Efficacy of zinc nanoparticle supplementation on ruminal environment in lambs
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39306666
PubMed Central
PMC11416022
DOI
10.1186/s12917-024-04281-8
PII: 10.1186/s12917-024-04281-8
Knihovny.cz E-zdroje
- Klíčová slova
- Fermentation, Ruminal histology, Ruminal microorganisms, Zinc nanoparticles,
- MeSH
- bachor * účinky léků metabolismus mikrobiologie MeSH
- dieta * veterinární MeSH
- fermentace * MeSH
- kovové nanočástice aplikace a dávkování MeSH
- krmivo pro zvířata * analýza MeSH
- ovce MeSH
- oxid zinečnatý aplikace a dávkování farmakologie MeSH
- potravní doplňky * MeSH
- střevní mikroflóra účinky léků MeSH
- zinek * farmakologie aplikace a dávkování metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid zinečnatý MeSH
- zinek * MeSH
BACKGROUND: Zinc nanoparticles (NPs) are characterized by high bioavailability, small size, and high absorbability. The purpose of this experiment was to determine the effect of Zn-NP feed supplementation on ruminal fermentation, microbiota, and histopathology in lambs. In vitro (24 h), short-term (STE, 28 d), and long-term (LTE, 70 d) experiments were performed. The lambs in STE were fed a basal diet (BD) composed of 350 g/d ground barley and 700 g/d meadow hay (Control), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NPs), and BD enriched with Zn phosphate-based NPs (80 mg Zn/kg of diet, ZnP-NP). The in vitro gas production technique was used in incubated rumen fluid from STE. The lambs in LTE were fed BD (Control), BD enriched with ZnO-NPs (40 mg Zn/kg of diet, ZnO-NP40), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NP80) and BD enriched with ZnO (80 mg Zn/kg of diet, ZnO-80). RESULTS: After 24 h of incubation, dry matter digestibility was higher for ZnO-NP and ZnP-NP substrates than the control in an in vitro experiment (P < 0.001). The total bacterial population in the STE was lower (P < 0.001) in the ZnP-NP group than in the control and ZnO-NP groups, but the protozoan populations were not significantly different. The ammonia-N concentration in LTE was lowest in the ZnO-NP80 group (P = 0.002), but the activities of carboxymethyl cellulase (P < 0.001) and xylanase (P = 0.002) were higher in the ZnO-NP40, ZnO-NP80, and ZnO-80 groups than in the control group. Morphological observation after STE and LTE revealed histological changes (e.g. inflammation of the epithelium or edema of the connective tissue) in the rumen of lambs. CONCLUSION: Zn-NP supplementation up to 70 d improved feed-use efficiency and influenced ammonia-N concentration and activities of hydrolases in the rumen. The active ruminal fermentation affected the health of the ruminal papillae and epithelium in the lambs, regardless of the application's form, dose, or duration. However, by affecting rumen microbial fermentation, Zn-NPs could alter fermentation patterns, thereby increasing the capacity of host rumen epithelial cells to transport short-chain fatty acids.
Department of Animal Nutrition Poznan University of Life Sciences Wolynska 33 Poznan 60 637 Poland
University of Veterinary Medicine and Pharmacy in Košice Komenského 73 Košice 041 81 Slovak Republic
Zobrazit více v PubMed
Ibrahim KS, El-Sayed EM. Potential role of nutrients on immunity. Int Food Res J. 2016;23:464–74.
Hilal EY, Elkhairey MAE, Osman AOA. The role of zinc, manganese and copper in rumen metabolism and immune function: a review article. Open J Anim Sci. 2016;6:304–24. 10.4236/ojas.2016.64035.
EFSA. Scientific opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA J. 2014;12:3668-10.2903/j.efsa.2014.3668.
Spears JW. Trace mineral bioavailability in ruminants. J Nutr. 2003;133:1506S-1509S. 10.1093/jn/133.5.1506S. PubMed
Grešáková Ľ, Tokarčíková K, Čobanová K. Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs. Agriculture. 2021;11(11):1093. 10.3390/agriculture11111093.
