In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis

. 2024 Dec 20 ; 15 (1) : 173. [epub] 20241220

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39707565
Odkazy

PubMed 39707565
PubMed Central PMC11660941
DOI 10.1186/s40104-024-01128-y
PII: 10.1186/s40104-024-01128-y
Knihovny.cz E-zdroje

BACKGROUND: Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS: Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS: Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.

Cancer Research Institute Biomedical Research Center of the Slovak Academy of Sciences Dúbravská cesta 9 Bratislava 845 05 Slovak Republic

Central European Institute of Technology Brno University of Technology Purkyňova 656 123 Brno 612 00 Czech Republic

Central European Institute of Technology University of Veterinary Sciences Brno Palackého tř 1946 1 Brno 612 42 Czech Republic

Contipro a s Dolní Dobrouč 401 Dolní Dobrouč 561 02 Czech Republic

Department of Biology and Wildlife Diseases Faculty of Veterinary Hygiene and Ecology University of Veterinary Sciences Brno Palackého tř 1946 1 Brno 612 42 Czech Republic

Department of Chemistry and Biochemistry Faculty of AgriSciences Mendel University in Brno Zemědělská 1665 1 Brno 613 00 Czech Republic

Department of Histology and Embryology Faculty of Medicine University of Ostrava Syllabova 9 Ostrava Vítkovice 700 03 Czech Republic

Department of Infectious Diseases and Preventive Medicine Veterinary Research Institute Hudcova 296 70 Brno 621 00 Czech Republic

Department of Microbiology Faculty of Medicine Charles University Alej Svobody 76 Pilsen 323 00 Czech Republic

Department of Microelectronics Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058 10 Brno 616 00 Czech Republic

Division of Clinical Microbiology and Immunology Department of Laboratory Medicine The University Hospital Brno Jihlavská 20 Brno 625 00 Czech Republic

Laboratory of Animal Immunology and Biotechnology Department of Animal Morphology Physiology and Genetics Faculty of AgriSciences Mendel University in Brno Zemědělská 1665 1 Brno 613 00 Czech Republic

Zobrazit více v PubMed

Gomes F, Henriques M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr Microbiol. 2016;72(4):377–82. PubMed

Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review. Asian-Australas J Anim Sci. 2020;33(11):1699–713. PubMed PMC

Cobirka M, Tancin V, Slama P. Epidemiology and classification of mastitis. Animals. 2020;10(12):17. PubMed PMC

Thompson-Crispi K, Atalla H, Miglior F, Malian BA. Bovine mastitis: frontiers in immunogenetics. Front Immunol. 2014;5:493. PubMed PMC

Siivonen J, Taponen S, Hovinen M, Pastell M, Lensink BJ, Pyörälä S, et al. Impact of acute clinical mastitis on cow behaviour. Appl Anim Behav Sci. 2011;132(3):101–6.

Kovacevic Z, Radinovic M, Cabarkapa I, Kladar N, Bozin B. Natural agents against bovine mastitis pathogens. Antibiotics. 2021;10(2):205. PubMed PMC

Hoque MN, Istiaq A, Clement RA, Sultana M, Crandall KA, Siddiki AZ, et al. Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep. 2019;9:13536. PubMed PMC

Kateete DP, Kabugo U, Baluku H, Nyakarahuka L, Kyobe S, Okee M, et al. Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS ONE. 2013;8(5):e63413. PubMed PMC

Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia. 2011;16(4):357–72. PubMed PMC

Jamali H, Paydar M, Radmehr B, Ismail S, Dadrasnia A. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control. 2015;54:383–8.

Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic characterization and whole genome analysis of a strong biofilm-forming Staphylococcus aureus strain associated with subclinical bovine mastitis in Colombia. Front Vet Sci. 2020;7:11. PubMed PMC

Boireau C, Cazeau G, Jarrige N, Calavas D, Madec J-Y, Leblond A, et al. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016. J Dairy Sci. 2018;101(10):9451–62. PubMed

Holmes MA, Zadoks RN. Methicillin resistant S. aureus in human and bovine mastitis. J Mammary Gland Biol Neoplasia. 2011;16(4):373–82. PubMed

Hamid S, Bhat MA, Mir IA, Taku A, Badroo GA, Nazki S, et al. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis. Vet World. 2017;10(3):363–7. PubMed PMC

Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv. 2020;27:292–308. PubMed PMC

Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev. 2013;27(22):2397–408. PubMed PMC

Han C, Qi C, Zhao B, Cao J, Xie S, Wang S, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther. 2009;32(2):116–23. PubMed

Kalinska A, Jaworski S, Wierzbicki M, Gołebiewski M. Silver and copper nanoparticles—An alternative in future mastitis treatment and prevention? Int J Mol Sci. 2019;20(7):1672. PubMed PMC

Jagielski T, Bakula Z, Plen M, Kaminski M, Nowakowska J, Bielecki J, et al. The activity of silver nanoparticles against microalgae of the Prototheca genus. Nanomedicine. 2018;13(9):1025–36. PubMed

Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865–73. PubMed

Alam H, Khatoon N, Khan MA, Husain SA, Saravanan M, Sardar M. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J Clust Sci. 2020;31(5):1003–11.

Tang AG, Ren QW, Wu YL, Wu C, Cheng YY. Investigation into the antibacterial mechanism of biogenic tellurium nanoparticles and precursor tellurite. Int J Mol Sci. 2022;23(19):15. PubMed PMC

Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res A. 2018;106(5):1400–12. PubMed

Cruz DM, Tien-Street W, Zhang B, Huang X, Crua AV, Nieto-Argüello A, et al. Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties. Green Chem. 2019;21(8):1982–98. PubMed PMC

Serov DA, Khabatova VV, Vodeneev V, Li RB, Gudkov SV. A review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles. Materials. 2023;16(15):39. PubMed PMC

Ao B, Du QQ, Liu DC, Shi XS, Tu JM, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol. 2023;14:15. PubMed PMC

Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B, et al. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX Environ Res. 2021;194:110630. PubMed

Sahoo B, Panigrahi LL, Jena S, Jha S, Arakha M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023;13(17):11406–14. PubMed PMC

Cremonini E, Boaretti M, Vandecandelaere I, Zonaro E, Coenye T, Lleo MM, et al. Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microb Biotechnol. 2018;11(6):1037–47. PubMed PMC

Hesabizadeh T, Hicks E, Cruz DM, Bourdo SE, Watanabe F, Bonney M, et al. Synthesis of “naked” TeO2 nanoparticles for biomedical applications. ACS Omega. 2022;7(27):23685–94. PubMed PMC

Zhang Y, Hu M, Zhang W, Zhang X. Homology of selenium (Se) and tellurium (Te) endow the functional similarity of Se-doped and Te-doped mesoporous bioactive glass nanoparticles in bone tissue engineering. Ceram Int. 2022;48(3):3729–39.

Cao W, Wang L, Xu H. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today. 2015;10(6):717–36.

Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–77. PubMed PMC

Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667–95. PubMed PMC

Bytesnikova Z, Pecenka J, Tekielska D, Pekarková J, Ridosková A, Bezdicka P, et al. Smart bactericide based on reduced graphene oxide decorated with copper and zinc nanoparticles. Chem Biol Technol Agric. 2023;10(1):12.

Tougaard S. Practical guide to the use of backgrounds in quantitative XPS. J Vac Sci Technol A. 2021;39(1):22.

Claros M, Kuta J, El-Dahshan O, Michalicka J, Jimenez YP, Vallejos S. Hydrothermally synthesized MnO2 nanowires and their application in Lead (II) and Copper (II) batch adsorption. J Mol Liq. 2021;325:11.

Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, et al. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol. 2022;12:20. PubMed PMC

Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, et al. Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J Anim Sci Biotechnol. 2019;10:12. PubMed PMC

Kosaristanova L, Rihacek M, Sucha F, Milosavljevic V, Svec P, Dorazilova J, et al. Synergistic antibacterial action of the iron complex and ampicillin against Staphylococcus aureus. BMC Microbiol. 2023;23:8. PubMed PMC

Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1):25–30. PubMed

Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol. 2003;96(3):193–205. PubMed

Sladek Z, Rysanek D. Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland. Acta Vet Scand. 2010;52:13. PubMed PMC

R Core Team. R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing. 2023. Retrieved from https://www.R-project.org/.

OpenAI. ChatGPT (version 4) [natural language processing software]. 2024. Retrieved from https://openai.com/chatgpt.

Ullah S, Yasin G, Ahmad A, Qin L, Yuan Q, Khan AU, et al. Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorg Chem Front. 2020;7(8):1750–61.

Khan SS, Ullah I, Zada S, Ahmad A, Ahmad W, Xu H, et al. Functionalization of Se-Te nanorods with Au nanoparticles for enhanced anti-bacterial and anti-cancer activities. Materials (Basel). 2022;15(14):4813. PubMed PMC

Stocks SM. Mechanism and use of the commercially available viability stain. BacLight Cytom Part A. 2004;61A(2):189–95. PubMed

Fu SL, Cai K, Wu L, Han HO. One-step synthesis of high-quality homogenous Te/Se alloy nanorods with various morphologies. CrystEngComm. 2015;17(17):3243–50.

Manjunatha C, Rao PP, Bhardwaj P, Raju H, Ranganath D. New insight into the synthesis, morphological architectures and biomedical applications of elemental selenium nanostructures. Biomed Mater. 2021;16(2):19. PubMed

Yan C, Raghavan CM, Kang DJ. Photocatalytic properties of shape-controlled ultra-long elemental Te nanowires synthesized via a facile hydrothermal method. Mater Lett. 2014;116:341–4.

Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119(8):4819–80. PubMed

Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, et al. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022;42(1):68–94. PubMed PMC

Shah VR, Medina-Cruz D, Vernet-Crua A, Truong LB, Sotelo E, Mostafavi E, et al. Pepper-mediated green synthesis of selenium and tellurium nanoparticles with antibacterial and anticancer potential. J Func Biomater. 2023;14:32. PubMed PMC

Beleneva IA, Kharchenko UV, Kukhlevsky AD, Boroda AV, Izotov NV, Gnedenkov AS, et al. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. World J Microbiol Biotechnol. 2022;38(11):18. PubMed

Varlamova EG, Turovsky EA, Blinova EV. Therapeutic potential and main methods of obtaining selenium nanoparticles. Int J Mol Sci. 2021;22(19):10808. PubMed PMC

Varlamova EG, Goltyaev MV, Mal’tseva VN, Turovsky EA, Sarimov RM, Simakin AV, et al. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int J Mol Sci. 2021;22(15):7798. PubMed PMC

Morena AG, Bassegoda A, Hoyo J, Tzanov T. Hybrid tellurium–lignin nanoparticles with enhanced antibacterial properties. ACS Appl Mater Interfaces. 2021;13(13):14885–93. PubMed PMC

Chou T-M, Ke Y-Y, Tsao Y-H, Li Y-C, Lin Z-H. Fabrication of Te and Te-Au nanowires-based carbon fiber fabrics for antibacterial applications. Int J Environ Res Public Health. 2016;13(2):202. PubMed PMC

Li F, Li TY, Han XX, Zhuang H, Nie GJ, Xu HP. Nanomedicine assembled by coordinated selenium-platinum complexes can selectively induce cytotoxicity in cancer cells by targeting the glutathione antioxidant defense system. ACS Biomater Sci Eng. 2018;4(6):1954–62. PubMed

Sandoval JM, Verrax J, Vásquez CC, Calderon PB. A comparative study of tellurite toxicity in normal and cancer cells. Mol Cell Toxicol. 2012;8(4):327–34.

