Selenium Nanoparticles as Potential Antioxidants to Improve Semen Quality in Boars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37570269
PubMed Central
PMC10417132
DOI
10.3390/ani13152460
PII: ani13152460
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, boars, nanoparticles, selenium, semen,
- Publikační typ
- časopisecké články MeSH
Selenium is an essential compound which can influence the fertility of boars by a greater margin. In past decades, research was mainly focused on a bioavailability of various selenium forms and the effect on semen quality. Recently, nanotechnology has expanded the possibilities of selenium supplementation research. Twenty-one Duroc boars (three groups with seven boars each) were included in this experiment with the first group being a control group with no selenium supplementation, and the second group being supplemented with 0.3 mg Se/kg of selenium in inorganic form of Na2SeO3. The third group was supplemented with selenium nanoparticles (100 nm) at the same dose as that of the second group. The experiment lasted for 126 days (three spermatogenesis cycles of boars) and the antioxidant parameters of boar semen were analysed at 42, 84 and 126 days, respectively. The antioxidant parameters (DPPH, FRAP, DMPD, GSH, GSSG) were not influenced by both Se2NO3 and selenium nanoparticle supplementation during this experiment. At the end of the monitored period, significantly higher (p < 0.004) antioxidant readings were observed by using the ABTS method but not the DPPH, DMPD and FRAP methods on the supplemented groups compared to the control. Moreover, selenium-nanoparticle-supplemented groups showed elevated glutathione peroxidase activity in the seminal fluid (p < 0.008). However, the selenium nanoparticle supplementation has not shown an improving effect on sperm quality. This could be considered as a safe alternative to inorganic selenium as well as having a potential to enhance the antioxidant properties of the semen of boars.
Zobrazit více v PubMed
Rodriguez A.L., Van Soom A., Arsenakis I., Maes D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017;3:15. doi: 10.1186/s40813-017-0062-5. PubMed DOI PMC
Kowalczyk A. The Role of the Natural Antioxidant Mechanism in Sperm Cells. Reprod. Sci. 2022;29:1387–1394. doi: 10.1007/s43032-021-00795-w. PubMed DOI PMC
Agarwal A., Virk G., Ong C., du Plessis S.S. Effect of Oxidative Stress on Male Reproduction. World J. Mens Health. 2014;32:1–17. doi: 10.5534/wjmh.2014.32.1.1. PubMed DOI PMC
Wagner H., Cheng J.W., Ko E.Y. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J. Urol. 2018;16:35–43. doi: 10.1016/j.aju.2017.11.001. PubMed DOI PMC
Qazi I.H., Angel C., Yang H.X., Zoidis E., Pan B., Wu Z.Z., Ming Z., Zeng C.J., Meng Q.Y., Han H.B., et al. Role of Selenium and Selenoproteins in Male Reproductive Function: A Review of Past and Present Evidences. Antioxidants. 2019;8:268. doi: 10.3390/antiox8080268. PubMed DOI PMC
Pipan M.Z., Mrkun J., Strajn B.J., Vrtac K.P., Kos J., Pislar A., Zrimsek P. The influence of macro- and microelements in seminal plasma on diluted boar sperm quality. Acta Vet. Scand. 2017;59:11. doi: 10.1186/s13028-017-0279-y. PubMed DOI PMC
Zambonino M.C., Quizhpe E.M., Mouheb L., Rahman A., Agathos S.N., Dahoumane S.A. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials. 2023;13:424. doi: 10.3390/nano13030424. PubMed DOI PMC
Zheng Y.L., Dai W.Z., Hu X.L., Hong Z.P. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim. Feed Sci. Technol. 2020;260:114345. doi: 10.1016/j.anifeedsci.2019.114345. DOI
Horky P., Ruttkay-Nedecky B., Nejdl L., Richtera L., Cernei N., Pohanka M., Kopel P., Skladanka J., Hloucalova P., Slama P., et al. Electrochemical Methods for Study of Influence of Selenium Nanoparticles on Antioxidant Status of Rats. Int. J. Electrochem. Sci. 2016;11:2799–2824. doi: 10.1016/S1452-3981(23)16142-6. DOI
Lee M.T., Lin W.C., Yu B., Lee T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2017;30:299–308. doi: 10.5713/ajas.16.0438. PubMed DOI PMC
Bisht N., Phalswal P., Khanna P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater. Adv. 2022;3:1415–1431. doi: 10.1039/D1MA00639H. DOI
Sentkowska A., Pyrzynska K. The Influence of Synthesis Conditions on the Antioxidant Activity of Selenium Nanoparticles. Molecules. 2022;27:2486. doi: 10.3390/molecules27082486. PubMed DOI PMC
Council N.R. Nutrient Requirements of Swine: Eleventh Revised Edition. The National Academies Press; Washington, DC, USA: 2012. p. 420.
Urbankova L., Skalickova S., Pribilova M., Ridoskova A., Pelcova P., Skladanka J., Horky P. Effects of Sub-Lethal Doses of Selenium Nanoparticles on the Health Status of Rats. Toxics. 2021;9:28. doi: 10.3390/toxics9020028. PubMed DOI PMC
Lovercamp K.W., Stewart K.R., Lin X., Flowers W.L. Effect of dietary selenium on boar sperm quality. Anim. Reprod. Sci. 2013;138:268–275. doi: 10.1016/j.anireprosci.2013.02.016. PubMed DOI
Sochor J., Pohanka M., Ruttkay-Nedecky B., Zitka O., Hynek D., Mares P., Zeman L., Adam V., Kizek R. Effect of selenium in organic and inorganic form on liver, kidney, brain and muscle of Wistar rats. Cent. Eur. J. Chem. 2012;10:1442–1451. doi: 10.2478/s11532-012-0064-8. DOI
R Development Core Team . R: A Language and Environment for Statistical Computing. R Development Core Team; Vienna, Austria: 2022.
