Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure

. 2019 ; 10 () : 17. [epub] 20190212

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30805185

BACKGROUND: Development of new nanomaterials that inhibit or kill bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles (NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens. RESULTS: Four formulations of zinc nanoparticles (ZnA, ZnB, ZnC, and ZnD) based on phosphates with spherical (ZnA, ZnB) or irregular (ZnC, ZnD) morphology were prepared. The highest in vitro inhibitory effect of our NPs was observed against Staphylococcus aureus (inhibitory concentration values, IC50, ranged from 0.5 to 1.6 mmol/L), followed by Escherichia coli (IC50 0.8-1.5 mmol/L). In contrast, methicillin resistant S. aureus (IC50 1.2-4.7 mmol/L) was least affected and this was similar to inhibitory patterns of commercial ZnO-based NPs and ZnO. After the successful in vitro testing, the in vivo study with rats based on dietary supplementation with zinc NPs was conducted. Four groups of rats were treated by 2,000 mg Zn/kg diet of ZnA, ZnB, ZnC, and ZnD, for comparison two groups were supplemented by 2,000 mg Zn/kg diet of ZnO-N and ZnO, and one group (control) was fed only by basal diet. The significantly higher (P < 0.05) Zn level in liver and kidney of all treated groups was found, nevertheless Zn NPs did not greatly influence antioxidant status of rats. However, the total aerobic and coliform bacterial population in rat feces significantly decreased (P < 0.05) in all zinc groups after 30 d of the treatment. Furthermore, when compared to the ZnO group, ZnA and ZnC nanoparticles reduced coliforms significantly more (P < 0.05). CONCLUSIONS: Our results demonstrate that phosphate-based zinc nanoparticles have the potential to act as antibiotic agents.

Zobrazit více v PubMed

Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Rajwade JM. Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep. 2018;8:7. doi: 10.1038/s41598-018-25247-5. PubMed DOI PMC

Hagedorn K, Li WY, Liang QJ, Dilger S, Noebels M, Wagner MR, et al. Catalytically doped semiconductors for chemical gas sensing: aerogel-like aluminum-containing zinc oxide materials prepared in the gas phase. Adv Funct Mater. 2016;26(20):3424–3437. doi: 10.1002/adfm.201505355. DOI

Shaheen TI, El-Naggar ME, Abdelgawad AM, Hebeish A. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. Int J Biol Macromol. 2016;83:426–432. doi: 10.1016/j.ijbiomac.2015.11.003. PubMed DOI

Al-Naamani L, Dobretsov S, Dutta J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol. 2016;38:231–237. doi: 10.1016/j.ifset.2016.10.010. DOI

Javed MS, Chen J, Chen L, Xi Y, Zhang CL, Wan BY, et al. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J Mater Chem A. 2016;4(2):667–674. doi: 10.1039/C5TA08752J. DOI

Wang C, Zhang LG, Su WP, Ying ZX, He JT, Zhang LL, et al. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS One. 2017;12(7):14. PubMed PMC

Kaviyarasu K, Geetha N, Kanimozhi K, Magdalane CM, Sivaranjani S, Ayeshamariam A, et al. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater Sci Eng C-Mater Biol Appl. 2017;74:325–33. PubMed

Shankar S, Rhim JW. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Carbohydr Polym. 2017;163:137–145. doi: 10.1016/j.carbpol.2017.01.059. PubMed DOI

Oun AA, Rhim JW. Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll. 2017;67:45–53. doi: 10.1016/j.foodhyd.2016.12.040. DOI

Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed-Nanotechnol Biol Med. 2011;7(2):184–92. PubMed

Xie YP, He YP, Irwin PL, Jin T, Shi XM. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325–31. PubMed PMC

Alves MM, Bouchami O, Tavares A, Cordoba L, Santos CF, Miragaia M, et al. New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant Staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9(34):28157–67. PubMed

Hameed ASH, Karthikeyan C, Ahamed AP, Thajuddin N, Alharbi NS, Alharbi SA, et al. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci Rep. 2016;6:11. PubMed PMC

Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS. Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev. 2014;78:88–104. doi: 10.1016/j.addr.2014.08.004. PubMed DOI

Abu Ali H, Shalash AM, Akkawi M, Jaber S. Synthesis, characterization and in vitro biological activity of new zinc (II) complexes of the nonsteroidal anti-inflammatory drug sulindac and nitrogen-donor ligands. Appl Organomet Chem. 2017;31(11):14.

