Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect

. 2015 Dec 28 ; 21 (1) : E26. [epub] 20151228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26729075

The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.

Zobrazit více v PubMed

Walsh T.R., Toleman M.A. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 2012;67:1–3. doi: 10.1093/jac/dkr378. PubMed DOI

Theuretzbacher U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses. Int. J. Antimicrob. Agents. 2012;39:295–299. doi: 10.1016/j.ijantimicag.2011.12.006. PubMed DOI

Barbosa T.M., Levy S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Update. 2000;3:303–311. doi: 10.1054/drup.2000.0167. PubMed DOI

Mokaddas E., Rotimi V.O., Sanyal S.C. In vitro activity of piperacillin/tazobactam versus other broad-spectrum antibiotics against nosocomial gram-negative pathogens isolated from burn patients. J. Chemother. 1998;10:208–214. doi: 10.1179/joc.1998.10.3.208. PubMed DOI

Retsema J.A., English A.R., Girard A., Lynch J.E., Anderson M., Brennan L., Cimochowski C., Faiella J., Norcia W., Sawyer P. Sulbactam ampicillin—in vitro spectrum, potency, and activity in models of acute infection. Rev. Infect. Dis. 1986;8:S528–S534. doi: 10.1093/clinids/8.Supplement_5.S528. PubMed DOI

Todd P.A., Benfield P. Amoxicillin clavulanic acid—An update of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1990;39:264–307. doi: 10.2165/00003495-199039020-00008. PubMed DOI

Stockholm: 2014. [(accessed on 17 November 2014)]. Antimicrobial Resistance Surveillance in Europe 2013. Annual Report of the European Antimicrobial Resistance Surveillance Network (Ears-Net) 978-92-9193-603-8. Avalaible online: http://www.ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2013.pdf.

Li W.R., Xie X.B., Shi Q.S., Duan S.S., Ouyang Y.S., Chen Y.B. Antibacterial effect of silver nanoparticles on staphylococcus aureus. Biometals. 2011;24:135–141. doi: 10.1007/s10534-010-9381-6. PubMed DOI

Li W.R., Xie X.B., Shi Q.S., Zeng H.Y., Ou-Yang Y.S., Chen Y.B. Antibacterial activity and mechanism of silver nanoparticles on escherichia coli. Appl. Microbiol. Biot. 2010;85:1115–1122. doi: 10.1007/s00253-009-2159-5. PubMed DOI

Cui L., Chen P.Y., Chen S.D., Yuan Z.H., Yu C.P., Ren B., Zhang K.S. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced raman spectroscopy. Anal. Chem. 2013;85:5436–5443. doi: 10.1021/ac400245j. PubMed DOI

Lara H.H., Ayala-Nunez N.V., Turrent L.D.I., Padilla C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biot. 2010;26:615–621. doi: 10.1007/s11274-009-0211-3. DOI

Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H.Z., Tam P.K.H., Chiu J.F., Che C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006;5:916–924. doi: 10.1021/pr0504079. PubMed DOI

Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramirez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353. doi: 10.1088/0957-4484/16/10/059. PubMed DOI

Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on e-coli as a model for gram-negative bacteria. J. Colloid Interf. Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI

Choi O., Hu Z.Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008;42:4583–4588. doi: 10.1021/es703238h. PubMed DOI

Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI

Xu H.Y., Qu F., Xu H., Lai W.H., Wang Y.A., Aguilar Z.P., Wei H. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on escherichia coli o157:H7. Biometals. 2012;25:45–53. doi: 10.1007/s10534-011-9482-x. PubMed DOI

Cabiscol E., Tamarit J., Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 2000;3:3–8. PubMed

Kvitek L., Panacek A., Soukupova J., Kolar M., Vecerova R., Prucek R., Holecova M., Zboril R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (nps) J. Phys. Chem. C. 2008;112:5825–5834. doi: 10.1021/jp711616v. DOI

Panacek A., Kolar M., Vecerova R., Prucek R., Soukupova J., Krystof V., Hamal P., Zboril R., Kvitek L. Antifungal activity of silver nanoparticles against candida spp. Biomaterials. 2009;30:6333–6340. doi: 10.1016/j.biomaterials.2009.07.065. PubMed DOI

Panacek A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V.K., Nevecna T., Zboril R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI

Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:225103. doi: 10.1088/0957-4484/18/22/225103. PubMed DOI

Silver S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003;27:341–353. doi: 10.1016/S0168-6445(03)00047-0. PubMed DOI

Silver S., Phung L.T., Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 2006;33:627–634. doi: 10.1007/s10295-006-0139-7. PubMed DOI

Kremer A.N., Hoffmann H. Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the enterobacter cloacae complex. J. Clin. Microbiol. 2012;50:3249–3257. doi: 10.1128/JCM.00885-12. PubMed DOI PMC

Haefeli C., Franklin C., Hardy K. Plasmid-determined silver resistance in pseudomonas-stutzeri isolated from a silver mine. J. Bacteriol. 1984;158:389–392. PubMed PMC

Gupta A., Matsui K., Lo J.F., Silver S. Molecular basis for resistance to silver cations in salmonella. Nat. Med. 1999;5:183–188. doi: 10.1038/5545. PubMed DOI

Li X.Z., Nikaido H., Williams K.E. Silver-resistant mutants of escherichia coli display active efflux of ag+ and are deficient in porins. J. Bacteriol. 1997;179:6127–6132. PubMed PMC

Nies D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003;27:313–339. doi: 10.1016/S0168-6445(03)00048-2. PubMed DOI

Potara M., Jakab E., Damert A., Popescu O., Canpean V., Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on staphylococcus aureus. Nanotechnology. 2011;22:135101. doi: 10.1088/0957-4484/22/13/135101. PubMed DOI

Vertelov G.K., Krutyakov Y.A., Efremenkova O.V., Olenin A.Y., Lisichkin G.V. A versatile synthesis of highly bactericidal myramistin (r) stabilized silver nanoparticles. Nanotechnology. 2008;19 doi: 10.1088/0957-4484/19/35/355707. PubMed DOI

Ammons M.C.B., Ward L.S., James G.A. Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int. Wound. J. 2011;8:268–273. doi: 10.1111/j.1742-481X.2011.00781.x. PubMed DOI PMC

Ruden S., Hilpert K., Berditsch M., Wadhwani P., Ulrich A.S. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob. Agents Chemother. 2009;53:3538–3540. doi: 10.1128/AAC.01106-08. PubMed DOI PMC

Birla S.S., Tiwari V.V., Gade A.K., Ingle A.P., Yadav A.P., Rai M.K. Fabrication of silver nanoparticles by phoma glomerata and its combined effect against escherichia coli, pseudomonas aeruginosa and staphylococcus aureus. Lett. Appl. Microbiol. 2009;48:173–179. doi: 10.1111/j.1472-765X.2008.02510.x. PubMed DOI

Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. 2010;6:103–109. doi: 10.1016/j.nano.2009.04.006. PubMed DOI

Ghosh S., Patil S., Ahire M., Kitture R., Kale S., Pardesi K., Cameotra S.S., Bellare J., Dhavale D.D., Jabgunde A., et al. Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012;7:483–496. PubMed PMC

Muhsin T.M., Hachim A.K. Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J. Microbiol. Biotechnol. 2014;30:2081–2090. doi: 10.1007/s11274-014-1634-z. PubMed DOI

Naqvi S.Z.H., Kiran U., Ali M.I., Jamal A., Hameed A., Ahmed S., Ali N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomed. 2013;8:187–195. doi: 10.2147/IJN.S49284. PubMed DOI PMC

Sathiyanarayanan G., Kiran G.S., Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine bacillus subtilis msbn17. Colloid. Surf. B. 2013;102:13–20. doi: 10.1016/j.colsurfb.2012.07.032. PubMed DOI

Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. 2007;3:168–171. doi: 10.1016/j.nano.2007.02.001. PubMed DOI

Hwang I.S., Hwang J.H., Choi H., Kim K.J., Lee D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 2012;61:1719–1726. doi: 10.1099/jmm.0.047100-0. PubMed DOI

Li P., Li J., Wu C.Z., Wu Q.S., Li J. Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005;16:1912–1917. doi: 10.1088/0957-4484/16/9/082. DOI

Markowska K., Grudniak A.M., Krawczyk K., Wrobel I., Wolska K.I. Modulation of antibiotic resistance and induction of a stress response in pseudomonas aeruginosa by silver nanoparticles. J. Med. Microbiol. 2014;63:849–854. doi: 10.1099/jmm.0.068833-0. PubMed DOI

Singh R., Wagh P., Wadhwani S., Gaidhani S., Kumbhar A., Bellare J., Chopade B.A. Synthesis, optimization, and characterization of silver nanoparticles from acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013;8:4277–4289. PubMed PMC

Brown A.N., Smith K., Samuels T.A., Lu J.R., Obare S.O., Scott M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of pseudomonas aeruginosa and enterobacter aerogenes and methicillin-resistant staphylococcus aureus. Appl. Environ. Microbiol. 2012;78:2768–2774. doi: 10.1128/AEM.06513-11. PubMed DOI PMC

Kvitek L., Prucek R., Panacek A., Novotny R., Hrbac J., Zboril R. The influence of complexing agent concentration on particle size in the process of sers active silver colloid synthesis. J. Mater. Chem. 2005;15:1099–1105. doi: 10.1039/b417007e. DOI

The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of Mics and Zone Diameters. Version 5.0. [(accessed on 1 January 2015)]. Avalaible online: http://www.eucast.org/clinical_breakpoints/

Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. Synthesis of silver nanoparticles using acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloid. Surf. B. 2010;76:50–56. doi: 10.1016/j.colsurfb.2009.10.008. PubMed DOI

Zhang M., Wang P., Sun H., Wang Z. Superhydrophobic Surface with Hierarchical Architecture and Bimetallic Composition for Enhanced Antibacterial Activity. ACS Appl. Mater. Interfaces. 2014;6:22108–22115. doi: 10.1021/am505490w. PubMed DOI

Agnihotri S., Mukherji S., Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–3983. doi: 10.1039/C3RA44507K. DOI

El-Zahry M.R., Mahmoud A., Refaat I.H., Mohamed H.A., Bohlmann H., Lendl B. Antibacterial effect of various shapes of silver nanoparticles monitored by sers. Talanta. 2015;138:183–189. doi: 10.1016/j.talanta.2015.02.022. PubMed DOI

Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC

Singh S., Bharti A., Meena V.K. Green synthesis of multi-shaped silver nanoparticles: Optical, morphological and antibacterial properties. J. Mater. Sci. Mater. Electron. 2015;26:3638–3648. doi: 10.1007/s10854-015-2881-y. DOI

Habash M.B., Park A.J., Vis E.C., Harris R.J., Khursigara C.M. Synergy of silver nanoparticles and aztreonam against pseudomonas aeruginosa pao1 biofilms. Antimicrob. Agents Chemother. 2014;58:5818–5830. doi: 10.1128/AAC.03170-14. PubMed DOI PMC

Kareem P.A., Alsammak E.G. The Effect of Silver and Zinc Oxide Nanoparticles on Multi Drug Resistance Staphylococcus aureus. Int. J. Adv. Res. 2014;12:405–417.

