu S.W. Pharmacokinetics of Sodium Selenite Administered Orally in Blood and Tissues of Selenium-Deficient Ducklings. Biol. Trace Element Res. 2019;190:509–516. doi: 10.1007/s12011-018-1567-8. PubMed DOI

Shang N.N., Wang X.F., Shu Q.M., Wang H., Zhao L.N. The Functions of Selenium and Selenoproteins Relating to the Liver Diseases. J. Nanosci. Nanotechnol. 2019;19:1875–1888. doi: 10.1166/jnn.2019.16287. PubMed DOI

Ozardali I., Bitiren M., Karakilcik A.Z., Zerin M., Aksoy N., Musa D. Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Exp. Toxicol. Pathol. 2004;56:59–64. doi: 10.1016/j.etp.2004.05.001. PubMed DOI

Zwolak I., Zaporowska H. Selenium interactions and toxicity: A review Selenium interactions and toxicity. Cell Biol. Toxicol. 2012;28:31–46. doi: 10.1007/s10565-011-9203-9. PubMed DOI

Nardo B., Puviani L., Caraceni P., Pacile V., Bertelli R., Beltempo P., Cavallari G., Chieco P., Pariali M., Pertosa A.M., et al. Portal vein arterialization for the treatment of post resection acute liver failure in the rat. Transpl. Proc. 2006;38:1185–1186. doi: 10.1016/j.transproceed.2006.03.061. PubMed DOI

Schemitt E.G., Hartmann R.M., Colares J.R., Licks F., Salvi J.O., Marroni C.A., Marroni N.P. Protective action of glutamine in rats with severe acute liver failure. World J. Hepatol. 2019;11:273–286. doi: 10.4254/wjh.v11.i3.273. PubMed DOI PMC

Li B.Z., Li D., Jing W.X., Fan J.H., Dahms H.U., Lee S.C., Wang L. Biogenic selenium and its hepatoprotective activity. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13636-1. PubMed DOI PMC

Wang X.L., Yang T.B., Wei J., Lei G.H., Zeng C. Association between serum selenium level and type 2 diabetes mellitus: A non-linear dose-response meta-analysis of observational studies. Nutr. J. 2016;15 doi: 10.1186/s12937-016-0169-6. PubMed DOI PMC

Zeng M.S., Li X., Liu Y., Zhao H., Zhou J.C., Li K., Huang J.Q., Sun L.H., Tang J.Y., Xia X.J., et al. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Rad. Biol. Med. 2012;52:1335–1342. doi: 10.1016/j.freeradbiomed.2012.01.017. PubMed DOI PMC

Kiersztan A., Lukasinska I., Baranska A., Lebiedzinska M., Nagalski A., Derlacz R.A., Bryla J. Differential effects of selenium compounds on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies. J. Inorganic Biochem. 2007;101:493–505. doi: 10.1016/j.jinorgbio.2006.11.012. PubMed DOI

Ebokaiwe A.P., Okori S., Nwankwo J.O., Ejike C., Osawe S.O. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020:1–12. doi: 10.1007/s00210-020-02000-2. PubMed DOI PMC

Deng W.J., Wang H., Wu B.J., Zhang X.W. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm. Sinica B. 2019;9:74–86. doi: 10.1016/j.apsb.2018.09.009. PubMed DOI PMC

Liu Y.T., Zeng S.G., Liu Y.X., Wu W.J., Shen Y.B., Zhang L., Li C., Chen H., Liu A.P., Shen L., et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol. 2018;114:632–639. doi: 10.1016/j.ijbiomac.2018.03.161. PubMed DOI

Al-Quraishy S., Dkhil M.A., Moneim A.E.A. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int. J. Nanomed. 2015;10:6741–6756. doi: 10.2147/ijn.s91377. PubMed DOI PMC

Eid S.Y., El-Zaher H.M., Emara S.S., Farid O.A., Michael M.I. Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits. World Rabbit Sci. 2019;27:93–100. doi: 10.4995/wrs.2019.11251. DOI

Wang Z.N., Li H., Tang H., Zhang S.J., Pauline M., Bi C.L. Short Communication: Effects of Dietary Selenium Supplementation on Selenium Deposition and Antioxidant Status in Postpartum Mice. Biol. Trace Element Res. 2020:1–5. doi: 10.1007/s12011-020-02032-y. PubMed DOI

Zidkova J., Melcova M., Mlejnek P., Zidek V., Szakova J., Koplik R., Mestek O. The effect of dietary selenium on antioxidative status in rats. Ann. Nutr. Metab. 2015;67:207.

Nasirpour M., Sadeghi A.A., Chamani M. Effects of nano-selenium on the liver antioxidant enzyme activity and immunoglobolins in male rats exposed to oxidative stress. J. Livestock Sci. 2017;8:81–87.

Culotta V.C. Current Topics in Cellular Regulation. Volume 36. Selsevier Academic Press Inc.; San Diego, CA, USA: 2000. Superoxide dismutase, oxidative stress, and cell metabolism; pp. 117–132. PubMed

Lucca G., Comim C.M., Valvassori S.S., Reus G.Z., Vuolo F., Petronilho F., Dal-Pizzol F., Gavioli E.C., Quevedo J. Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem. Int. 2009;54:358–362. doi: 10.1016/j.neuint.2009.01.001. PubMed DOI

Guo L.L., Xiao J.Y., Liu H.J., Liu H.M. Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics. 2020;12:204–217. doi: 10.1039/C9MT00215D. PubMed DOI

Hamza R.Z., Diab A.E.-A.A. Testicular protective and antioxidant effects of selenium nanoparticles on Monosodium glutamate-induced testicular structure alterations in male mice. Toxicol. Rep. 2020;7:254–260. doi: 10.1016/j.toxrep.2020.01.012. PubMed DOI PMC

He Y.D., Chen S.Y., Liu Z.X., Cheng C., Li H., Wang M.Q. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci. 2014;115:44–51. doi: 10.1016/j.lfs.2014.08.023. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Selenium Nanoparticles as Potential Antioxidants to Improve Semen Quality in Boars

. 2023 Jul 30 ; 13 (15) : . [epub] 20230730

Toxicological effects of nanoselenium in animals

. 2022 Jun 17 ; 13 (1) : 72. [epub] 20220617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...