In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39707565
PubMed Central
PMC11660941
DOI
10.1186/s40104-024-01128-y
PII: 10.1186/s40104-024-01128-y
Knihovny.cz E-zdroje
- Klíčová slova
- Antibacterial, Biocompatibility, Heifer, Intramammary, MRSA, Mammary gland, Nanomaterial, Resistance, SeTe,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS: Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS: Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Zobrazit více v PubMed
Gomes F, Henriques M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr Microbiol. 2016;72(4):377–82. PubMed DOI
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review. Asian-Australas J Anim Sci. 2020;33(11):1699–713. PubMed DOI PMC
Cobirka M, Tancin V, Slama P. Epidemiology and classification of mastitis. Animals. 2020;10(12):17. PubMed DOI PMC
Thompson-Crispi K, Atalla H, Miglior F, Malian BA. Bovine mastitis: frontiers in immunogenetics. Front Immunol. 2014;5:493. PubMed DOI PMC
Siivonen J, Taponen S, Hovinen M, Pastell M, Lensink BJ, Pyörälä S, et al. Impact of acute clinical mastitis on cow behaviour. Appl Anim Behav Sci. 2011;132(3):101–6. DOI
Kovacevic Z, Radinovic M, Cabarkapa I, Kladar N, Bozin B. Natural agents against bovine mastitis pathogens. Antibiotics. 2021;10(2):205. PubMed DOI PMC
Hoque MN, Istiaq A, Clement RA, Sultana M, Crandall KA, Siddiki AZ, et al. Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep. 2019;9:13536. PubMed DOI PMC
Kateete DP, Kabugo U, Baluku H, Nyakarahuka L, Kyobe S, Okee M, et al. Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS ONE. 2013;8(5):e63413. PubMed DOI PMC
Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia. 2011;16(4):357–72. PubMed DOI PMC
Jamali H, Paydar M, Radmehr B, Ismail S, Dadrasnia A. Prevalence and antimicrobial resistance of DOI
Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic characterization and whole genome analysis of a strong biofilm-forming PubMed DOI PMC
Boireau C, Cazeau G, Jarrige N, Calavas D, Madec J-Y, Leblond A, et al. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016. J Dairy Sci. 2018;101(10):9451–62. PubMed DOI
Holmes MA, Zadoks RN. Methicillin resistant PubMed
Hamid S, Bhat MA, Mir IA, Taku A, Badroo GA, Nazki S, et al. Phenotypic and genotypic characterization of methicillin-resistant PubMed DOI PMC
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine PubMed DOI PMC
Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev. 2013;27(22):2397–408. PubMed DOI PMC
Han C, Qi C, Zhao B, Cao J, Xie S, Wang S, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther. 2009;32(2):116–23. PubMed DOI
Kalinska A, Jaworski S, Wierzbicki M, Gołebiewski M. Silver and copper nanoparticles—An alternative in future mastitis treatment and prevention? Int J Mol Sci. 2019;20(7):1672. PubMed DOI PMC
Jagielski T, Bakula Z, Plen M, Kaminski M, Nowakowska J, Bielecki J, et al. The activity of silver nanoparticles against microalgae of the Prototheca genus. Nanomedicine. 2018;13(9):1025–36. PubMed DOI
Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by PubMed
Alam H, Khatoon N, Khan MA, Husain SA, Saravanan M, Sardar M. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J Clust Sci. 2020;31(5):1003–11. DOI
Tang AG, Ren QW, Wu YL, Wu C, Cheng YY. Investigation into the antibacterial mechanism of biogenic tellurium nanoparticles and precursor tellurite. Int J Mol Sci. 2022;23(19):15. PubMed DOI PMC
Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by PubMed DOI
Cruz DM, Tien-Street W, Zhang B, Huang X, Crua AV, Nieto-Argüello A, et al. Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties. Green Chem. 2019;21(8):1982–98. PubMed DOI PMC