Jiang YH, Zhang LL, Wen DS, Ding YL. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. Coli. Mater Sci Eng C-Mater Biol Appl. 2016;69:1361–6. PubMed

Cai Q, Gao YY, Gao TY, Lan S, Simalou O, Zhou XY, et al. Insight into biological effects of zinc oxide nanoflowers on bacteria: why morphology matters. ACS Appl Mater Interfaces. 2016;8(16):10109–20. PubMed

Jain A, Bhargava R, Poddar P. Probing interaction of gram-positive and Gram-negative bacterial cells with ZnO nanorods. Mater Sci Eng C-Mater Biol Appl. 2013;33(3):1247–53. PubMed

Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, et al. Genotoxic effects of zinc oxide nanoparticles. Nanoscale. 2015;7(19):8931–8938. doi: 10.1039/C5NR01167A. PubMed DOI

Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87(7):1181–200. PubMed PMC

Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–2134. doi: 10.1021/nn800511k. PubMed DOI PMC

Jiao LF, Lin FH, Cao ST, Wang CC, Wu H, Shu MA, et al. Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc-loaded montmorillonite. J Anim Sci Biotechnol. 2017;8:27. doi: 10.1186/s40104-017-0156-6. PubMed DOI PMC

Pati R, Sahu R, Panda J, Sonawane A. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages. Sci Rep. 2016;6:24184. doi: 10.1038/srep24184. PubMed DOI PMC

Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7(3):219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC

Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–4028. doi: 10.1021/la104825u. PubMed DOI

Gupta A, Srivastava R. Zinc oxide nanoleaves: a scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. Ultrason Sonochem. 2018;41:47–58. doi: 10.1016/j.ultsonch.2017.09.029. PubMed DOI

Yu HY, Chen GY, Wang YB, Yao JM. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose. 2015;22(1):261–273. doi: 10.1007/s10570-014-0491-0. DOI

Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–1834. doi: 10.1016/j.drudis.2017.08.006. PubMed DOI

Dastjerdie EV, Oskoui M, Sayanjali E, Tabatabaei FS. In-vitro comparison of the antimicrobial properties of glass ionomer cements with zinc phosphate cements. Iran J Pharm Res. 2012;11(1):77–82. PubMed PMC

Chou AHK, LeGeros RZ, Chen Z, Li YH. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes. Implant Dent. 2007;16(1):89–100. doi: 10.1097/ID.0b013e318031224a. PubMed DOI

Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - An unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng C-Mater Biol Appl. 2015;51:158–66. PubMed

Gielda LM, DiRita VJ. Zinc Competition among the Intestinal Microbiota. mBio. 2012;3(4):00171–12. PubMed PMC

Lopez CA, Skaar EP. The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe. 2018;23(6):737–748. doi: 10.1016/j.chom.2018.05.008. PubMed DOI PMC

Vijayalakshmi K, Sivaraj D. Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 2015;5(84):68461–68469. doi: 10.1039/C5RA13375K. DOI

Winterhalter M, Ceccarelli M. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria. Eur J Pharm Biopharm. 2015;95:63–7. PubMed

Shore AC, Coleman DC. Staphylococcal cassette chromosome mec: recent advances and new insights. Int J Med Microbiol. 2013;303(6–7):350–9. PubMed

Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 2012;39(4):273–82. PubMed

Cavaco LM, Hasman H, Aarestrup FM. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol. 2011;150(3–4):344–8. PubMed

Hau SJ, Frana T, Sun J, Davies PR, Nicholson TL. Zinc resistance within swine-associated methicillin-resistant Staphylococcus aureus isolates in the United States is associated with multilocus sequence type lineage. Appl Environ Microbiol. 2017;83(15):9. PubMed PMC

Argudin MA, Lauzat B, Kraushaar B, Alba P, Agerso Y, Cavaco L, et al. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates. Vet Microbiol. 2016;191:88–95. PubMed

Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68(1):19–31. doi: 10.1007/s12576-017-0571-7. PubMed DOI PMC

Bondzio A, Pieper R, Gabler C, Weise C, Schulze P, Zentek J, et al. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets. PLoS One. 2013;8(11):11. doi: 10.1371/journal.pone.0081202. PubMed DOI PMC

Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, et al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine. 2012;7:3081–3097. PubMed PMC

Paek HJ, Lee YJ, Chung HE, Yoo NH, Lee JA, Kim MK, et al. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale. 2013;5(23):11416–11427. doi: 10.1039/c3nr02140h. PubMed DOI

Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol. 2013;10:9. doi: 10.1186/1743-8977-10-9. PubMed DOI PMC

Wang C, Lu JJ, Zhou L, Li J, Xu JM, Li WJ, et al. Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS One. 2016;11(10):14. PubMed PMC

Jemai H, Messaoudi I, Chaouch A, Kerkeni A. Protective effect of zinc supplementation on blood antioxidant defense system in rats exposed to cadmium. J Trace Elem in Med Bio. 2007;21(4):269–273. doi: 10.1016/j.jtemb.2007.08.001. PubMed DOI

Gu YH, Zhao Z. Significance of the changes occurring in the levels of interleukins, SOD and MDA in rat pulmonary tissue following exposure to different altitudes and exposure times. Exp Ther Med. 2015;10(3):915–920. doi: 10.3892/etm.2015.2639. PubMed DOI PMC

Liu JH, Ma X, Xu YY, Tang H, Yang ST, Yang YF, et al. Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicol Res. 2017;6(2):134–143. doi: 10.1039/C6TX00370B. PubMed DOI PMC

Pati R, Das I, Mehta RK, Sahu R, Sonawane A. Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci. 2016;150(2):454–72. PubMed

Syama S, Sreekanth PJ, Varma HK, Mohanan PV. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol Mech Methods. 2014;24(9):644–653. doi: 10.3109/15376516.2014.956914. PubMed DOI

Arakha M, Roy J, Nayak PS, Mallick B, Jha S. Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radic Biol Med. 2017;110:42–53. doi: 10.1016/j.freeradbiomed.2017.05.015. PubMed DOI

Hou J, Wu YZ, Li X, Wei BB, Li SG, Wang XK. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere. 2018;193:852–860. doi: 10.1016/j.chemosphere.2017.11.077. PubMed DOI

Shin YJ, Lee WM, Kwak JI, An YJ. Dissolution of zinc oxide nanoparticles in exposure media of algae, daphnia, and fish embryos for nanotoxicological testing. Chem Ecol. 2018;34(3):229–240. doi: 10.1080/02757540.2017.1405943. DOI

Brun NR, Lenz M, Wehrli B, Fent K. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions. Sci Total Environ. 2014;476:657–666. doi: 10.1016/j.scitotenv.2014.01.053. PubMed DOI

Jihen E, Imed M, Fatima H, Abdelhamid K. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: histology and cd accumulation. Food Chem Toxicol. 2008;46(11):3522–7. PubMed

Chatzicharalampous C, Jeelani R, Mikhael S, Aldhaheri S, Najeemudin S, Morris RT, et al. Zinc: An essential metal for maintenance of female fertility. Fertil Steril. 2018;109(3):E19. doi: 10.1016/j.fertnstert.2018.02.043. DOI

Kumar N, Krishnani KK, Kumar P, Singh NP. Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. J Therm Biol. 2017;70:61–8. PubMed

Torabi F, Shafaroudi MM, Rezaei N. Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats. Int J Reprod Biomed. 2017;15(7):403–412. doi: 10.29252/ijrm.15.7.403. PubMed DOI PMC

Lee CM, Jeong HJ, Yun KN, Kim DW, Sohn MH, Lee JK, et al. Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int J Nanomedicine. 2012;7:3203–3209. PubMed PMC

Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90–95. doi: 10.1016/j.taap.2015.12.017. PubMed DOI

Westmeier D, Hahlbrock A, Reinhardt C, Frohlich-Nowoisky J, Wessler S, Vallet C, et al. Nanomaterial-microbe cross-talk: physicochemical principles and (patho) biological consequences. Chem Soc Rev. 2018;47(14):5312–5337. doi: 10.1039/C6CS00691D. PubMed DOI

Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. Mucus and microbiota as emerging players in gut nanotoxicology: the example of dietary silver and titanium dioxide nanoparticles. Crit Rev Food Sci Nutr. 2018;58(6):1023–1032. doi: 10.1080/10408398.2016.1243088. PubMed DOI

Qiu KY, Durham PG, Anselmo AC. Inorganic nanoparticles and the microbiome. Nano Res. 2018;11(10):4936–4954. doi: 10.1007/s12274-018-2137-2. DOI

Yausheva E, Miroshnikov S, Sizova E. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. Environ Sci Pollut Res. 2018;25(18):18109–18120. doi: 10.1007/s11356-018-1991-5. PubMed DOI

Feng YN, Min LJ, Zhang WD, Liu J, Hou ZM, Chu MQ, et al. Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites. Front Microbiol. 2017;8:10. PubMed PMC

Li JQ, Chen HQ, Wang B, Cai CX, Yang X, Chai ZF, et al. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Rep. 2017;7:11. doi: 10.1038/s41598-017-00052-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...