López-Alonso M. Trace minerals and livestock: not too much not too little. ISRN Vet Sci. 2012;2012: 704825. 10.5402/2012/704825. PubMed PMC
Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci. 2018;101(4):2763–813. 10.3168/jds.2017-13112. PubMed
Alimohamady R, Aliarabi H, Bruckmaier RM, Christensen RG. Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biol Trace Elem Res. 2019;189:75–84. 10.1007/s12011-018-1448-1. PubMed
Nayeri A, Upah NC, Sucu E, Sanz-Fernandez MV, DeFrain JM, Gorden PJ, Baumgard LH. Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. J Dairy Sci. 2014;97:4392–404. 10.3168/jds.2013-7541. PubMed
Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, Bilal RM, Elnesr SS, Dawood MAO, Nagadi SA, Elwan HAM, ALmasoudi AG, Attia YA. Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals (Basel). 2021;11:1916. 10.3390/ani11071916. PubMed PMC
Vázquez-Armijo JF, Martínez-Tinajero JJ, López D, Salem AF, Rojo R. In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biol Trace Elem Res. 2011;144(1–3):580–7. 10.1007/s12011-011-9113-y. PubMed
Youssef AM, Azzaz HH, Noha A, Hassaan El-Nomeary YA, Shakweer WME. Facile green preparation of zinc oxide nanoparticles and its effects on in vitro feed degradation, ruminal fermentation, and total gas production. Egypt J Chem. 2023;66:363–9. 10.21608/EJCHEM.2022.150103.6504.
Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim Nutr. 2016;2:134–41. 10.1016/j.aninu.2016.06.003. PubMed PMC
Swain PS, Rajendran D, Rao SB, Dominic G. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet World. 2015;8:888–91. 10.14202/vetworld.2015.888-891. PubMed PMC
El Sabry MI, McMillin KW, Sabliov CM. Nanotechnology considerations for poultry and livestock production systems: a review. Ann Anim Sci. 2018;18:319–34. 10.1515/aoas-2017-0047.
Abdollahi M, Rezaei J, Fazaeli H. Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Arch Anim Nutr. 2020;74:189–205. 10.1080/1745039X.2019.1690389. PubMed
Alijani K, Rezaei J, Rouzbehan Y. Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep. Anim Feed Sci Technol. 2020;267: 114532. 10.1016/j.anifeedsci.2020.114532.
Najafzadeh H, Ghoreishi SM, Mohammadian B, Rahimi E, Afzalzadeh MR, Kazemivarnamkhasti M, Ganjealidarani H. Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Vet World. 2013;6:534–7. 10.5455/vetworld.2013.534-537.
Pandurangan M, Veerappan M, Kim DH. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol. 2015;175:1270–80. 10.1007/s12010-014-1351-y. PubMed
Petrič D, Mravčáková D, Kucková K, Kišidayová S, Cieslak A, Szumacher-Strabel M, Huang H, Kolodziejski P, Lukomska A, Slusarczyk S, Čobanová K, Váradyová Z. Impact of zinc and/or herbal mixture on ruminal fermentation, microbiota, and histopathology in lambs. Front Vet Sci. 2021;8: 630971. 10.3389/fvets.2021.630971. PubMed PMC
Graham C, Simmons NL. Functional organization of the bovine rumen epithelium. Am J Physiol Regul Integr Comp Physiol. 2005;288:R173-181. 10.1152/ajpregu.00425.2004. PubMed
Rahman HS, Othman HH, Abdullah R, Edin HYAS, Al-Haj NA. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet Med Sci. 2022;8:1769–79. 10.1002/vms3.814. PubMed PMC
Riazi H, Rezaei J, Rouzbehan Y. Effects of supplementary nano-ZnO on in vitro ruminal fermentation, methane release, antioxidants, and microbial biomass. Turk J Vet Anim Sci. 2019;43:737–46. 10.3906/vet-1905-48.
Palangi V, Macit M, Nadaroglu H, Taghizadeh A. Effects of green-synthesized CuO and ZnO nanoparticles on ruminal mitigation of methane emission to the enhancement of the cleaner environment. Biomass Conv Bioref. 2024;14:5447–55. 10.1007/s13399-022-02775-9.
Mortimer M, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. 2010;269:182–9. 10.1016/j.tox.2009.07.007. PubMed
Sarker NC, Keomanivong F, Borhan M, Rahman S, Swanson K. In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions. J Anim Sci Technol. 2018;60:27. 10.1186/s40781-018-0185-5. PubMed PMC
Ghaffri Chanzanagh E, Seifdavati J, Gheshlagh FMA, Benamar HA, Sharifi RS. Effect of ZnO nanoparticles on in vitro gas production of some animal and plant protein sources. Kafkas Univ Vet Fak Derg. 2018;24:25–32. 10.9775/kvfd.2017.18187.
Hosseini-Vardanjani SF, Rezaei J, Karimi-Dehkordi S, Rouzbehan Y. Effect of feeding nano-ZnO on performance, rumen fermentation, leukocytes, antioxidant capacity, blood serum enzymes and minerals of ewes. Small Rumin Res. 2020;191: 106170. 10.1016/j.smallrumres.2020.106170.
Yusuf AO, Adeyi TK, Oni AO, Owalabi AJ, Sowande SO. Nano zinc supplementation in ruminant’s livestock, influence on physiological, immune functions and oxidative stability of West African dwarf goat bucks. Comp Clin Pathol. 2023;32:629–43. 10.1007/s00580-023-03471-4.
Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol. 2015;6:465. 10.3389/fmicb.2015.00465. PubMed PMC
Pisulewski PM, Okorie AU, Buttery PJ, Haresign W, Lewis D. Ammonia concentration and protein synthesis in the rumen. J Sci Food Agric. 1981;32:759–66. 10.1002/jsfa.2740320803. PubMed
Nocek JE, Russell JB. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability for microbial synthesis and milk production. J Dairy Sci. 1988;71:2070–107. 10.3168/jds.S0022-0302(88)79782-9.
Wang RL, Liang JG, Lu L, Zhang LY, Li SF, Luo XG. Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows. Biol Trace Elem Res. 2013;152:16–24. 10.1007/s12011-012-9585-4. PubMed
Chen M, Xi Y, Zhang L, Zeng H, Li Y, Han Z. Effects of zinc-bearing palygorskite on rumen fermentation in vitro. Asian-Aust J Anim Sci. 2019;32:63–71. 10.5713/ajas.17.0920. PubMed PMC
Váradyová Z, Mravčáková D, Holodová M, Grešáková Ľ, Pisarčíková J, Barszcz M, Taciak M, Tuśnio A, Kišidayová S, Čobanová K. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. J Anim Physiol Anim Nutr (Berl). 2018;102(5):1131–45. 10.1111/jpn.12940. PubMed
Spears JW, Schlegel P, Seal MC, Lloyd KE. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livest Prod Sci. 2004;90:211–7. 10.1016/j.livprodsci.2004.05.001.
Froetschel MA, Martin AC, Amos HE, Evans JJ. Effects of zinc sulfate concentration and feeding frequency on ruminal protozoal numbers, fermentation patterns and amino acid passage in steers. J Anim Sci. 1990;68:2874–84. 10.2527/1990.6892874x. PubMed
Vigh A, Criste A, Gragnic K, Moquet L, Gerard C. Ruminal solubility and bioavailability of inorganic trace mineral sources and effects on fermentation activity measured in vitro. Agriculture. 2023;13:879. 10.3390/agriculture13040879.
Van Houtert MFJ. The production and metabolism of volatile fatty acids by ruminants fed roughages – A review. Anim Feed Sci Technol. 1993;43:189–225. 10.1016/0377-8401(93)90078-X.
Adegbeye MJ, Elghandour MMMY, Barbabosa-Pliego A, Monroy JC, Mellado M, Ravi Kanth Reddy P, Salem AZM. Nanoparticles in equine nutrition: mechanism of action and application as feed additives. J Equine Vet Sci. 2019;78:29–37. 10.1016/j.jevs.2019.04.001. PubMed
Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3–18. 10.1016/j.jtemb.2006.01.006. PubMed
Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4:82–91. 10.3945/an.112.003038. PubMed PMC
Ishaq SL, Page CM, Yeoman CJ, Murphy TW, Van Emon ML, Stewart WC. Zinc AA supplementation alters yearling ram rumen bacterial communities but zinc sulfate supplementation does not. J Anim Sci. 2019;97:687–97. 10.1093/jas/sky456. PubMed PMC
VanValin KR, Genther-Schroeder ON, Carmichael RN, Blank CP, Deters EL, Hartman SJ, Niedermayer EK, Laudert SB, Hansen SL. Influence of dietary zinc concentration and supplemental zinc source on nutrient digestibility, zinc absorption, and retention in sheep. J Anim Sci. 2018;96:5336–44. 10.1093/jas/sky384. PubMed PMC
Takizawa S, Asano R, Fukuda Y, Baba Y, Tada C, Nakai Y. Shifts in xylanases and the microbial community associated with xylan biodegradation during treatment with rumen fluid. Microb Biotechnol. 2022;15:1729–43. 10.1111/1751-7915.13988. PubMed PMC
Selinger LB, Forsberg CW, Cheng KJ. The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe. 1996;2:263–84. 10.1006/anae.1996.0036. PubMed
Dobson MJ, Brown WCB, Dobson A, Phillipson AT. A histological study of the organization of the rumen epithelium of sheep. Quart J Exptl Physiol. 1956;41:247–53. 10.1113/expphysiol.1956.sp001186. PubMed
Martín Martel S, Morales M, Morales I, Jaber JR, Rodríguez-Guisado F, Tejedor-Junco MT, Corbera JA. Pathological changes of the rumen in small ruminants associated with indigestible foreign objects. Ruminants. 2021;1:118–26. 10.3390/ruminants1020009.
Mentschel J, Leiser R, Mülling C, Pfarrer C, Claus R. Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Arch Tierernahr. 2001;55:85–102. 10.1080/17450390109386185. PubMed
Flatt WP, Warner RG, Loosli JK. Influence of purified materials on the development of the ruminant stomach. J Dairy Sci. 1958;41:1593–600. 10.3168/jds.S0022-0302(58)91138-X.
