In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39707565
PubMed Central
PMC11660941
DOI
10.1186/s40104-024-01128-y
PII: 10.1186/s40104-024-01128-y
Knihovny.cz E-zdroje
- Klíčová slova
- Antibacterial, Biocompatibility, Heifer, Intramammary, MRSA, Mammary gland, Nanomaterial, Resistance, SeTe,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS: Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS: Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Zobrazit více v PubMed
Gomes F, Henriques M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr Microbiol. 2016;72(4):377–82. PubMed
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review. Asian-Australas J Anim Sci. 2020;33(11):1699–713. PubMed PMC
Cobirka M, Tancin V, Slama P. Epidemiology and classification of mastitis. Animals. 2020;10(12):17. PubMed PMC
Thompson-Crispi K, Atalla H, Miglior F, Malian BA. Bovine mastitis: frontiers in immunogenetics. Front Immunol. 2014;5:493. PubMed PMC
Siivonen J, Taponen S, Hovinen M, Pastell M, Lensink BJ, Pyörälä S, et al. Impact of acute clinical mastitis on cow behaviour. Appl Anim Behav Sci. 2011;132(3):101–6.
Kovacevic Z, Radinovic M, Cabarkapa I, Kladar N, Bozin B. Natural agents against bovine mastitis pathogens. Antibiotics. 2021;10(2):205. PubMed PMC
Hoque MN, Istiaq A, Clement RA, Sultana M, Crandall KA, Siddiki AZ, et al. Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep. 2019;9:13536. PubMed PMC
Kateete DP, Kabugo U, Baluku H, Nyakarahuka L, Kyobe S, Okee M, et al. Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS ONE. 2013;8(5):e63413. PubMed PMC
Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia. 2011;16(4):357–72. PubMed PMC
Jamali H, Paydar M, Radmehr B, Ismail S, Dadrasnia A. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control. 2015;54:383–8.
Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic characterization and whole genome analysis of a strong biofilm-forming Staphylococcus aureus strain associated with subclinical bovine mastitis in Colombia. Front Vet Sci. 2020;7:11. PubMed PMC
Boireau C, Cazeau G, Jarrige N, Calavas D, Madec J-Y, Leblond A, et al. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016. J Dairy Sci. 2018;101(10):9451–62. PubMed
Holmes MA, Zadoks RN. Methicillin resistant S. aureus in human and bovine mastitis. J Mammary Gland Biol Neoplasia. 2011;16(4):373–82. PubMed
Hamid S, Bhat MA, Mir IA, Taku A, Badroo GA, Nazki S, et al. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis. Vet World. 2017;10(3):363–7. PubMed PMC
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv. 2020;27:292–308. PubMed PMC
Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev. 2013;27(22):2397–408. PubMed PMC
Han C, Qi C, Zhao B, Cao J, Xie S, Wang S, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther. 2009;32(2):116–23. PubMed
Kalinska A, Jaworski S, Wierzbicki M, Gołebiewski M. Silver and copper nanoparticles—An alternative in future mastitis treatment and prevention? Int J Mol Sci. 2019;20(7):1672. PubMed PMC
Jagielski T, Bakula Z, Plen M, Kaminski M, Nowakowska J, Bielecki J, et al. The activity of silver nanoparticles against microalgae of the Prototheca genus. Nanomedicine. 2018;13(9):1025–36. PubMed
Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865–73. PubMed
Alam H, Khatoon N, Khan MA, Husain SA, Saravanan M, Sardar M. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J Clust Sci. 2020;31(5):1003–11.
Tang AG, Ren QW, Wu YL, Wu C, Cheng YY. Investigation into the antibacterial mechanism of biogenic tellurium nanoparticles and precursor tellurite. Int J Mol Sci. 2022;23(19):15. PubMed PMC
Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res A. 2018;106(5):1400–12. PubMed
Cruz DM, Tien-Street W, Zhang B, Huang X, Crua AV, Nieto-Argüello A, et al. Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties. Green Chem. 2019;21(8):1982–98. PubMed PMC
Serov DA, Khabatova VV, Vodeneev V, Li RB, Gudkov SV. A review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles. Materials. 2023;16(15):39. PubMed PMC
Ao B, Du QQ, Liu DC, Shi XS, Tu JM, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol. 2023;14:15. PubMed PMC
Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B, et al. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX Environ Res. 2021;194:110630. PubMed
Sahoo B, Panigrahi LL, Jena S, Jha S, Arakha M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023;13(17):11406–14. PubMed PMC
Cremonini E, Boaretti M, Vandecandelaere I, Zonaro E, Coenye T, Lleo MM, et al. Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microb Biotechnol. 2018;11(6):1037–47. PubMed PMC
Hesabizadeh T, Hicks E, Cruz DM, Bourdo SE, Watanabe F, Bonney M, et al. Synthesis of “naked” TeO2 nanoparticles for biomedical applications. ACS Omega. 2022;7(27):23685–94. PubMed PMC
Zhang Y, Hu M, Zhang W, Zhang X. Homology of selenium (Se) and tellurium (Te) endow the functional similarity of Se-doped and Te-doped mesoporous bioactive glass nanoparticles in bone tissue engineering. Ceram Int. 2022;48(3):3729–39.
Cao W, Wang L, Xu H. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today. 2015;10(6):717–36.
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–77. PubMed PMC
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667–95. PubMed PMC
Bytesnikova Z, Pecenka J, Tekielska D, Pekarková J, Ridosková A, Bezdicka P, et al. Smart bactericide based on reduced graphene oxide decorated with copper and zinc nanoparticles. Chem Biol Technol Agric. 2023;10(1):12.
Tougaard S. Practical guide to the use of backgrounds in quantitative XPS. J Vac Sci Technol A. 2021;39(1):22.
Claros M, Kuta J, El-Dahshan O, Michalicka J, Jimenez YP, Vallejos S. Hydrothermally synthesized MnO2 nanowires and their application in Lead (II) and Copper (II) batch adsorption. J Mol Liq. 2021;325:11.
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, et al. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol. 2022;12:20. PubMed PMC
Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, et al. Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J Anim Sci Biotechnol. 2019;10:12. PubMed PMC
Kosaristanova L, Rihacek M, Sucha F, Milosavljevic V, Svec P, Dorazilova J, et al. Synergistic antibacterial action of the iron complex and ampicillin against Staphylococcus aureus. BMC Microbiol. 2023;23:8. PubMed PMC
Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1):25–30. PubMed
Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol. 2003;96(3):193–205. PubMed
Sladek Z, Rysanek D. Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland. Acta Vet Scand. 2010;52:13. PubMed PMC
R Core Team. R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing. 2023. Retrieved from https://www.R-project.org/.
OpenAI. ChatGPT (version 4) [natural language processing software]. 2024. Retrieved from https://openai.com/chatgpt.
Ullah S, Yasin G, Ahmad A, Qin L, Yuan Q, Khan AU, et al. Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorg Chem Front. 2020;7(8):1750–61.
Khan SS, Ullah I, Zada S, Ahmad A, Ahmad W, Xu H, et al. Functionalization of Se-Te nanorods with Au nanoparticles for enhanced anti-bacterial and anti-cancer activities. Materials (Basel). 2022;15(14):4813. PubMed PMC
Stocks SM. Mechanism and use of the commercially available viability stain. BacLight Cytom Part A. 2004;61A(2):189–95. PubMed
Fu SL, Cai K, Wu L, Han HO. One-step synthesis of high-quality homogenous Te/Se alloy nanorods with various morphologies. CrystEngComm. 2015;17(17):3243–50.
Manjunatha C, Rao PP, Bhardwaj P, Raju H, Ranganath D. New insight into the synthesis, morphological architectures and biomedical applications of elemental selenium nanostructures. Biomed Mater. 2021;16(2):19. PubMed
Yan C, Raghavan CM, Kang DJ. Photocatalytic properties of shape-controlled ultra-long elemental Te nanowires synthesized via a facile hydrothermal method. Mater Lett. 2014;116:341–4.
Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119(8):4819–80. PubMed
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, et al. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022;42(1):68–94. PubMed PMC
Shah VR, Medina-Cruz D, Vernet-Crua A, Truong LB, Sotelo E, Mostafavi E, et al. Pepper-mediated green synthesis of selenium and tellurium nanoparticles with antibacterial and anticancer potential. J Func Biomater. 2023;14:32. PubMed PMC
Beleneva IA, Kharchenko UV, Kukhlevsky AD, Boroda AV, Izotov NV, Gnedenkov AS, et al. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. World J Microbiol Biotechnol. 2022;38(11):18. PubMed
Varlamova EG, Turovsky EA, Blinova EV. Therapeutic potential and main methods of obtaining selenium nanoparticles. Int J Mol Sci. 2021;22(19):10808. PubMed PMC
Varlamova EG, Goltyaev MV, Mal’tseva VN, Turovsky EA, Sarimov RM, Simakin AV, et al. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int J Mol Sci. 2021;22(15):7798. PubMed PMC
Morena AG, Bassegoda A, Hoyo J, Tzanov T. Hybrid tellurium–lignin nanoparticles with enhanced antibacterial properties. ACS Appl Mater Interfaces. 2021;13(13):14885–93. PubMed PMC
Chou T-M, Ke Y-Y, Tsao Y-H, Li Y-C, Lin Z-H. Fabrication of Te and Te-Au nanowires-based carbon fiber fabrics for antibacterial applications. Int J Environ Res Public Health. 2016;13(2):202. PubMed PMC
Li F, Li TY, Han XX, Zhuang H, Nie GJ, Xu HP. Nanomedicine assembled by coordinated selenium-platinum complexes can selectively induce cytotoxicity in cancer cells by targeting the glutathione antioxidant defense system. ACS Biomater Sci Eng. 2018;4(6):1954–62. PubMed
Sandoval JM, Verrax J, Vásquez CC, Calderon PB. A comparative study of tellurite toxicity in normal and cancer cells. Mol Cell Toxicol. 2012;8(4):327–34.
Nie TQ, Wu HL, Wong KH, Chen TF. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J Mat Chem B. 2016;4(13):2351–8. PubMed
Bhartiya P, Masur K, Shome D, Kaushik N, Nguyen LN, Kaushik NK, et al. Influence of redox stress on crosstalk between fibroblasts and keratinocytes. Biology-Basel. 2021;10(12):15. PubMed PMC
Filipovic N, Usjak D, Milenkovic MT, Zheng K, Liverani L, Boccaccini AR, et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. 2021;8:624621. PubMed PMC
Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull. 2012;47(11):3719–25.
Zonaro E, Lampisl S, Tumer RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol. 2015;6:11. PubMed PMC
Abed NN, El-Enain I, Helal EE, Yosri M. Novel biosynthesis of tellurium nanoparticles and investigation of their activity against common pathogenic bacteria. J Taibah Univ Med Soc. 2023;18(2):400–12. PubMed PMC
Tran PA, O’Brien-Simpson N, Palmer JA, Bock N, Reynolds EC, Webster TJ, et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomed. 2019;14:4613–24. PubMed PMC
Huang T, Holden JA, Heath DE, O’Brien-Simpson NM, O’Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–51. PubMed
Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine—An overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol. 2018;46:223–33.
Xu Y, Zhang T, Che JR, Yi JJ, Wei LA, Li HL. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens. Biofouling. 2023;39(2):157–70. PubMed
Huang L, Liu M, Feng ZB, Xu XY, Chen LL, Ma ZJ, et al. Biocompatible tellurium nanoneedles with long-term stable antibacterial activity for accelerated wound healing. Mater Today Bio. 2022;15:15. PubMed PMC
Rezaei FY, Pircheraghi G, Nikbin VS. Antibacterial activity, cell wall damage, and cytotoxicity of zinc oxide nanospheres, nanorods, and nanoflowers. ACS Appl Nano Mater. 2024;7(13):15242–54.
Jiang YJ, Zheng W, Tran K, Kamilar E, Bariwal J, Ma HR, et al. Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat Commun. 2022;13:17. PubMed PMC
Campos B, Pickering AC, Rocha LS, Aguilar AP, Fabres-Klein MH, Mendes TAD, et al. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res. 2022;18:16. PubMed PMC
Wierzbicki M, Kot M, Lange A, Kalinska A, Ski MG, Jaworski S. Evaluation of the antimicrobial, cytotoxic, and physical properties of selected nano-complexes in bovine udder inflammatory pathogen control. Nanotechnol Sci Appl. 2024;17:77–94. PubMed PMC
Orellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym. 2019;213:1–9. PubMed
Zhou KX, Wang XF, Chen DM, Yuan YY, Wang SG, Li C, et al. Enhanced treatment effects of tilmicosin against Staphylococcus aureus cow mastitis by self-assembly sodium alginate-chitosan nanogel. Pharmaceutics. 2019;11(10):17. PubMed PMC
Muralidhar Y, Raj MA, Prasad TNK, Kumar TVC, Adilaxmamma K, Srilatha C, et al. Antibacterial, anti-inflammatory and antioxidant effects of acetyl-11-alpha-keto-beta-boswellic acid mediated silver nanoparticles in experimental murine mastitis. IET Nanobiotechnol. 2017;11(6):682–9.
Taifa S, Muhee A, Bhat RA, Nabi SU, Roy A, Rather GA, et al. Evaluation of therapeutic efficacy of copper nanoparticles in Staphylococcus aureus-induced rat mastitis model. J Nanomater. 2022;2022:12.
Zhu LY, Cao XX, Xu QX, Su J, Li XH, Zhou WZ. Evaluation of the antibacterial activity of tilmicosin-SLN against Streptococcus agalactiae: in vitro and in vivo studies. Int J Nanomed. 2018;13:4747–55. PubMed PMC
Schonborn S, Kromker V. Detection of the biofilm component polysaccharide intercellular adhesin in Staphylococcus aureus infected cow udders. Vet Microbiol. 2016;196:126–8. PubMed
Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. Biofilm research in bovine mastitis. Front Vet Sci. 2021;8:11. PubMed PMC
Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015;29:235–41. PubMed
Gomez-Gomez B, Sanz-Landaluce J, Perez-Corona MT, Madrid Y. Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems. Sci Total Environ. 2020;719:11. PubMed
Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R, et al. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother. 2011;67(1):138–48. PubMed PMC
Weaver JL, Tobin GA, Ingle T, Bancos S, Stevens D, Rouse R, et al. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions. Part Fibre Toxicol. 2017;14:14. PubMed PMC
Song XF, Qiao L, Yan SQ, Chen Y, Dou XN, Xu CL. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food Funct. 2021;12(14):6403–15. PubMed
Li Y, Zhu SB, Luo JC, Tong Y, Zheng YX, Ji LC, et al. The protective effect of selenium nanoparticles in osteoarthritis: In vitro and in vivo studies. Drug Des Dev Ther. 2023;17:1515–29. PubMed PMC
Xie B, Zeng DL, Yang MJ, Tang ZY, He LZ, Chen TF. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano. 2023;17(14):14053–68. PubMed
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12. PubMed
Lin AG, Liu YA, Zhu XF, Chen X, Liu JW, Zhou YH, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and Inhibition. ACS Nano. 2019;13(12):13965–84. PubMed
Zou XC, Jiang ZP, Li L, Huang ZH. Selenium nanoparticles coated with pH responsive silk fibroin complex for fingolimod release and enhanced targeting in thyroid cancer. Artif Cell Nanomed Biotechnol. 2021;49:83–95. PubMed
Malhotra S, Welling MN, Mantri SB, Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J Biomed Mater Res Part B. 2016;104(5):993–1003. PubMed
Xiao JY, Cao H, Guo SY, Xiao SZ, Li N, Li M, et al. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem-Biol Interact. 2021;347:12. PubMed
Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51:58–63. PubMed
Nieves LM, Hsu JC, Lau KC, Maidment ADA, Cormode DP. Silver telluride nanoparticles as biocompatible and enhanced contrast agents for X-ray imaging: an in vivo breast cancer screening study. Nanoscale. 2021;13:163–74. PubMed PMC
Najimi S, Shakibaie M, Jafari E, Ameri A, Rahimi N, Forootanfar H, et al. Acute and subacute toxicities of biogenic tellurium nanorods in mice. Regul Toxicol Pharmacol. 2017;90:222–30. PubMed
Yang T, Ke HT, Wang QL, Tang YA, Deng YB, Yang H, et al. Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano. 2017;11(10):10012–24. PubMed
Chen SY, Xing CY, Huang DZ, Zhou CH, Ding B, Guo ZH, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci Adv. 2020;6(15):11. PubMed PMC
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. Environ Sci Pollut Res. 2024;31(2):2360–76. PubMed
Muchova J, Hearnden V, Michlovská L, Vistejnová L, Zavadáková A, Smerková K, et al. Mutual influence of selenium nanoparticles and FGF2-STAB(R) on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation. J Nanobiotechnol. 2021;19:16. PubMed PMC
Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, et al. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets. J Anim Sci Biotechnol. 2020;11:16. PubMed PMC
Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, et al. Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals. 2021;11(7):1916. PubMed PMC
EFSA Scientific Committee. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, et al. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA J. 2021;19(8):e06769. PubMed PMC
EFSA Scientific Committee. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J. 2021;19(8):e06768. PubMed PMC
Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef Univ J Basic Appl Sci. 2020;9:10.