BACKGROUND: Understanding the temporal variability of the microbiome is critical for translating associations of the microbiome with health and disease into clinical practice. The aim of this study is to assess the extent of temporal variability of the human urinary microbiota. A pair of urine samples were collected from study participants at 3-40-month interval. DNA was extracted and the bacterial V4 hypervariable region of the 16S rRNA gene was sequenced on the Illumina MiSeq platform. The alpha diversity of paired samples was analyzed using Chao1 and Shannon indices and PERMANOVA was used to test the factors influencing beta diversity. RESULTS: A total of 63 participants (43 men and 20 women with a mean age of 63.0 and 57.1 years, respectively) were included in the final analysis. An average of 152 ± 128 bacterial operational taxonomic units (OTUs) were identified in each urine sample from the entire cohort. There was an average of 41 ± 32 overlapping OTUs in each sample pair, accounting for 66.3 ± 29.4% of the relative abundance. There was a clear correlation between the number of overlapping OTUs and the relative abundance covered. The difference in Chao1 index between paired samples was statistically significant; the difference in Shannon index was not. Beta diversity did not differ significantly within the paired samples. Neither age nor sex of the participants influenced the variation in community composition. With a longer interval between the collections, the relative abundance covered by the overlapping OTUs changed significantly but not the number of OTUs. CONCLUSION: Our findings demonstrated that, while the relative abundance of dominant bacteria varied, repeated collections generally shared more than 60% of the bacterial community. Furthermore, we observed little variation in the alpha and beta diversity of the microbial community in human urine. These results help to understand the dynamics of human urinary microbiota and enable interpretation of future studies.
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- časové faktory MeSH
- DNA bakterií genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiota * genetika MeSH
- moč * mikrobiologie MeSH
- prospektivní studie MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
BACKGROUND: Pseudomonas aeruginosa can proliferate in immunocompromised individuals, forming biofilms that increase antibiotic resistance. This bacterium poses a significant global health risk due to its resistance to human defenses, antibiotics, and various environmental stresses. The objective of this study was to evaluate the antibacterial, anti-biofilm, and anti-quorum sensing activities of galloylquinic acid compounds (GQAs) extracted from Copaifera lucens leaves against clinical isolates of multidrug-resistant (MDR) P. aeruginosa. We have investigated the optimal concentration of GQAs needed to eradicate preexisting biofilms and manage wound infections caused by P. aeruginosa, in vitro and in vivo. RESULTS: Our results revealed that GQAs exhibited 25-40 mm inhibition zone diameters, with 1-4 μg/mL MIC and 2-16 μg/mL MBC values. GQAs interfered with the planktonic mode of P. aeruginosa isolates, and significantly inhibited their growth in the pre-formed biofilm architecture, with MBIC80 and MBEC80 values of 64 μg/mL and 128 μg/mL, respectively. The anti-biofilm effect was confirmed by fluorescence staining and confocal microscopy which showed a dramatic reduction in the cell viability and the biofilm thickness (62.5%), after exposure to 128 μg/mL of GQAs in particular. The scanning electron micrographs showed that GQAs impaired biofilm and bacterial structures by interfering with the biomass and the exopolysaccharides forming the matrix. GQAs also interfered with virulence factors and bacterial motility, where 128 μg/mL of GQAs significantly (p < 0.05) reduced rhamnolipid, pyocyanin, and the swarming motility of the organism which play a vital role in the biofilm formation. GQAs downregulated 89% of the quorum-sensing genes (lasI and lasR, pqsA and pqsR) involved in the biofilm formation. CONCLUSION: GQAs demonstrate significant promise as novel and potent antibiofilm and antivirulence agents against clinical isolates of MDR P. aeruginosa, with substantial potential to enhance wound healing in biofilm-associated infections. This promising antibacterial action positions GQAs as a superior alternative for the treatment of biofilm-associated wound infections, with substantial potential to improve wound healing and mitigate the impact of persistent bacterial infections. CLINICAL TRIAL NUMBER: not applicable.