Nie TQ, Wu HL, Wong KH, Chen TF. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J Mat Chem B. 2016;4(13):2351–8. PubMed

Bhartiya P, Masur K, Shome D, Kaushik N, Nguyen LN, Kaushik NK, et al. Influence of redox stress on crosstalk between fibroblasts and keratinocytes. Biology-Basel. 2021;10(12):15. PubMed PMC

Filipovic N, Usjak D, Milenkovic MT, Zheng K, Liverani L, Boccaccini AR, et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. 2021;8:624621. PubMed PMC

Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull. 2012;47(11):3719–25.

Zonaro E, Lampisl S, Tumer RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol. 2015;6:11. PubMed PMC

Abed NN, El-Enain I, Helal EE, Yosri M. Novel biosynthesis of tellurium nanoparticles and investigation of their activity against common pathogenic bacteria. J Taibah Univ Med Soc. 2023;18(2):400–12. PubMed PMC

Tran PA, O’Brien-Simpson N, Palmer JA, Bock N, Reynolds EC, Webster TJ, et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomed. 2019;14:4613–24. PubMed PMC

Huang T, Holden JA, Heath DE, O’Brien-Simpson NM, O’Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–51. PubMed

Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine—An overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol. 2018;46:223–33.

Xu Y, Zhang T, Che JR, Yi JJ, Wei LA, Li HL. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens. Biofouling. 2023;39(2):157–70. PubMed

Huang L, Liu M, Feng ZB, Xu XY, Chen LL, Ma ZJ, et al. Biocompatible tellurium nanoneedles with long-term stable antibacterial activity for accelerated wound healing. Mater Today Bio. 2022;15:15. PubMed PMC

Rezaei FY, Pircheraghi G, Nikbin VS. Antibacterial activity, cell wall damage, and cytotoxicity of zinc oxide nanospheres, nanorods, and nanoflowers. ACS Appl Nano Mater. 2024;7(13):15242–54.

Jiang YJ, Zheng W, Tran K, Kamilar E, Bariwal J, Ma HR, et al. Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat Commun. 2022;13:17. PubMed PMC

Campos B, Pickering AC, Rocha LS, Aguilar AP, Fabres-Klein MH, Mendes TAD, et al. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res. 2022;18:16. PubMed PMC

Wierzbicki M, Kot M, Lange A, Kalinska A, Ski MG, Jaworski S. Evaluation of the antimicrobial, cytotoxic, and physical properties of selected nano-complexes in bovine udder inflammatory pathogen control. Nanotechnol Sci Appl. 2024;17:77–94. PubMed PMC

Orellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym. 2019;213:1–9. PubMed

Zhou KX, Wang XF, Chen DM, Yuan YY, Wang SG, Li C, et al. Enhanced treatment effects of tilmicosin against Staphylococcus aureus cow mastitis by self-assembly sodium alginate-chitosan nanogel. Pharmaceutics. 2019;11(10):17. PubMed PMC

Muralidhar Y, Raj MA, Prasad TNK, Kumar TVC, Adilaxmamma K, Srilatha C, et al. Antibacterial, anti-inflammatory and antioxidant effects of acetyl-11-alpha-keto-beta-boswellic acid mediated silver nanoparticles in experimental murine mastitis. IET Nanobiotechnol. 2017;11(6):682–9.

Taifa S, Muhee A, Bhat RA, Nabi SU, Roy A, Rather GA, et al. Evaluation of therapeutic efficacy of copper nanoparticles in Staphylococcus aureus-induced rat mastitis model. J Nanomater. 2022;2022:12.