Surai P.F., Fisinin V.I. Selenium in Pig Nutrition and Reproduction: Boars and Semen Quality—A Review. Asian-Australas. J. Anim. Sci. 2015;28:730–746. doi: 10.5713/ajas.14.0593. PubMed DOI PMC
Skalickova S., Milosavljevic V., Cihalova K., Horky P., Richtera L., Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001. PubMed DOI
Hozyen H.F., Khalil H.M.A., Ghandour R.A., Al-Mokaddem A.K., Amer M.S., Azouz R.A. Nano selenium protects against deltamethrin-induced reproductive toxicity in male rats. Toxicol. Appl. Pharmacol. 2020;408:115274. doi: 10.1016/j.taap.2020.115274. PubMed DOI
Karadag A., Ozcelik B., Saner S. Review of Methods to Determine Antioxidant Capacities. Food Anal. Methods. 2009;2:41–60. doi: 10.1007/s12161-008-9067-7. DOI
Amorati R., Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015;49:633–649. doi: 10.3109/10715762.2014.996146. PubMed DOI
Gulcin I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020;94:651–715. doi: 10.1007/s00204-020-02689-3. PubMed DOI
Barranco I., Tvarijonaviciute A., Perez-Patino C., Parrilla I., Ceron J.J., Martinez E.A., Rodriguez-Martinez H., Roca J. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci. Rep. 2015;5:18538. doi: 10.1038/srep18538. PubMed DOI PMC
Petrujkic B.T., Sefer D.S., Jovanovic I.B., Jovicin M., Jankovic S., Jakovljevic G., Beier R.C., Anderson R.C. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars. Anim. Feed Sci. Technol. 2014;197:194–205. doi: 10.1016/j.anifeedsci.2014.09.001. DOI
Pavaneli A.P.P., Martinez C.H.G., Nakasone D.H., Pedrosa A.C., Mendonca M.V., Martins S., Kawai G.K.V., Nagai K.K., Nichi M., Fontinhas-Netto G.V., et al. Hydroxy-selenomethionine as an organic source of selenium in the diet improves boar reproductive performance in artificial insemination programs. J. Anim. Sci. 2021;99:skab320. doi: 10.1093/jas/skab320. PubMed DOI PMC
Au A., Mojadadi A., Shao J.Y., Ahmad G., Witting P.K. Physiological Benefits of Novel Selenium Delivery via Nanoparticles. Int. J. Mol. Sci. 2023;24:6068. doi: 10.3390/ijms24076068. PubMed DOI PMC
Bhattacharjee A., Basu A., Bhattacharya S. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. Nucleus. 2019;62:259–268. doi: 10.1007/s13237-019-00303-1. DOI
Constantinescu-Aruxandei D., Frincu R.M., Capra L., Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients. 2018;10:1466. doi: 10.3390/nu10101466. PubMed DOI PMC
Safa S., Moghaddam G., Jozani R.J., Kia H.D., Janmohammadi H. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Anim. Reprod. Sci. 2016;174:100–106. doi: 10.1016/j.anireprosci.2016.09.011. PubMed DOI
Alavi M.H., Allymehr M., Talebi A., Najafi G. Comparative effects of nano-selenium and sodium selenite supplementations on fertility in aged broiler breeder males. Vet. Res. Forum. 2020;11:135–141. doi: 10.30466/vrf.2018.83172.2093. PubMed DOI PMC
Shi L.G., Yang R.J., Yue W.B., Xun W.J., Zhang C.X., Ren Y.S., Shi L., Lei F.L. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim. Reprod. Sci. 2010;118:248–254. doi: 10.1016/j.anireprosci.2009.10.003. PubMed DOI
Horky P., Skalickova S., Urbankova L., Baholet D., Kociova S., Bytesnikova Z., Kabourkova E., Lackova Z., Cernei N., Gagic M., et al. Zincphosphate-based nanoparticles as a novel antibacterial agent: In vivo study on rats after dietary exposure. J. Anim. Sci. Biotechnol. 2019;10:17. doi: 10.1186/s40104-019-0319-8. PubMed DOI PMC
Liu C.L., Li Y.F., Li H.Y., Wang Y.C., Zhao K. Nano-Selenium and Macleaya cordata Extracts Improved Immune Functions of Intrauterine Growth Retardation Piglets under Maternal Oxidation Stress. Biol. Trace Elem. Res. 2022;200:3975–3982. doi: 10.1007/s12011-021-03009-1. PubMed DOI
Horky P., Skladanka J., Nevrkla P., Slama P. Effect of Diet Supplemented with Antioxidants (Selenium, Copper, Vitamins E And C) on Antioxidant Status and Ejaculate Quality of Breeding Boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI
Gloria A., Contri A., Grotta L., Carluccio A., Robbe D., Ianni A., Vignola G., Martino G. Effect of dietary grape marc on fresh and refrigerated boar semen. Anim. Reprod. Sci. 2019;205:18–26. doi: 10.1016/j.anireprosci.2019.03.016. PubMed DOI
Pena S.T., Gummow B., Parker A.J., Paris D. Antioxidant supplementation mitigates DNA damage in boar (Sus scrofa domesticus) spermatozoa induced by tropical summer. PLoS ONE. 2019;14:e0216143. doi: 10.1371/journal.pone.0216143. PubMed DOI PMC
Dorostkar K., Alavi-Shoushtari S.M., Mokarizadeh A. Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis) Vet. Res. Forum. 2012;3:263–268. PubMed PMC