Malhi M, Gui H, Yao L, Aschenbach JR, Gäbel G, Shen Z. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion. J Dairy Sci. 2013;96:7603–16. 10.3168/jds.2013-6700. PubMed
Bannink A, France J, Lopez S, Gerrits WJ, Kebreab E, Tamminga S, Dijkstra J. Modeling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim Feed Sci Technol. 2008;143:3–26. 10.1016/j.anifeedsci.2007.05.002.
Melo LQ, Costa SF, Lopes F, Guerreiro MC, Armentano LE, Pereira MN. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption. J Anim Sci. 2013;91:1775–83. 10.2527/jas.2011-4999. PubMed
Gäbel G, Vogler S, Martens H. Short-chain fatty acids and CO2 as regulators of Na+ and Cl− absorption in isolated sheep rumen mucosa. J Comp Physiol B. 1991;161:419–26. 10.1007/BF00260803. PubMed
Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, Kabourkova E, Lackova Z, Cernei N, Gagic M, Milosavljevic V, Smolikova V, Vaclavkova E, Nevrkla P, Knot P, Krystofova O, Hynek D, Kopel P, Skladanka J, Adam V, Smerkova K. Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J Anim Sci Biotechnol. 2019;10:17. 10.1186/s40104-019-0319-8. PubMed PMC
European Commission (EC). Council Regulation (EC) 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32009R1099.
McDougall EI. Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochem J. 1948;43:99–109. 10.1042/bj0430099. PubMed PMC
Horwitz W. Official Methods of AOAC International. 17th ed. Gaithersburg; Washington, DC: Association of Official Analytical Chemists (AOAC) International; 2000.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–97. 10.3168/jds.S0022-0302(91)78551-2. PubMed
Mellenberger RW, Satter LD, Millett MA, Baker AJ. An in vitro technique for estimating digestibility of treated and untreated wood. J Anim Sci. 1970;30:1005–11. 10.2527/jas1970.3061005x.
Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci. 1980;63:64–75. 10.3168/jds.S0022-0302(80)82888-8. PubMed
Váradyová Z, Baran M, Zeleňák I. Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim Feed Sci Technol. 2005;123–124:81–94. 10.1016/j.anifeedsci.2005.04.030.
Váradyová Z, Kišidayová S, Čobanová K, Grešáková L, Babják M, Königová A, Urda Dolinská M, Várady M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin Res. 2017;151:124–32. 10.1016/j.smallrumres.2017.04.023.
Mikulová K, Petrič D, Komáromyová M, Batťányi D, Kozłowska M, Cieslak A, Ślusarczyk S, Várady M, Váradyová Z. Growth performance and ruminal fermentation in lambs with endoparasites and in vitro effect of medicinal plants. Agriculture. 2023;13:1826. 10.3390/agriculture13091826.
Williams AG, Coleman GS. The Rumen Protozoa. 1st ed. New York: Springer; 1992. p. 1–425.
Szulc P, Mravčáková D, Szumacher-Strabel M, Váradyová Z, Várady M, Čobanová K, Syahrulawal L, Patra AK, Cieslak A. Ruminal fermentation, microbial population and lipid metabolism in gastrointestinal nematode-infected lambs fed a diet supplemented with herbal mixtures. PLoS ONE. 2020;15: e0231516. 10.1371/journal.pone.0231516. PubMed PMC
Zeng J, Bian Y, Xing P, Wu QL. Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Appl Environ Microbiol. 2012;78:177–84. 10.1128/AEM.05117-11. PubMed PMC
Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol. 2006;58:572–82. 10.1111/j.1574-6941.2006.00190.x. PubMed
Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–9. 10.1002/bit.20347. PubMed
Potu RB, AbuGhazaleh AA, Hastings D, Jones K, Ibrahim SA. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J Microbiol. 2011;49:216–23. 10.1007/s12275-011-0365-1. PubMed
Wang RF, Cao WW, Cerniglia CE. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol Cell Probes. 1997;11:259–65. 10.1006/mcpr.1997.0111. PubMed
Li M, Penner GB, Hernandez-Sanabria E, Oba M, Guan LL. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol. 2009;107:1924–34. 10.1111/j.1365-2672.2009.04376.x. PubMed
Koike S, Ueno M, Miura H, Saegusa A, Inouchi K, Inabu Y, Sugino T, Guan LL, Oba M, Kobayashi Y. Rumen microbiota and its relation to fermentation in lactose-fed calves. J Dairy Sci. 2021;104:10744–52. 10.3168/jds.2021-20225. PubMed
Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, de Wouters T, Lacroix C. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep. 2018;8(1):4318. 10.1038/s41598-018-22438-y. PubMed PMC