- MeSH
- antibakteriální látky * farmakologie MeSH
- biofilmy * účinky léků růst a vývoj MeSH
- infekce v ráně * mikrobiologie farmakoterapie MeSH
- lidé MeSH
- listy rostlin chemie MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence účinky léků MeSH
- myši MeSH
- pseudomonádové infekce * mikrobiologie farmakoterapie MeSH
- Pseudomonas aeruginosa * účinky léků fyziologie izolace a purifikace MeSH
- quorum sensing * účinky léků MeSH
- rostlinné extrakty farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Only a few studies dealt with the occurrence of endospore-forming clostridia in the microbiota of infants without obvious health complications. METHODS: A methodology pipeline was developed to determine the occurrence of endospore formers in infant feces. Twenty-four fecal samples (FS) were collected from one infant in monthly intervals and were subjected to variable chemical and heat treatment in combination with culture-dependent analysis. Isolates were identified by MALDI-TOF mass spectrometry, 16S rRNA gene sequencing, and characterized with biochemical assays. RESULTS: More than 800 isolates were obtained, and a total of 21 Eubacteriales taxa belonging to the Clostridiaceae, Lachnospiraceae, Oscillospiraceae, and Peptostreptococcaceae families were detected. Clostridium perfringens, C. paraputrificum, C. tertium, C. symbiosum, C. butyricum, and C. ramosum were the most frequently identified species compared to the rarely detected Enterocloster bolteae, C. baratii, and C. jeddahense. Furthermore, the methodology enabled the subsequent cultivation of less frequently detectable gut taxa such as Flavonifractor plautii, Intestinibacter bartlettii, Eisenbergiella tayi, and Eubacterium tenue. The isolates showed phenotypic variability regarding enzymatic activity, fermentation profiles, and butyrate production. CONCLUSIONS: Taken together, this approach suggests and challenges a cultivation-based pipeline that allows the investigation of the population of endospore formers in complex ecosystems such as the human gastrointestinal tract.
- MeSH
- Clostridium * genetika MeSH
- feces mikrobiologie MeSH
- Firmicutes genetika MeSH
- kojenec MeSH
- lidé MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: Resistance to antibiotics among bacteria of clinical importance, including Staphylococcus aureus, is a serious problem worldwide and the search for alternatives is needed. Some metal complexes have antibacterial properties and when combined with antibiotics, they may increase bacterial sensitivity to antimicrobials. In this study, we synthesized the iron complex and tested it in combination with ampicillin (Fe16 + AMP) against S. aureus. METHODS: An iron complex (Fe16) was synthesized and characterized using spectroscopy methods. Confirmation of the synergistic effect between the iron complex (Fe16) and ampicillin (AMP) was performed using ζ-potential, infrared spectra and FICI index calculated from the minimum inhibitory concentration (MIC) from the checkerboard assay. Cytotoxic properties of combination Fe16 + AMP was evaluated on eukaryotic cell line. Impact of combination Fe16 + AMP on chosen genes of S. aureus were performed by Quantitative Real-Time PCR. RESULTS: The MIC of Fe16 + AMP was significantly lower than that of AMP and Fe16 alone. Furthermore, the infrared spectroscopy revealed the change in the ζ-potential of Fe16 + AMP. We demonstrated the ability of Fe16 + AMP to disrupt the bacterial membrane of S. aureus and that likely allowed for better absorption of AMP. In addition, the change in gene expression of bacterial efflux pumps at the sub-inhibitory concentration of AMP suggests an insufficient import of iron into the bacterial cell. At the same time, Fe16 + AMP did not have any cytotoxic effects on keratinocytes. CONCLUSIONS: Combined Fe16 + AMP therapy demonstrated significant synergistic and antimicrobial effects against S. aureus. This study supports the potential of combination therapy and further research.
- MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- stafylokokové infekce * farmakoterapie MeSH
- Staphylococcus aureus MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Autologous hematopoietic cell transplantation (AHCT) is a well-established treatment for lymphoma. Unintended effects of this therapy include oral mucositis (OM) and gastrointestinal toxicities, resulting in poor clinical outcomes. The gut microbiome has been previously linked to transplant toxicities among allogeneic recipients, but little is known about the effects of AHCT on the oral microbiome. METHODS: Seven patients with non-Hodgkin or Hodgkin lymphoma undergoing AHCT with palifermin (keratinocyte growth factor) were included. Buccal swab samples were collected at baseline and 14- and 28-days post-treatment. Oral microbial communities were characterized with 16 S rRNA amplicon sequencing. Temporal trends in community composition, alpha diversity, and beta diversity were investigated. RESULTS: A significant reduction in the relative abundance of the genera Gemella and Actinomyces were observed from baseline. No significant temporal differences in alpha diversity were observed. Significant changes in beta diversity were recorded. CONCLUSION: Results of this pilot study suggest treatment with AHCT and palifermin affects the oral microbiome, resulting in temporal shifts in oral microbial community composition. Future studies are warranted to confirm these trends and further investigate the effects of AHCT on the oral microbiome and how these shifts may affect health outcomes.
BACKGROUND: The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS: The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS: Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.