Serov DA, Khabatova VV, Vodeneev V, Li RB, Gudkov SV. A review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles. Materials. 2023;16(15):39. PubMed DOI PMC
Ao B, Du QQ, Liu DC, Shi XS, Tu JM, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol. 2023;14:15. PubMed DOI PMC
Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B, et al. Antibacterial properties and mechanism of selenium nanoparticles synthesized by PubMed DOI
Sahoo B, Panigrahi LL, Jena S, Jha S, Arakha M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023;13(17):11406–14. PubMed DOI PMC
Cremonini E, Boaretti M, Vandecandelaere I, Zonaro E, Coenye T, Lleo MM, et al. Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microb Biotechnol. 2018;11(6):1037–47. PubMed DOI PMC
Hesabizadeh T, Hicks E, Cruz DM, Bourdo SE, Watanabe F, Bonney M, et al. Synthesis of “naked” TeO PubMed DOI PMC
Zhang Y, Hu M, Zhang W, Zhang X. Homology of selenium (Se) and tellurium (Te) endow the functional similarity of Se-doped and Te-doped mesoporous bioactive glass nanoparticles in bone tissue engineering. Ceram Int. 2022;48(3):3729–39. DOI
Cao W, Wang L, Xu H. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today. 2015;10(6):717–36. DOI
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–77. PubMed DOI PMC
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667–95. PubMed DOI PMC
Bytesnikova Z, Pecenka J, Tekielska D, Pekarková J, Ridosková A, Bezdicka P, et al. Smart bactericide based on reduced graphene oxide decorated with copper and zinc nanoparticles. Chem Biol Technol Agric. 2023;10(1):12. DOI
Tougaard S. Practical guide to the use of backgrounds in quantitative XPS. J Vac Sci Technol A. 2021;39(1):22. DOI
Claros M, Kuta J, El-Dahshan O, Michalicka J, Jimenez YP, Vallejos S. Hydrothermally synthesized MnO DOI
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, et al. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol. 2022;12:20. PubMed DOI PMC
Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, et al. Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J Anim Sci Biotechnol. 2019;10:12. PubMed DOI PMC
Kosaristanova L, Rihacek M, Sucha F, Milosavljevic V, Svec P, Dorazilova J, et al. Synergistic antibacterial action of the iron complex and ampicillin against PubMed DOI PMC
Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1):25–30. PubMed
Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. Dynamics of leukocytes and cytokines during experimentally induced PubMed DOI
Sladek Z, Rysanek D. Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland. Acta Vet Scand. 2010;52:13. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing. 2023. Retrieved from https://www.R-project.org/.
OpenAI. ChatGPT (version 4) [natural language processing software]. 2024. Retrieved from https://openai.com/chatgpt.
Ullah S, Yasin G, Ahmad A, Qin L, Yuan Q, Khan AU, et al. Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorg Chem Front. 2020;7(8):1750–61. DOI
Khan SS, Ullah I, Zada S, Ahmad A, Ahmad W, Xu H, et al. Functionalization of Se-Te nanorods with Au nanoparticles for enhanced anti-bacterial and anti-cancer activities. Materials (Basel). 2022;15(14):4813. PubMed PMC
Stocks SM. Mechanism and use of the commercially available viability stain. BacLight Cytom Part A. 2004;61A(2):189–95. PubMed DOI
Fu SL, Cai K, Wu L, Han HO. One-step synthesis of high-quality homogenous Te/Se alloy nanorods with various morphologies. CrystEngComm. 2015;17(17):3243–50. DOI
Manjunatha C, Rao PP, Bhardwaj P, Raju H, Ranganath D. New insight into the synthesis, morphological architectures and biomedical applications of elemental selenium nanostructures. Biomed Mater. 2021;16(2):19. PubMed