Zhu LY, Cao XX, Xu QX, Su J, Li XH, Zhou WZ. Evaluation of the antibacterial activity of tilmicosin-SLN against Streptococcus agalactiae: in vitro and in vivo studies. Int J Nanomed. 2018;13:4747–55. PubMed PMC

Schonborn S, Kromker V. Detection of the biofilm component polysaccharide intercellular adhesin in Staphylococcus aureus infected cow udders. Vet Microbiol. 2016;196:126–8. PubMed

Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. Biofilm research in bovine mastitis. Front Vet Sci. 2021;8:11. PubMed PMC

Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015;29:235–41. PubMed

Gomez-Gomez B, Sanz-Landaluce J, Perez-Corona MT, Madrid Y. Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems. Sci Total Environ. 2020;719:11. PubMed

Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R, et al. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother. 2011;67(1):138–48. PubMed PMC

Weaver JL, Tobin GA, Ingle T, Bancos S, Stevens D, Rouse R, et al. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions. Part Fibre Toxicol. 2017;14:14. PubMed PMC

Song XF, Qiao L, Yan SQ, Chen Y, Dou XN, Xu CL. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food Funct. 2021;12(14):6403–15. PubMed

Li Y, Zhu SB, Luo JC, Tong Y, Zheng YX, Ji LC, et al. The protective effect of selenium nanoparticles in osteoarthritis: In vitro and in vivo studies. Drug Des Dev Ther. 2023;17:1515–29. PubMed PMC

Xie B, Zeng DL, Yang MJ, Tang ZY, He LZ, Chen TF. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano. 2023;17(14):14053–68. PubMed

Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12. PubMed

Lin AG, Liu YA, Zhu XF, Chen X, Liu JW, Zhou YH, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and Inhibition. ACS Nano. 2019;13(12):13965–84. PubMed

Zou XC, Jiang ZP, Li L, Huang ZH. Selenium nanoparticles coated with pH responsive silk fibroin complex for fingolimod release and enhanced targeting in thyroid cancer. Artif Cell Nanomed Biotechnol. 2021;49:83–95. PubMed

Malhotra S, Welling MN, Mantri SB, Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J Biomed Mater Res Part B. 2016;104(5):993–1003. PubMed

Xiao JY, Cao H, Guo SY, Xiao SZ, Li N, Li M, et al. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem-Biol Interact. 2021;347:12. PubMed

Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51:58–63. PubMed

Nieves LM, Hsu JC, Lau KC, Maidment ADA, Cormode DP. Silver telluride nanoparticles as biocompatible and enhanced contrast agents for X-ray imaging: an in vivo breast cancer screening study. Nanoscale. 2021;13:163–74. PubMed PMC

Najimi S, Shakibaie M, Jafari E, Ameri A, Rahimi N, Forootanfar H, et al. Acute and subacute toxicities of biogenic tellurium nanorods in mice. Regul Toxicol Pharmacol. 2017;90:222–30. PubMed

Yang T, Ke HT, Wang QL, Tang YA, Deng YB, Yang H, et al. Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano. 2017;11(10):10012–24. PubMed

Chen SY, Xing CY, Huang DZ, Zhou CH, Ding B, Guo ZH, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci Adv. 2020;6(15):11. PubMed PMC

Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. Environ Sci Pollut Res. 2024;31(2):2360–76. PubMed

Muchova J, Hearnden V, Michlovská L, Vistejnová L, Zavadáková A, Smerková K, et al. Mutual influence of selenium nanoparticles and FGF2-STAB(R) on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation. J Nanobiotechnol. 2021;19:16. PubMed PMC

Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, et al. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets. J Anim Sci Biotechnol. 2020;11:16. PubMed PMC

Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, et al. Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals. 2021;11(7):1916. PubMed PMC

EFSA Scientific Committee. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, et al. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA J. 2021;19(8):e06769. PubMed PMC

EFSA Scientific Committee. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J. 2021;19(8):e06768. PubMed PMC

Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef Univ J Basic Appl Sci. 2020;9:10.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...