Synergistic antibacterial action of the iron complex and ampicillin against Staphylococcus aureus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37803300
PubMed Central
PMC10559456
DOI
10.1186/s12866-023-03034-1
PII: 10.1186/s12866-023-03034-1
Knihovny.cz E-zdroje
- Klíčová slova
- Ampicillin, Antimicrobial activity, Iron complex, Staphylococcus aureus, Synergy,
- MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- stafylokokové infekce * farmakoterapie MeSH
- Staphylococcus aureus MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ampicilin MeSH
- antibakteriální látky MeSH
OBJECTIVES: Resistance to antibiotics among bacteria of clinical importance, including Staphylococcus aureus, is a serious problem worldwide and the search for alternatives is needed. Some metal complexes have antibacterial properties and when combined with antibiotics, they may increase bacterial sensitivity to antimicrobials. In this study, we synthesized the iron complex and tested it in combination with ampicillin (Fe16 + AMP) against S. aureus. METHODS: An iron complex (Fe16) was synthesized and characterized using spectroscopy methods. Confirmation of the synergistic effect between the iron complex (Fe16) and ampicillin (AMP) was performed using ζ-potential, infrared spectra and FICI index calculated from the minimum inhibitory concentration (MIC) from the checkerboard assay. Cytotoxic properties of combination Fe16 + AMP was evaluated on eukaryotic cell line. Impact of combination Fe16 + AMP on chosen genes of S. aureus were performed by Quantitative Real-Time PCR. RESULTS: The MIC of Fe16 + AMP was significantly lower than that of AMP and Fe16 alone. Furthermore, the infrared spectroscopy revealed the change in the ζ-potential of Fe16 + AMP. We demonstrated the ability of Fe16 + AMP to disrupt the bacterial membrane of S. aureus and that likely allowed for better absorption of AMP. In addition, the change in gene expression of bacterial efflux pumps at the sub-inhibitory concentration of AMP suggests an insufficient import of iron into the bacterial cell. At the same time, Fe16 + AMP did not have any cytotoxic effects on keratinocytes. CONCLUSIONS: Combined Fe16 + AMP therapy demonstrated significant synergistic and antimicrobial effects against S. aureus. This study supports the potential of combination therapy and further research.
Central European Institute of Technology University of Technology Brno Czech Republic
Department of Inorganic Chemistry Faculty of Science Palacky University Olomouc Czech Republic
Zobrazit více v PubMed
Nasiri Sovari S, Zobi F. Recent Studies on the antimicrobial activity of transition metal complexes of groups 6–12. Chemistry. 2020;2(2):418–452. doi: 10.3390/chemistry2020026. DOI
Teethaisong Y, Autarkool N, Sirichaiwetchakoon K, Krubphachaya P, Kupittayanant S, Eumkeb G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J. Biomed Sci. 2014;21(1):90. doi: 10.1186/s12929-014-0090-2. PubMed DOI PMC
Iqbal G, Faisal S, Khan S, Shams DF, Nadhman A. Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles. J Photochem Photobiol B Biol. 2019;192:141–6. doi: 10.1016/j.jphotobiol.2019.01.021. PubMed DOI
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol. 2013;53(4):303–317. doi: 10.1002/jobm.201100552. PubMed DOI
Saranya J, JoneKirubavathy S, Chitra S, Zarrouk A, Kalpana K, Lavanya K, et al. Tetradentate schiff base complexes of transition metals for antimicrobial activity. Arab J Sci Eng. 2020;45(6):4683–95. doi: 10.1007/s13369-020-04416-7. DOI
Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010;6(1):103–9. doi: 10.1016/j.nano.2009.04.006. PubMed DOI