Yan C, Raghavan CM, Kang DJ. Photocatalytic properties of shape-controlled ultra-long elemental Te nanowires synthesized via a facile hydrothermal method. Mater Lett. 2014;116:341–4. DOI
Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119(8):4819–80. PubMed DOI
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, et al. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022;42(1):68–94. PubMed DOI PMC
Shah VR, Medina-Cruz D, Vernet-Crua A, Truong LB, Sotelo E, Mostafavi E, et al. Pepper-mediated green synthesis of selenium and tellurium nanoparticles with antibacterial and anticancer potential. J Func Biomater. 2023;14:32. PubMed PMC
Beleneva IA, Kharchenko UV, Kukhlevsky AD, Boroda AV, Izotov NV, Gnedenkov AS, et al. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. World J Microbiol Biotechnol. 2022;38(11):18. PubMed DOI
Varlamova EG, Turovsky EA, Blinova EV. Therapeutic potential and main methods of obtaining selenium nanoparticles. Int J Mol Sci. 2021;22(19):10808. PubMed DOI PMC
Varlamova EG, Goltyaev MV, Mal’tseva VN, Turovsky EA, Sarimov RM, Simakin AV, et al. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int J Mol Sci. 2021;22(15):7798. PubMed PMC
Morena AG, Bassegoda A, Hoyo J, Tzanov T. Hybrid tellurium–lignin nanoparticles with enhanced antibacterial properties. ACS Appl Mater Interfaces. 2021;13(13):14885–93. PubMed DOI PMC
Chou T-M, Ke Y-Y, Tsao Y-H, Li Y-C, Lin Z-H. Fabrication of Te and Te-Au nanowires-based carbon fiber fabrics for antibacterial applications. Int J Environ Res Public Health. 2016;13(2):202. PubMed DOI PMC
Li F, Li TY, Han XX, Zhuang H, Nie GJ, Xu HP. Nanomedicine assembled by coordinated selenium-platinum complexes can selectively induce cytotoxicity in cancer cells by targeting the glutathione antioxidant defense system. ACS Biomater Sci Eng. 2018;4(6):1954–62. PubMed DOI
Sandoval JM, Verrax J, Vásquez CC, Calderon PB. A comparative study of tellurite toxicity in normal and cancer cells. Mol Cell Toxicol. 2012;8(4):327–34. DOI
Nie TQ, Wu HL, Wong KH, Chen TF. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J Mat Chem B. 2016;4(13):2351–8. PubMed DOI
Bhartiya P, Masur K, Shome D, Kaushik N, Nguyen LN, Kaushik NK, et al. Influence of redox stress on crosstalk between fibroblasts and keratinocytes. Biology-Basel. 2021;10(12):15. PubMed PMC
Filipovic N, Usjak D, Milenkovic MT, Zheng K, Liverani L, Boccaccini AR, et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. 2021;8:624621. PubMed PMC
Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull. 2012;47(11):3719–25. DOI
Zonaro E, Lampisl S, Tumer RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol. 2015;6:11. PubMed DOI PMC
Abed NN, El-Enain I, Helal EE, Yosri M. Novel biosynthesis of tellurium nanoparticles and investigation of their activity against common pathogenic bacteria. J Taibah Univ Med Soc. 2023;18(2):400–12. PubMed PMC
Tran PA, O’Brien-Simpson N, Palmer JA, Bock N, Reynolds EC, Webster TJ, et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant PubMed DOI PMC
Huang T, Holden JA, Heath DE, O’Brien-Simpson NM, O’Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–51. PubMed DOI
Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine—An overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol. 2018;46:223–33. DOI
Xu Y, Zhang T, Che JR, Yi JJ, Wei LA, Li HL. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against PubMed DOI
Huang L, Liu M, Feng ZB, Xu XY, Chen LL, Ma ZJ, et al. Biocompatible tellurium nanoneedles with long-term stable antibacterial activity for accelerated wound healing. Mater Today Bio. 2022;15:15. PubMed PMC
Rezaei FY, Pircheraghi G, Nikbin VS. Antibacterial activity, cell wall damage, and cytotoxicity of zinc oxide nanospheres, nanorods, and nanoflowers. ACS Appl Nano Mater. 2024;7(13):15242–54.