Kora A.J., Rastogi L. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg. Chem. Appl. 2013;2013:871097. doi: 10.1155/2013/871097. PubMed DOI PMC

Krajewski S., Prucek R., Panacek A., Avci-Adali M., Nolte A., Straub A., Zboril R., Wendel H.P., Kvitek L. Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified chandler-loop in vitro assay on human blood. Acta Biomater. 2013;9:7460–7468. doi: 10.1016/j.actbio.2013.03.016. PubMed DOI

Kvitek L., Vanickova M., Panacek A., Soukupova J., Dittrich M., Valentova E., Prucek R., Bancirova M., Milde D., Zboril R. Initial study on the toxicity of silver nanoparticles (nps) against paramecium caudatum. J. Phys. Chem. C. 2009;113:4296–4300. doi: 10.1021/jp808645e. DOI

Panacek A., Prucek R., Safarova D., Dittrich M., Richtrova J., Benickova K., Zboril R., Kvitek L. Acute and chronic toxicity effects of silver nanoparticles (nps) on drosophila melanogaster. Environ. Sci. Technol. 2011;45:4974–4979. doi: 10.1021/es104216b. PubMed DOI

Richter A.P., Brown J.S., Bharti B., Wang A., Gangwal S., Houck K., Hubal E.A.C., Paunov V.N., Stoyanov S.D., Velev O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015;10:817–823. doi: 10.1038/nnano.2015.141. PubMed DOI

Munger M.A., Radwanski P., Hadlock G.C., Stoddard G., Shaaban A., Falconer J., Grainger D.W., Deering-Rice C.E. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomed. Nanotechnol. 2014;10:1–9. doi: 10.1016/j.nano.2013.06.010. PubMed DOI PMC

Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D., Choi B.S., Lim R., Chang H.K., Chung Y.H., et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats. Inhal. Toxicol. 2008;20:575–583. doi: 10.1080/08958370701874663. PubMed DOI

Kim Y.S., Song M.Y., Park J.D., Song K.S., Ryu H.R., Chung Y.H., Chang H.K., Lee J.H., Oh K.H., Kelman B.J., et al. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 2010;7 doi: 10.1186/1743-8977-7-20. PubMed DOI PMC

Loeschner K., Hadrup N., Qvortrup K., Larsen A., Gao X.Y., Vogel U., Mortensen A., Lam H.R., Larsen E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 2011;8 doi: 10.1186/1743-8977-8-18. PubMed DOI PMC

Van der Zande M., Vandebriel R.J., van Doren E., Kramer E., Rivera Z.H., Serrano-Rojero C.S., Gremmer E.R., Mast J., Peters R.J.B., Hollman P.C.H., et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6:7427–7442. doi: 10.1021/nn302649p. PubMed DOI

Hadrup N., Loeschner K., Mortensen A., Sharma A.K., Qvortrup K., Larsen E.H., Lam H.R. The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology. 2012;33:416–423. doi: 10.1016/j.neuro.2012.04.008. PubMed DOI

Cha K., Hong H.W., Choi Y.G., Lee M.J., Park J.H., Chae H.K., Ryu G., Myung H. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 2008;30:1893–1899. doi: 10.1007/s10529-008-9786-2. PubMed DOI

Park E.J., Bae E., Yi J., Kim Y., Choi K., Lee S.H., Yoon J., Lee B.C., Park K. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 2010;30:162–168. doi: 10.1016/j.etap.2010.05.004. PubMed DOI

Korani M., Rezayat S.M., Gilani K., Bidgoli S.A., Adeli S. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int. J. Nanomed. 2011;6:855–862. doi: 10.2147/IJN.S17065. PubMed DOI PMC

Tang J.L., Xiong L., Wang S., Wang J.Y., Liu L., Li J.A., Wan Z.Y., Xi T.F. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl. Surf. Sci. 2008;255:502–504. doi: 10.1016/j.apsusc.2008.06.058. DOI

Tang J.L., Xiong L., Wang S., Wang J.Y., Liu L., Li J.G., Yuan F.Q., Xi T.F. Distribution, translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Nanotechnol. 2009;9:4924–4932. doi: 10.1166/jnn.2009.1269. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...