Ye Q, Chen W, Huang H, Tang Y, Wang W, Meng F, et al. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl Microbiol Biotechnol. 2020;104(12):5213–5227. doi: 10.1007/s00253-020-10600-4. PubMed DOI
Claudel M, Schwarte JV, Fromm KM. New antimicrobial strategies based on metal complexes. Chemistry. 2020;2(4):849–899. doi: 10.3390/chemistry2040056. DOI
Hrioua A, Loudiki A, Farahi A, Laghrib F, Bakasse M, Lahrich S, et al. Complexation of amoxicillin by transition metals: physico-chemical and antibacterial activity evaluation. Bioelectrochemistry. 2021;142:107936. doi: 10.1016/j.bioelechem.2021.107936. PubMed DOI
Santos JVdO, Porto ALF, Cavalcanti IMF. Potential application of combined therapy with lectins as a therapeutic strategy for the treatment of bacterial infections. Antibiotics. 2021;10(5):520. doi: 10.3390/antibiotics10050520. PubMed DOI PMC
Arias LS, Pessan JP, Vieira APM, Lima TMTd, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7(2):46. doi: 10.3390/antibiotics7020046. PubMed DOI PMC
Kopel P, Travnicek Z, Zboril R, Marek J. Synthesis, X-ray and Mossbauer study of iron(II) complexes with trithiocyanuric acid (ttcH(3)). The X-ray structures of Fe(bpy)(3) (ttcH) center dot 2bpy center dot 7H(2)O and Fe(phen)(3) (ttcH(2))(ClO4) center dot 2CH(3)OH center dot 2H(2)O. Polyhedron. 2004;23(14):2193–202.
Ludwig C, Devidal J-L, Casey WH. The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals. Geochim Cosmochim Acta. 1996;60(2):213–24. doi: 10.1016/0016-7037(95)00394-0. DOI
Shirani M, Akbari-Adergani B, Rashidi Nodeh H, Shahabuddin S. Ultrasonication-facilitated synthesis of functionalized graphene oxide for ultrasound-assisted magnetic dispersive solid-phase extraction of amoxicillin, ampicillin, and penicillin G. Microchimica Acta. 2020;187(11):634. PubMed
von Wirén N, Khodr H, Hider RC. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for Iron(III)1. Plant Physiol. 2000;124(3):1149–1158. doi: 10.1104/pp.124.3.1149. PubMed DOI PMC
Nath H, Sharma P, Frontera A, Barcelo-Oliver M, Verma AK, Das J, et al. Phenanthroline-based Ni(II) coordination compounds involving unconventional discrete fumarate-water-nitrate clusters and energetically significant cooperative ternary π-stacked assemblies: antiproliferative evaluation and theoretical studies. J Mol Struct. 2022;1248:131424. doi: 10.1016/j.molstruc.2021.131424. DOI
Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad of Sci. 1965;54(4):1133–1141. doi: 10.1073/pnas.54.4.1133. PubMed DOI PMC
El-Gamel NEA. Metal chelates of ampicillin versus amoxicillin: synthesis, structural investigation, and biological studies. J Coord Chem. 2010;63(3):534–43. doi: 10.1080/00958970903494157. DOI
Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, et al. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One. 2019;14(11):e0224904. doi: 10.1371/journal.pone.0224904. PubMed DOI PMC
Panáček A, Smékalová M, Kilianová M, Prucek R, Bogdanová K, Večeřová R, et al. Strong and Nonspecific Synergistic Antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules. 2016;21(1):26. doi: 10.3390/molecules21010026. PubMed DOI PMC
Singh AV, Vyas V, Montani E, Cartelli D, Parazzoli D, Oldani A, et al. Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells. J Neurosci Rural Pract. 2012;3(3):301–310. doi: 10.4103/0976-3147.102611. PubMed DOI PMC
Richardson DR, Lok HC. The nitric oxide–iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta Gen Subj. 2008;1780(4):638–51. doi: 10.1016/j.bbagen.2007.12.009. PubMed DOI
Padwal P, Bandyopadhyaya R, Mehra S. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir. 2014;30(50):15266–15276. doi: 10.1021/la503808d. PubMed DOI
Nallathamby PD, Lee KJ, Desai T, Xu X-HN. Study of the multidrug membrane transporter of single living Pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry. 2010;49(28):5942–53. doi: 10.1021/bi100268k. PubMed DOI PMC
Hasani A, Madhi M, Gholizadeh P, ShahbaziMojarrad J, AhangarzadehRezaee M, Zarrini G, et al. Metal nanoparticles and consequences on multi-drug resistant bacteria: reviving their role. SN Appl Sci. 2019;1(4):360. doi: 10.1007/s42452-019-0344-4. DOI
Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res Part B: Appl Biomater. 2010;93(2):557–561. doi: 10.1002/jbm.b.31615. PubMed DOI
Singh N, Rajwade J, Paknikar KM. Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition. Colloids Surf B: Biointerfaces. 2019;175:487–97. doi: 10.1016/j.colsurfb.2018.12.032. PubMed DOI
Dey N, Kamatchi C, Vickram AS, Anbarasu K, Thanigaivel S, Palanivelu J, et al. Role of nanomaterials in deactivating multiple drug resistance efflux pumps – a review. Environ Res. 2022;204:111968. doi: 10.1016/j.envres.2021.111968. PubMed DOI
Wang Z, Zhang P, Ding X, Wang J, Sun Y, Yin C, et al. Co-delivery of ampicillin and β-lactamase inhibitor by selenium nanocomposite to achieve synergistic anti-infective efficiency through overcoming multidrug resistance. Chem Eng J. 2021;414:128908. doi: 10.1016/j.cej.2021.128908. DOI
Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pagès J-M. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother. 2007;59(6):1223–1229. doi: 10.1093/jac/dkl493. PubMed DOI
Wang R, Lai T-P, Gao P, Zhang H, Ho P-L, Woo PC-Y, et al. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat Commun. 2018;9(1):439. doi: 10.1038/s41467-018-02828-6. PubMed DOI PMC
Loss G, Simões PM, Valour F, Cortês MF, Gonzaga L, Bergot M, et al. Staphylococcus aureus Small Colony Variants (SCVs): News from a chronic prosthetic joint infection. Front Cell Infect Microbiol. 2019;9:363. PubMed PMC
Jonsson I-M, Juuti JT, François P, AlMajidi R, Pietiäinen M, Girard M, et al. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall. PloS One. 2010;5(12):e14209. doi: 10.1371/journal.pone.0014209. PubMed DOI PMC
Remy L, Carrière M, Derré-Bobillot A, Martini C, Sanguinetti M, Borezée-Durant E. The Staphylococcus aureus Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Mol Microbiol. 2013;87(4):730–743. doi: 10.1111/mmi.12126. PubMed DOI
Li Z-F, Zheng Y-Q. Synthesis and crystal structure of [Fe(phen)3]L·2H2L·4H2O (H2L = fumaric acid) J Coord Chem. 2005;58(10):883–90. doi: 10.1080/00958970500068743. DOI
Kopel P, Trávníček Z, Zbořil R, Marek J. Synthesis, X-ray and Mössbauer study of iron(II) complexes with trithiocyanuric acid (ttcH3): the X-ray structures of [Fe(bpy)3](ttcH)·2bpy·7H2O and [Fe(phen)3](ttcH2)(ClO4)·2CH3OH·2H2O. Polyhedron. 2004;23(14):2193–202.
Varaprasad K, López M, Núñez D, Jayaramudu T, Sadiku ER, Karthikeyan C, et al. Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. J Mol Liq. 2020;300:112353. doi: 10.1016/j.molliq.2019.112353. DOI
Saïed N, Aïder M. Zeta potential and turbidimetry analyzes for the evaluation of chitosan/phytic acid complex formation. J Food Res. 2014;3(2):71. doi: 10.5539/jfr.v3n2p71. DOI
Khunbutsri D, Naimon N, Satchasataporn K, Inthong N, Kaewmongkol S, Sutjarit S, et al. Antibacterial activity of solanum torvum leaf extract and its synergistic effect with oxacillin against methicillin-resistant Staphyloccoci isolated from dogs. Antibiotics. 2022;11:302. doi: 10.3390/antibiotics11030302. PubMed DOI PMC
Mgbeahuruike EE, Stålnacke M, Vuorela H, Holm Y. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials. Antibiotics. 2019;8(2):55. doi: 10.3390/antibiotics8020055. PubMed DOI PMC