Jiang YJ, Zheng W, Tran K, Kamilar E, Bariwal J, Ma HR, et al. Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat Commun. 2022;13:17. PubMed PMC
Campos B, Pickering AC, Rocha LS, Aguilar AP, Fabres-Klein MH, Mendes TAD, et al. Diversity and pathogenesis of PubMed DOI PMC
Wierzbicki M, Kot M, Lange A, Kalinska A, Ski MG, Jaworski S. Evaluation of the antimicrobial, cytotoxic, and physical properties of selected nano-complexes in bovine udder inflammatory pathogen control. Nanotechnol Sci Appl. 2024;17:77–94. PubMed DOI PMC
Orellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym. 2019;213:1–9. PubMed DOI
Zhou KX, Wang XF, Chen DM, Yuan YY, Wang SG, Li C, et al. Enhanced treatment effects of tilmicosin against PubMed DOI PMC
Muralidhar Y, Raj MA, Prasad TNK, Kumar TVC, Adilaxmamma K, Srilatha C, et al. Antibacterial, anti-inflammatory and antioxidant effects of acetyl-11-alpha-keto-beta-boswellic acid mediated silver nanoparticles in experimental murine mastitis. IET Nanobiotechnol. 2017;11(6):682–9. DOI
Taifa S, Muhee A, Bhat RA, Nabi SU, Roy A, Rather GA, et al. Evaluation of therapeutic efficacy of copper nanoparticles in DOI
Zhu LY, Cao XX, Xu QX, Su J, Li XH, Zhou WZ. Evaluation of the antibacterial activity of tilmicosin-SLN against PubMed DOI PMC
Schonborn S, Kromker V. Detection of the biofilm component polysaccharide intercellular adhesin in PubMed DOI
Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. Biofilm research in bovine mastitis. Front Vet Sci. 2021;8:11. PubMed DOI PMC
Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of PubMed DOI
Gomez-Gomez B, Sanz-Landaluce J, Perez-Corona MT, Madrid Y. Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems. Sci Total Environ. 2020;719:11. PubMed
Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R, et al. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother. 2011;67(1):138–48. PubMed DOI PMC
Weaver JL, Tobin GA, Ingle T, Bancos S, Stevens D, Rouse R, et al. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions. Part Fibre Toxicol. 2017;14:14. PubMed DOI PMC
Song XF, Qiao L, Yan SQ, Chen Y, Dou XN, Xu CL. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by PubMed DOI
Li Y, Zhu SB, Luo JC, Tong Y, Zheng YX, Ji LC, et al. The protective effect of selenium nanoparticles in osteoarthritis: In vitro and in vivo studies. Drug Des Dev Ther. 2023;17:1515–29. PubMed DOI PMC
Xie B, Zeng DL, Yang MJ, Tang ZY, He LZ, Chen TF. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano. 2023;17(14):14053–68. PubMed DOI
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12. PubMed DOI
Lin AG, Liu YA, Zhu XF, Chen X, Liu JW, Zhou YH, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and Inhibition. ACS Nano. 2019;13(12):13965–84. PubMed DOI
Zou XC, Jiang ZP, Li L, Huang ZH. Selenium nanoparticles coated with pH responsive silk fibroin complex for fingolimod release and enhanced targeting in thyroid cancer. Artif Cell Nanomed Biotechnol. 2021;49:83–95. PubMed DOI
Malhotra S, Welling MN, Mantri SB, Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J Biomed Mater Res Part B. 2016;104(5):993–1003. PubMed DOI
Xiao JY, Cao H, Guo SY, Xiao SZ, Li N, Li M, et al. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem-Biol Interact. 2021;347:12. PubMed DOI
Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51:58–63. PubMed DOI
Nieves LM, Hsu JC, Lau KC, Maidment ADA, Cormode DP. Silver telluride nanoparticles as biocompatible and enhanced contrast agents for X-ray imaging: an in vivo breast cancer screening study. Nanoscale. 2021;13:163–74. PubMed DOI PMC
Najimi S, Shakibaie M, Jafari E, Ameri A, Rahimi N, Forootanfar H, et al. Acute and subacute toxicities of biogenic tellurium nanorods in mice. Regul Toxicol Pharmacol. 2017;90:222–30. PubMed DOI
Yang T, Ke HT, Wang QL, Tang YA, Deng YB, Yang H, et al. Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano. 2017;11(10):10012–24. PubMed DOI
Chen SY, Xing CY, Huang DZ, Zhou CH, Ding B, Guo ZH, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci Adv. 2020;6(15):11. PubMed DOI PMC
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. Environ Sci Pollut Res. 2024;31(2):2360–76. PubMed DOI
Muchova J, Hearnden V, Michlovská L, Vistejnová L, Zavadáková A, Smerková K, et al. Mutual influence of selenium nanoparticles and FGF2-STAB(R) on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation. J Nanobiotechnol. 2021;19:16. PubMed DOI PMC
Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, et al. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets. J Anim Sci Biotechnol. 2020;11:16. PubMed DOI PMC
Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, et al. Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals. 2021;11(7):1916. PubMed DOI PMC
EFSA Scientific Committee. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, et al. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA J. 2021;19(8):e06769. PubMed PMC
EFSA Scientific Committee. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J. 2021;19(8):e06768. PubMed PMC
Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef Univ J Basic Appl Sci. 2020;9:10. DOI