BACKGROUND: Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. METHODS: In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants' households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital - NEO, 6 from a pediatric hospital - ENT, and 8 from a research center - RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. RESULTS: Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p < 0.05). Participants working in the NEO had the highest nasopharyngeal bacterial diversity of all groups (p < 0.05). After 8 h of exposure to the workplace environment, enrichment of the nasopharynx with several new bacterial genera present in the indoor dust was observed in 76% of study participants; however, no significant changes were observed at the level of the nasopharyngeal bacterial diversity (p > 0.05, Shannon index). These "enriching" bacterial genera overlapped between the hospital workplaces - NEO and ENT but differed from those in the research center - RCX. CONCLUSIONS: The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment.
- MeSH
- Bacteria genetika MeSH
- dítě MeSH
- lidé MeSH
- nazofarynx MeSH
- pilotní projekty MeSH
- prach * analýza MeSH
- RNA ribozomální 16S genetika analýza MeSH
- těhotenství MeSH
- znečištění vzduchu ve vnitřním prostředí * analýza MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The contribution of the microbiome to pesticide breakdown in agricultural pests remains unclear. We analyzed the effect of pirimiphos-methyl (PM) on four geographically different cultures of the stored product pest mite Acarus siro (6 L, 6Tu, 6Tk and 6Z) under laboratory experiments. The effect of PM on mite mortality in the impregnated filter paper test was compared. RESULTS: The mite sensitivity to PM decreased in the order of 6 L, 6Tu, 6Tk, and 6Z. Then, the mites were cultured on PM residues (0.0125 and 1.25 μg·g-1), and population growth was compared to the control after 21 days of exposure. The comparison showed two situations: (i) increasing population growth for the most sensitive cultures (6 L and 6Tu), and (ii) no effect on mite population growth for tolerant cultures (6Z and 6Tk). The microbiome of mites was analyzed by quantification of 16S DNA copies based on quantitative polymerase chain reaction (qPCR) and by barcode sequencing of the V4 fragment of 16S DNA on samples of 30 individuals from the control and PM residues. The microbiome comprised primarily Solitalea-like organisms in all cultures, except for 6Z, followed by Bacillus, Staphylococcus, and Lactobacillus. The microbiomes of mite cultures did not change with increasing population density. The microbiome of cultures without any differences in population density showed differences in the microbiome composition. A Sodalis-like symbiont replaced Solitalea in the 1.25 μg·g-1 PM in the 6Tk culture. Sodalis and Bacillus prevailed in the microbiomes of PM-treated mites of 6Z culture, while Solitalea was almost absent. CONCLUSION: The results showed that the microbiome of A. siro differs in composition and in response to PM residues in the diet. The results indicate that Sodalis-like symbionts can help recover mites from pesticide-induced stress.
- MeSH
- Acaridae * MeSH
- Bacteroidetes MeSH
- lidé MeSH
- mikrobiota * MeSH
- rezidua pesticidů * MeSH
- roztoči * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Conjugative plasmids play a major role in the dissemination of antibiotic resistance genes. Knowledge of the plasmid characteristics and behaviour can allow development of control strategies. Here we focus on the IncX group of plasmids carrying genes conferring quinolone resistance (PMQR), reporting their transfer and persistence within host bacteria of various genotypes under distinct conditions and levels of induced stress in form of temperature change and various concentrations of ciprofloxacin supplementation. METHODS: Complete nucleotide sequences were determined for eight qnr-carrying IncX-type plasmids, of IncX1 (3), IncX2 (3) and a hybrid IncX1-2 (2) types, recovered from Escherichia coli of various origins. This data was compared with further complete sequences of IncX1 and IncX2 plasmids carrying qnr genes (n = 41) retrieved from GenBank and phylogenetic tree was constructed. Representatives of IncX1 (pHP2) and IncX2 (p194) and their qnrS knockout mutants, were studied for influence of induced stress and genetic background on conjugative transfer and maintenance. RESULTS: A high level of IncX core-genome similarity was found in plasmids of animal, environmental and clinical origin. Significant differences were found between the individual IncX plasmids, with IncX1 subgroup plasmids showing higher conjugative transfer rates than IncX2 plasmids. Knockout of qnr modified transfer frequency of both plasmids. Two stresses applied simultaneously were needed to affect transfer rate of wildtype plasmids, whereas a single stress was sufficient to affect the IncX ΔqnrS plasmids. The conjugative transfer was shown to be biased towards the host phylogenetic proximity. A long-term cultivation experiment pointed out the persistence of IncX plasmids in the antibiotic-free environment. CONCLUSIONS: The study indicated the stimulating effect of ciprofloxacin supplementation on the plasmid transfer that can be nullified by the carriage of a single PMQR gene. The findings present the significant properties and behaviour of IncX plasmids carrying antibiotic resistance genes that are likely to play a role in their dissemination and stability in bacterial populations.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- ciprofloxacin farmakologie MeSH
- Escherichia coli * genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- konjugace genetická MeSH
- plazmidy genetika MeSH
- proteiny z Escherichia coli * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH