Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
28773461
PubMed Central
PMC5503077
DOI
10.3390/ma9050337
PII: ma9050337
Knihovny.cz E-resources
- Keywords
- anti-adhesive, anti-biofilm, antibacterial surface treatment, biomaterial-associated infection, prosthetic joint infection, silver nanocoating, silver nanoparticles,
- Publication type
- Journal Article MeSH
- Review MeSH
Prosthetic joint infection (PJI) is a feared complication of total joint arthroplasty associated with increased morbidity and mortality. There is a growing body of evidence that bacterial colonization and biofilm formation are critical pathogenic events in PJI. Thus, the choice of biomaterials for implanted prostheses and their surface modifications may significantly influence the development of PJI. Currently, silver nanoparticle (AgNP) technology is receiving much interest in the field of orthopaedics for its antimicrobial properties and a strong anti-biofilm potential. The great advantage of AgNP surface modification is a minimal release of active substances into the surrounding tissue and a long period of effectiveness. As a result, a controlled release of AgNPs could ensure antibacterial protection throughout the life of the implant. Moreover, the antibacterial effect of AgNPs may be strengthened in combination with conventional antibiotics and other antimicrobial agents. Here, our main attention is devoted to general guidelines for the design of antibacterial biomaterials protected by AgNPs, its benefits, side effects and future perspectives in PJI prevention.
See more in PubMed
Berend K.R., Lombardi A.V., Jr., Morris M.J., Bergeson A.G., Adams J.B., Sneller M.A. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin. Orthop. Relat. Res. 2013;471:510–518. doi: 10.1007/s11999-012-2595-x. PubMed DOI PMC
De Angelis G., Mutters N.T., Minkley L., Holderried F., Tacconelli E. Prosthetic joint infections in the elderly. Infection. 2015;43:629–637. doi: 10.1007/s15010-015-0806-6. PubMed DOI
Bedair H., Goyal N., Dietz M.J., Urish K., Hansen V., Manrique J., Hamilton W., Deirmengian G. A history of treated periprosthetic joint infection increases the risk of subsequent different site infection. Clin. Orthop. Relat. Res. 2015;473:2300–2304. doi: 10.1007/s11999-015-4174-4. PubMed DOI PMC
Voigt J., Mosier M., Darouiche R. Systematic review and meta-analysis of randomized controlled trials of antibiotics and antiseptics for preventing infection in people receiving primary total hip and knee prostheses. Antimicrob. Agents Chemother. 2015;59:6696–6707. doi: 10.1128/AAC.01331-15. PubMed DOI PMC
Kamath A.F., Ong K.L., Lau E., Chan V., Vail T.P., Rubash H.E., Berry D.J., Bozic K.J. Quantifying the burden of revision total joint arthroplasty for periprosthetic infection. J. Arthroplast. 2015;30:1492–1497. doi: 10.1016/j.arth.2015.03.035. PubMed DOI
Witso E. The rate of prosthetic joint infection is underestimated in the arthroplasty registers. Acta Orthop. 2015:277–278. doi: 10.3109/17453674.2015.1042320. PubMed DOI PMC
Kurtz S.M., Lau E., Watson H., Schmier J.K., Parvizi J. Economic burden of periprosthetic joint infection in the united states. J. Arthroplast. 2012;27:61–65. doi: 10.1016/j.arth.2012.02.022. PubMed DOI
Lindgren V., Gordon M., Wretenberg P., Karrholm J., Garellick G. Deep infection after total hip replacement: A method for national incidence surveillance. Infect. Control Hosp. Epidemiol. 2014;35:1491–1496. doi: 10.1086/678600. PubMed DOI
Huotari K., Peltola M., Jamsen E. The incidence of late prosthetic joint infections: A registry-based study of 112,708 primary hip and knee replacements. Acta Orthop. 2015;86:321–325. doi: 10.3109/17453674.2015.1035173. PubMed DOI PMC
Tande A.J., Patel R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014;27:302–345. doi: 10.1128/CMR.00111-13. PubMed DOI PMC
Gallo J., Kolar M., Dendis M., Loveckova Y., Sauer P., Zapletalova J., Koukalova D. Culture and pcr analysis of joint fluid in the diagnosis of prosthetic joint infection. New Microbiol. 2008;31:97–104. PubMed
Aggarwal V.K., Bakhshi H., Ecker N.U., Parvizi J., Gehrke T., Kendoff D. Organism profile in periprosthetic joint infection: Pathogens differ at two arthroplasty infection referral centers in europe and in the united states. J. Knee Surg. 2014;27:399–406. doi: 10.1055/s-0033-1364102. PubMed DOI
Bemer P., Plouzeau C., Tande D., Leger J., Giraudeau B., Valentin A.S., Jolivet-Gougeon A., Vincent P., Corvec S., Gibaud S., et al. Evaluation of 16s rRNA gene pcr sensitivity and specificity for diagnosis of prosthetic joint infection: A prospective multicenter cross-sectional study. J. Clin. Microbiol. 2014;52:3583–3589. doi: 10.1128/JCM.01459-14. PubMed DOI PMC
Benito N., Franco M., Coll P., Galvez M.L., Jordan M., Lopez-Contreras J., Pomar V., Monllau J.C., Mirelis B., Gurgui M. Etiology of surgical site infections after primary total joint arthroplasties. J. Orthop. Res. 2014;32:633–637. doi: 10.1002/jor.22581. PubMed DOI
Gristina A.G., Naylor P., Myrvik Q. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 1988;14:205–224. PubMed
Nishitani K., Sutipornpalangkul W., de Mesy Bentley K.L., Varrone J.J., Bello-Irizarry S.N., Ito H., Matsuda S., Kates S.L., Daiss J.L., Schwarz E.M. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 2015;33:1311–1319. doi: 10.1002/jor.22907. PubMed DOI PMC
Vidlak D., Kielian T. Infectious dose dictates the host response during S. Aureus orthopedic biofilm infection. Infect. Immun. 2016 doi: 10.1128/IAI.00117-16. PubMed DOI PMC
Yue C., Zhao B., Ren Y., Kuijer R., van der Mei H.C., Busscher H.J., Rochford E.T. The implant infection paradox: Why do some succeed when others fail? Opinion and discussion paper. Eur. Cells Mater. 2015;29:303–310. PubMed
Zhou X., Yishake M., Li J., Jiang L., Wu L., Liu R., Xu N. Genetic susceptibility to prosthetic joint infection following total joint arthroplasty: A systematic review. Gene. 2015;563:76–82. doi: 10.1016/j.gene.2015.03.005. PubMed DOI
Navratilova Z., Gallo J., Mrazek F., Lostak J., Petrek M. Mbl2 gene variation affecting serum mbl is associated with prosthetic joint infection in czech patients after total joint arthroplasty. Tissue Antigens. 2012;80:444–451. doi: 10.1111/tan.12001. PubMed DOI
Busscher H.J., van der Mei H.C. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 2012;8:e1002440. doi: 10.1371/journal.ppat.1002440. PubMed DOI PMC
Costerton W., Veeh R., Shirtliff M., Pasmore M., Post C., Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Investig. 2003;112:1466–1477. doi: 10.1172/JCI200320365. PubMed DOI PMC
Eichenberger E.M., Thaden J.T., Sharma-Kuinkel B., Park L.P., Rude T.H., Ruffin F., Hos N.J., Seifert H., Rieg S., Kern W.V., et al. Polymorphisms in fibronectin binding proteins a and b among staphylococcus aureus bloodstream isolates are not associated with arthroplasty infection. PLoS ONE. 2015;10:e0141436. doi: 10.1371/journal.pone.0141436. PubMed DOI PMC
Chen Y., Busscher H.J., van der Mei H.C., Norde W. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. Appl. Environ. Microbiol. 2011;77:5065–5070. doi: 10.1128/AEM.00502-11. PubMed DOI PMC
Chagnot C., Zorgani M.A., Astruc T., Desvaux M. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective. Front. Microbiol. 2013;4:303. doi: 10.3389/fmicb.2013.00303. PubMed DOI PMC
Thevenot P., Hu W., Tang L. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 2008;8:270–280. PubMed PMC
Roach P., Eglin D., Rohde K., Perry C.C. Modern biomaterials: A review—Bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 2007;18:1263–1277. doi: 10.1007/s10856-006-0064-3. PubMed DOI
Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M.J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005;11:1–18. doi: 10.1089/ten.2005.11.1. PubMed DOI
Stoodley P., Ehrlich G.D., Sedghizadeh P.P., Hall-Stoodley L., Baratz M.E., Altman D.T., Sotereanos N.G., Costerton J.W., Demeo P. Orthopaedic biofilm infections. Curr. Orthop. Pract. 2011;22:558–563. doi: 10.1097/BCO.0b013e318230efcf. PubMed DOI PMC
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Laverty G., Gorman S.P., Gilmore B.F. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 2013;8:509–524. doi: 10.2217/fmb.13.7. PubMed DOI
Foster T.J., Geoghegan J.A., Ganesh V.K., Hook M. Adhesion, invasion and evasion: The many functions of the surface proteins of staphylococcus aureus. Nat. Rev. Microbiol. 2014;12:49–62. doi: 10.1038/nrmicro3161. PubMed DOI PMC
Fux C.A., Costerton J.W., Stewart P.S., Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13:34–40. doi: 10.1016/j.tim.2004.11.010. PubMed DOI
Arciola C.R., Campoccia D., Ehrlich G.D., Montanaro L. Biofilm-based implant infections in orthopaedics. Adv. Exp. Med. Biol. 2015;830:29–46. PubMed
Spaan A.N., Surewaard B.G., Nijland R., van Strijp J.A. Neutrophils versus staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol. 2013;67:629–650. doi: 10.1146/annurev-micro-092412-155746. PubMed DOI
Gardner A.B., Lee S.K., Woods E.C., Acharya A.P. Biomaterials-based modulation of the immune system. BioMed Res. Int. 2013;2013:732182. doi: 10.1155/2013/732182. PubMed DOI PMC
Pajarinen J., Lin T.H., Sato T., Yao Z., Goodman S. Interaction of materials and biology in total joint replacement—Successes, challenges and future directions. J. Mater. Chem. B Mater. Biol. Med. 2014;2:7094–7108. doi: 10.1039/C4TB01005A. PubMed DOI PMC
Busscher H.J., van der Mei H.C., Subbiahdoss G., Jutte P.C., van den Dungen J.J., Zaat S.A., Schultz M.J., Grainger D.W. Biomaterial-associated infection: Locating the finish line in the race for the surface. Sci. Transl. Med. 2012;4:153rv10. doi: 10.1126/scitranslmed.3004528. PubMed DOI
Yue C., van der Mei H.C., Kuijer R., Busscher H.J., Rochford E.T. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination. J. Biomed. Mater. Res. A. 2015;103:3590–3598. doi: 10.1002/jbm.a.35502. PubMed DOI
Higgins D.M., Basaraba R.J., Hohnbaum A.C., Lee E.J., Grainger D.W., Gonzalez-Juarrero M. Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am. J. Pathol. 2009;175:161–170. doi: 10.2353/ajpath.2009.080962. PubMed DOI PMC
Zimmerli W., Sendi P. Pathogenesis of implant-associated infection: The role of the host. Semin. Immunopathol. 2011;33:295–306. doi: 10.1007/s00281-011-0275-7. PubMed DOI
An Y.H., Friedman R.J. Prevention of sepsis in total joint arthroplasty. J. Hosp. Infect. 1996;33:93–108. doi: 10.1016/S0195-6701(96)90094-8. PubMed DOI
Humphreys H. Surgical site infection, ultraclean ventilated operating theatres and prosthetic joint surgery: Where now? J. Hosp. Infect. 2012;81:71–72. doi: 10.1016/j.jhin.2012.03.007. PubMed DOI
McHugh S.M., Hill A.D., Humphreys H. Laminar airflow and the prevention of surgical site infection. More harm than good? Surgeon. 2015;13:52–58. doi: 10.1016/j.surge.2014.10.003. PubMed DOI
Mejia E., Williams A., Long M. Decreasing prosthetic joint surgical site infections: An interdisciplinary approach. AORN J. 2015;101:213–222. doi: 10.1016/j.aorn.2014.03.017. PubMed DOI
Thornley P., Evaniew N., Riediger M., Winemaker M., Bhandari M., Ghert M. Postoperative antibiotic prophylaxis in total hip and knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. CMAJ Open. 2015;3:E338–E343. doi: 10.9778/cmajo.20150012. PubMed DOI PMC
Wang J., Zhu C., Cheng T., Peng X., Zhang W., Qin H., Zhang X. A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS ONE. 2013;8:e82745. doi: 10.1371/journal.pone.0082745. PubMed DOI PMC
McMurray C.L., Hardy K.J., Verlander N.Q., Hawkey P.M. Antibiotic surgical prophylaxis increases nasal carriage of antibiotic-resistant staphylococci. J. Med. Microbiol. 2015;64:1489–1495. doi: 10.1099/jmm.0.000182. PubMed DOI
Illingworth K.D., Mihalko W.M., Parvizi J., Sculco T., McArthur B., el Bitar Y., Saleh K.J. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: A multicenter approach: Aaos exhibit selection. J. Bone Jt. Surg. Am. Vol. 2013;95:e50. doi: 10.2106/JBJS.L.00596. PubMed DOI
Florschutz A.V., Fagan R.P., Matar W.Y., Sawyer R.G., Berrios-Torres S.I. Surgical site infection risk factors and risk stratification. J. Am. Acad. Orthop. Surg. 2015;23:S8–S11. doi: 10.5435/JAAOS-D-14-00447. PubMed DOI PMC
Maoz G., Phillips M., Bosco J., Slover J., Stachel A., Inneh I., Iorio R. The otto aufranc award: Modifiable versus nonmodifiable risk factors for infection after hip arthroplasty. Clin. Orthop. Relat. Res. 2015;473:453–459. doi: 10.1007/s11999-014-3780-x. PubMed DOI PMC
Ma Z., Guo F., Qi J., Xiang W., Zhang J. Meta-analysis shows that obesity may be a significant risk factor for prosthetic joint infections. Int. Orthop. 2015 doi: 10.1007/s00264-015-2914-4. PubMed DOI
Alijanipour P., Heller S., Parvizi J. Prevention of periprosthetic joint infection: What are the effective strategies? J. Knee Surg. 2014;27:251–258. doi: 10.1055/s-0034-1376332. PubMed DOI
Rezapoor M., Parvizi J. Prevention of periprosthetic joint infection. J. Arthroplast. 2015;30:902–907. doi: 10.1016/j.arth.2015.02.044. PubMed DOI
Getzlaf M.A., Lewallen E.A., Kremers H.M., Jones D.L., Bonin C.A., Dudakovic A., Thaler R., Cohen R.C., Lewallen D.G., van Wijnen A.J. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J. Orthop. Res. 2016;34:177–186. doi: 10.1002/jor.23068. PubMed DOI PMC
Romano C.L., Scarponi S., Gallazzi E., Romano D., Drago L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J. Orthop. Surg. Res. 2015;10:157. doi: 10.1186/s13018-015-0294-5. PubMed DOI PMC
Tsaras G., Osmon D.R., Mabry T., Lahr B., St Sauveur J., Yawn B., Kurland R., Berbari E.F. Incidence, secular trends, and outcomes of prosthetic joint infection: A population-based study, olmsted county, minnesota, 1969–2007. Infect. Control Hosp. Epidemiol. 2012;33:1207–1212. doi: 10.1086/668421. PubMed DOI PMC
Zhu Y., Zhang F., Chen W., Liu S., Zhang Q., Zhang Y. Risk factors for periprosthetic joint infection after total joint arthroplasty: A systematic review and meta-analysis. J. Hosp. Infect. 2015;89:82–89. doi: 10.1016/j.jhin.2014.10.008. PubMed DOI
Ratner B.D., Schoen F.J. The concept and assessment of biocompatibility. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Volume 1. Elsevier; Amsterdam, The Netherlands: 2013. pp. 588–592.
Bernthal N.M., Stavrakis A.I., Billi F., Cho J.S., Kremen T.J., Simon S.I., Cheung A.L., Finerman G.A., Lieberman J.R., Adams J.S., et al. A mouse model of post-arthroplasty staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE. 2010;5:e12580. doi: 10.1371/journal.pone.0012580. PubMed DOI PMC
Scherr T.D., Lindgren K.E., Schaeffer C.R., Hanke M.L., Hartman C.W., Kielian T. Mouse model of post-arthroplasty staphylococcus epidermidis joint infection. Methods Mol. Biol. 2014;1106:173–181. PubMed
Gatin L., Saleh-Mghir A., Massin P., Cremieux A.C. Critical analysis of experimental models of periprosthetic joint infection. Orthop. Traumatol. Surg. Res. 2015;101:851–855. doi: 10.1016/j.otsr.2015.08.007. PubMed DOI
Corvec S., Portillo M.E., Pasticci B.M., Borens O., Trampuz A. Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int. J. Artif. Organs. 2012;35:923–934. doi: 10.5301/ijao.5000168. PubMed DOI
Kapadia B.H., Berg R.A., Daley J.A., Fritz J., Bhave A., Mont M.A. Periprosthetic joint infection. Lancet. 2016;387:386–394. doi: 10.1016/S0140-6736(14)61798-0. PubMed DOI
Ratner B.D., Hoffman A.S. Physicochemical surface modifications of materials used in medicine. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science: An Introduction to Materials in Medicine. Volume 1. Academic Press (Elsevier); Waltham, MA, USA: 2013. pp. 259–276.
Follmann H.D., Martins A.F., Gerola A.P., Burgo T.A., Nakamura C.V., Rubira A.F., Muniz E.C. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of tmc/heparin complexes. Biomacromolecules. 2012;13:3711–3722. doi: 10.1021/bm3011962. PubMed DOI
Neoh K.G., Kang E.T. Combating bacterial colonization on metals via polymer coatings: Relevance to marine and medical applications. ACS Appl. Mater. Interfaces. 2011;3:2808–2819. doi: 10.1021/am200646t. PubMed DOI
Muszanska A.K., Rochford E.T., Gruszka A., Bastian A.A., Busscher H.J., Norde W., van der Mei H.C., Herrmann A. Antiadhesive polymer brush coating functionalized with antimicrobial and rgd peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15:2019–2026. doi: 10.1021/bm500168s. PubMed DOI
An Y.H., Stuart G.W., McDowell S.J., McDaniel S.E., Kang Q., Friedman R.J. Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. J. Orthop. Res. 1996;14:846–849. doi: 10.1002/jor.1100140526. PubMed DOI
Zhu H., Guo Z., Liu W. Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 2014;50:3900–3913. doi: 10.1039/c3cc47818a. PubMed DOI
Stallard C.P., McDonnell K.A., Onayemi O.D., O’Gara J.P., Dowling D.P. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases. 2012;7:31. doi: 10.1007/s13758-012-0031-0. PubMed DOI
Poncin-Epaillard F., Herry J.M., Marmey P., Legeay G., Debarnot D., Bellon-Fontaine M.N. Elaboration of highly hydrophobic polymeric surface—A potential strategy to reduce the adhesion of pathogenic bacteria? Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:1152–1161. doi: 10.1016/j.msec.2012.12.020. PubMed DOI
Shida T., Koseki H., Yoda I., Horiuchi H., Sakoda H., Osaki M. Adherence ability of staphylococcus epidermidis on prosthetic biomaterials: An in vitro study. Int. J. Nanomed. 2013;8:3955–3961. PubMed PMC
Singh A.V., Vyas V., Patil R., Sharma V., Scopelliti P.E., Bongiorno G., Podesta A., Lenardi C., Gade W.N., Milani P. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE. 2011;6:e25029. doi: 10.1371/journal.pone.0025029. PubMed DOI PMC
Ivanova E.P., Truong V.K., Wang J.Y., Berndt C.C., Jones R.T., Yusuf I.I., Peake I., Schmidt H.W., Fluke C., Barnes D., et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir ACS J. Surf. Colloids. 2010;26:1973–1982. doi: 10.1021/la902623c. PubMed DOI
Truong V.K., Lapovok R., Estrin Y.S., Rundell S., Wang J.Y., Fluke C.J., Crawford R.J., Ivanova E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31:3674–3683. PubMed
Filova E., Fojt J., Kryslova M., Moravec H., Joska L., Bacakova L. The diameter of nanotubes formed on ti-6al-4v alloy controls the adhesion and differentiation of saos-2 cells. Int. J. Nanomed. 2015;10:7145–7163. PubMed PMC
Pandit V., Zuidema J.M., Venuto K.N., Macione J., Dai G., Gilbert R.J., Kotha S.P. Evaluation of multifunctional polysaccharide hydrogels with varying stiffness for bone tissue engineering. Tissue Eng. A. 2013;19:2452–2463. PubMed PMC
Zhao C., Li X., Li L., Cheng G., Gong X., Zheng J. Dual functionality of antimicrobial and antifouling of poly(n-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir ACS J. Surf. Colloids. 2013;29:1517–1524. PubMed
Zan X., Kozlov M., McCarthy T.J., Su Z. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid) Biomacromolecules. 2010;11:1082–1088. PubMed
Drago L., Boot W., Dimas K., Malizos K., Hansch G.M., Stuyck J., Gawlitta D., Romano C.L. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin. Orthop. Relat. Res. 2014;472:3311–3323. PubMed PMC
Bock R.M., McEntire B.J., Bal B.S., Rahaman M.N., Boffelli M., Pezzotti G. Surface modulation of silicon nitride ceramics for orthopaedic applications. Acta Biomater. 2015;26:318–330. PubMed
Webster T.J., Patel A.A., Rahaman M.N., Sonny Bal B. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomater. 2012;8:4447–4454. PubMed
Eto S., Kawano S., Someya S., Miyamoto H., Sonohata M., Mawatari M. First clinical experience with thermal-sprayed silver oxide-containing hydroxyapatite coating implant. J. Arthroplast. 2015 doi: 10.1016/j.arth.2015.12.034. PubMed DOI
Guimond-Lischer S., Ren Q., Braissant O., Gruner P., Wampfler B., Maniura-Weber K. Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. Biointerphases. 2016;11:011012. doi: 10.1116/1.4943225. PubMed DOI
Unosson E., Rodriguez D., Welch K., Engqvist H. Reactive combinatorial synthesis and characterization of a gradient ag-ti oxide thin film with antibacterial properties. Acta Biomater. 2015;11:503–510. doi: 10.1016/j.actbio.2014.09.048. PubMed DOI
Cheng H., Li Y., Huo K., Gao B., Xiong W. Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J. Biomed. Mater. Res. A. 2014;102:3488–3499. doi: 10.1002/jbm.a.35019. PubMed DOI
Gao A., Hang R.Q., Huang X.B., Zhao L.Z., Zhang X.Y., Wang L., Tang B., Ma S.L., Chu P.K. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35:4223–4235. doi: 10.1016/j.biomaterials.2014.01.058. PubMed DOI
Mei S., Wang H., Wang W., Tong L., Pan H., Ruan C., Ma Q., Liu M., Yang H., Zhang L., et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials. 2014;35:4255–4265. doi: 10.1016/j.biomaterials.2014.02.005. PubMed DOI
Dong W., Zhu Y., Zhang J., Lu L., Zhao C., Qin L., Li Y. Investigation on the antibacterial micro-porous titanium with silver nano-particles. J. Nanosci. Nanotechnol. 2013;13:6782–6786. doi: 10.1166/jnn.2013.7757. PubMed DOI
Panacek A., Balzerova A., Prucek R., Ranc V., Vecerova R., Husickova V., Pechousek J., Filip J., Zboril R., Kvitek L. Preparation, characterization and antimicrobial efficiency of ag/pdda-diatomite nanocomposite. Colloids Surf. B Biointerfaces. 2013;110:191–198. doi: 10.1016/j.colsurfb.2013.04.031. PubMed DOI
Kvitek L., Panacek A., Soukupova J., Kolar M., Vecerova R., Prucek R., Holecova M., Zboril R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (nps) J. Phys. Chem. C. 2008;112:5825–5834. doi: 10.1021/jp711616v. DOI
Knetsch M.L.W., Koole L.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers. 2011;3:340–366. doi: 10.3390/polym3010340. DOI
Harrasser N., Jussen S., Banke I.J., Kmeth R., von Eisenhart-Rothe R., Stritzker B., Gollwitzer H., Burgkart R. Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings. AMB Express. 2015;5:77. doi: 10.1186/s13568-015-0162-z. PubMed DOI PMC
Bai Y., Bai Y., Wang C., Gao J., Ma W. Fabrication and characterization of gold nanoparticle-loaded tio2 nanotube arrays for medical implants. J. Mater. Sci. Mater. Med. 2016;27:31. doi: 10.1007/s10856-015-5646-5. PubMed DOI
Ahmed R.A., Fadl-allah S.A., El-Bagoury N., El-Rab S.M.F.G. Improvement of corrosion resistance and antibacterial effect of niti orthopedic materials by chitosan and gold nanoparticles. Appl. Surf. Sci. 2014;292:390–399. doi: 10.1016/j.apsusc.2013.11.150. DOI
Koseki H., Asahara T., Shida T., Yoda I., Horiuchi H., Baba K., Osaki M. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins. Int. J. Nanomed. 2013;8:593–599. doi: 10.2147/IJN.S39201. PubMed DOI PMC
Haenle M., Fritsche A., Zietz C., Bader R., Heidenau F., Mittelmeier W., Gollwitzer H. An extended spectrum bactericidal titanium dioxide (tio2) coating for metallic implants: In vitro effectiveness against mrsa and mechanical properties. J. Mater. Sci. Mater. Med. 2011;22:381–387. doi: 10.1007/s10856-010-4204-4. PubMed DOI
Yue C., Kuijer R., Kaper H.J., van der Mei H.C., Busscher H.J. Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials. 2014;35:2580–2587. doi: 10.1016/j.biomaterials.2013.12.036. PubMed DOI
Holinka J., Pilz M., Kubista B., Presterl E., Windhager R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Jt. J. 2013;95-B:678–682. doi: 10.1302/0301-620X.95B5.31216. PubMed DOI
Tran P.A., Webster T.J. Selenium nanoparticles inhibit staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC
Rodriguez-Valencia C., Lopez-Alvarez M., Cochon-Cores B., Pereiro I., Serra J., Gonzalez P. Novel selenium-doped hydroxyapatite coatings for biomedical applications. J. Biomed. Mater. Res. A. 2013;101:853–861. doi: 10.1002/jbm.a.34387. PubMed DOI
LewisOscar F., MubarakAli D., Nithya C., Priyanka R., Gopinath V., Alharbi N.S., Thajuddin N. One pot synthesis and anti-biofilm potential of copper nanoparticles (cunps) against clinical strains of pseudomonas aeruginosa. Biofouling. 2015;31:379–391. doi: 10.1080/08927014.2015.1048686. PubMed DOI
Hoene A., Prinz C., Walschus U., Lucke S., Patrzyk M., Wilhelm L., Neumann H.G., Schlosser M. In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomed. Mater. 2013;8 doi: 10.1088/1748-6041/8/3/035009. PubMed DOI
Elizabeth E., Baranwal G., Krishnan A.G., Menon D., Nair M. Zno nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology. 2014;25:115101. doi: 10.1088/0957-4484/25/11/115101. PubMed DOI
Hu H., Zhang W., Qiao Y., Jiang X., Liu X., Ding C. Antibacterial activity and increased bone marrow stem cell functions of zn-incorporated tio2 coatings on titanium. Acta Biomater. 2012;8:904–915. doi: 10.1016/j.actbio.2011.09.031. PubMed DOI
Tsuchiya H., Shirai T., Nishida H., Murakami H., Kabata T., Yamamoto N., Watanabe K., Nakase J. Innovative antimicrobial coating of titanium implants with iodine. J. Orthop. Sci. 2012;17:595–604. doi: 10.1007/s00776-012-0247-3. PubMed DOI PMC
Bellucci D., Sola A., Cannillo V. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. J. Biomed. Mater. Res. A. 2016;104:1030–1056. doi: 10.1002/jbm.a.35619. PubMed DOI
Durgalakshmi D., Balakumar S., Raja C.A., George R.P., Mudali U.K. Structural, morphological and antibacterial investigation of ag-impregnated sol-gel-derived 45s5 nanobioglass systems. J. Nanosci. Nanotechnol. 2015;15:4285–4295. doi: 10.1166/jnn.2015.9724. PubMed DOI
Shi Y.Y., Li M., Liu Q., Jia Z.J., Xu X.C., Cheng Y., Zheng Y.F. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on ti substrate. J. Mater. Sci. Mater. Med. 2016;27:48. doi: 10.1007/s10856-015-5634-9. PubMed DOI
Richtera L., Chudobova D., Cihalova K., Kremplova M., Milosavljevic V., Kopel P., Blazkova I., Hynek D., Adam V., Kizek R. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganisms. Materials. 2015;8:2994–3011. doi: 10.3390/ma8062994. DOI
Antoci V., Jr., Adams C.S., Parvizi J., Ducheyne P., Shapiro I.M., Hickok N.J. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin. Orthop. Relat. Res. 2007;461:81–87. doi: 10.1097/BLO.0b013e3181123a50. PubMed DOI
Antoci V., Jr., King S.B., Jose B., Parvizi J., Zeiger A.R., Wickstrom E., Freeman T.A., Composto R.J., Ducheyne P., Shapiro I.M., et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 2007;25:858–866. doi: 10.1002/jor.20348. PubMed DOI
Walter M.S., Frank M.J., Satue M., Monjo M., Ronold H.J., Lyngstadaas S.P., Haugen H.J. Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo. Dent. Mater. 2014;30:200–214. doi: 10.1016/j.dental.2013.11.006. PubMed DOI
Chennell P., Feschet-Chassot E., Devers T., Awitor K.O., Descamps S., Sautou V. In vitro evaluation of tio2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int. J. Pharm. 2013;455:298–305. doi: 10.1016/j.ijpharm.2013.07.014. PubMed DOI
Hickok N.J., Shapiro I.M. Immobilized antibiotics to prevent orthopaedic implant infections. Adv. Drug Deliv. Rev. 2012;64:1165–1176. doi: 10.1016/j.addr.2012.03.015. PubMed DOI PMC
Norowski P.A., Courtney H.S., Babu J., Haggard W.O., Bumgardner J.D. Chitosan coatings deliver antimicrobials from titanium implants: A preliminary study. Implant Dent. 2011;20:56–67. doi: 10.1097/ID.0b013e3182087ac4. PubMed DOI
Chen X.N., Gu Y.X., Lee J.H., Lee W.Y., Wang H.J. Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation. Eur. Cells Mater. 2012;24:237–248. PubMed
Renoud P., Toury B., Benayoun S., Attik G., Grosgogeat B. Functionalization of titanium with chitosan via silanation: Evaluation of biological and mechanical performances. PLoS ONE. 2012;7:e39367. doi: 10.1371/journal.pone.0039367. PubMed DOI PMC
Tan H., Ma R., Lin C., Liu Z., Tang T. Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int. J. Mol. Sci. 2013;14:1854–1869. doi: 10.3390/ijms14011854. PubMed DOI PMC
Yazici H., O’Neill M.B., Kacar T., Wilson B.R., Oren E.E., Sarikaya M., Tamerler C. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl. Mater. Interfaces. 2016;8:5070–5081. doi: 10.1021/acsami.5b03697. PubMed DOI PMC
Rapsch K., Bier F.F., Tadros M., von Nickisch-Rosenegk M. Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties. Bioconj. Chem. 2014;25:308–319. doi: 10.1021/bc4004469. PubMed DOI
Zheng D., Neoh K.G., Shi Z., Kang E.T. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium. J. Colloid Interface Sci. 2013;406:238–246. doi: 10.1016/j.jcis.2013.05.060. PubMed DOI
Li B., McKeague A.L. Emerging ideas: Interleukin-12 nanocoatings prevent open fracture-associated infections. Clin. Orthop. Relat. Res. 2011;469:3262–3265. doi: 10.1007/s11999-010-1690-0. PubMed DOI PMC
Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 2013;8:97–109. doi: 10.1002/biot.201200313. PubMed DOI
Chua P.H., Neoh K.G., Kang E.T., Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and rgd for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412–1421. doi: 10.1016/j.biomaterials.2007.12.019. PubMed DOI
Glinel K., Thebault P., Humblot V., Pradier C.M., Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8:1670–1684. doi: 10.1016/j.actbio.2012.01.011. PubMed DOI
He T., Chan V. Covalent layer-by-layer assembly of polyethyleneimine multilayer for antibacterial applications. J. Biomed. Mater. Res. A. 2010;95:454–464. doi: 10.1002/jbm.a.32872. PubMed DOI
Fu J., Ji J., Fan D., Shen J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J. Biomed. Mater. Res. A. 2006;79:665–674. doi: 10.1002/jbm.a.30819. PubMed DOI
Zhou B., Li Y., Deng H., Hu Y., Li B. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf. B Biointerfaces. 2014;116:432–438. doi: 10.1016/j.colsurfb.2014.01.016. PubMed DOI
Huang W., Li X., Xue Y., Huang R., Deng H., Ma Z. Antibacterial multilayer films fabricated by lbl immobilizing lysozyme and htcc on nanofibrous mats. Int. J. Biol. Macromol. 2013;53:26–31. doi: 10.1016/j.ijbiomac.2012.10.024. PubMed DOI
Min J., Braatz R.D., Hammond P.T. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials. 2014;35:2507–2517. doi: 10.1016/j.biomaterials.2013.12.009. PubMed DOI PMC
Rizzello L., Pompa P.P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2013 doi: 10.1039/C3CS60218D. PubMed DOI
Zhang M., Zhao Y., Yan L., Peltier R., Hui W., Yao X., Cui Y., Chen X., Sun H., Wang Z. Interfacial engineering of bimetallic ag/pt nanoparticles on reduced graphene oxide matrix for enhanced antimicrobial activity. ACS Appl. Mater. Interfaces. 2016;8:8834–8840. doi: 10.1021/acsami.6b01396. PubMed DOI
Funao H., Nagai S., Sasaki A., Hoshikawa T., Tsuji T., Okada Y., Koyasu S., Toyama Y., Nakamura M., Aizawa M., et al. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection. Sci. Rep. 2016;6:23238. doi: 10.1038/srep23238. PubMed DOI PMC
Gottenbos B., van der Mei H.C., Klatter F., Grijpma D.W., Feijen J., Nieuwenhuis P., Busscher H.J. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24:2707–2710. doi: 10.1016/S0142-9612(03)00083-8. PubMed DOI
Braem A., De Cremer K., Delattin N., De Brucker K., Neirinck B., Vandamme K., Martens J.A., Michiels J., Vleugels J., Cammue B.P., et al. Novel anti-infective implant substrates: Controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf. B Biointerfaces. 2015;126:481–488. doi: 10.1016/j.colsurfb.2014.12.054. PubMed DOI
Yu Q., Cho J., Shivapooja P., Ista L.K., Lopez G.P. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl. Mater. Interfaces. 2013;5:9295–9304. doi: 10.1021/am4022279. PubMed DOI
Holzapfel B.M., Reichert J.C., Schantz J.T., Gbureck U., Rackwitz L., Noth U., Jakob F., Rudert M., Groll J., Hutmacher D.W. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 2013;65:581–603. doi: 10.1016/j.addr.2012.07.009. PubMed DOI
Cipriano A.F., Miller C., Liu H. Anodic growth and biomedical applications of tio2 nanotubes. J. Biomed. Nanotechnol. 2014;10:2977–3003. doi: 10.1166/jbn.2014.1927. PubMed DOI
Parvizi J., Antoci V., Jr., Hickok N.J., Shapiro I.M. Selfprotective smart orthopedic implants. Expert Rev. Med. Devices. 2007;4:55–64. doi: 10.1586/17434440.4.1.55. PubMed DOI
Mastronardi E., Foster A., Zhang X., Derosa M.C. Smart materials based on DNA aptamers: Taking aptasensing to the next level. Sensors. 2014;14:3156–3171. doi: 10.3390/s140203156. PubMed DOI PMC
Ehrlich G.D., Stoodley P., Kathju S., Zhao Y., McLeod B.R., Balaban N., Hu F.Z., Sotereanos N.G., Costerton J.W., Stewart P.S., et al. Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin. Orthop. Relat.Res. 2005;437:59–66. doi: 10.1097/00003086-200508000-00011. PubMed DOI PMC
Shchukin D.G., Mohwald H. Self-repairing coatings containing active nanoreservoirs. Small. 2007;3:926–943. doi: 10.1002/smll.200700064. PubMed DOI
Shchukin D., Mohwald H. Materials science. A coat of many functions. Science. 2013;341:1458–1459. doi: 10.1126/science.1242895. PubMed DOI
Keller L., Wagner Q., Offner D., Eap S., Musset A.M., Arruebo M., Kelm J.M., Schwinte P., Benkirane-Jessel N. Integrating microtissues in nanofiber scaffolds for regenerative nanomedicine. Materials. 2015;8:6863–6867. doi: 10.3390/ma8105342. PubMed DOI PMC
Yilmaz C., Colak M., Yilmaz B.C., Ersoz G., Kutateladze M., Gozlugol M. Bacteriophage therapy in implant-related infections: An experimental study. J. Bone Jt. Surg. Am. Vol. 2013;95:117–125. doi: 10.2106/JBJS.K.01135. PubMed DOI
Liu Y., Busscher H.J., Zhao B., Li Y., Zhang Z., van der Mei H.C., Ren Y., Shi L. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano. 2016 doi: 10.1021/acsnano.6b01370. PubMed DOI
Yu Q., Wu Z., Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13. doi: 10.1016/j.actbio.2015.01.018. PubMed DOI
Zaborowska M., Welch K., Branemark R., Khalilpour P., Engqvist H., Thomsen P., Trobos M. Bacteria-material surface interactions: Methodological development for the assessment of implant surface induced antibacterial effects. J. Biomed. Mater. Res. B Appl. Biomater. 2014 doi: 10.1002/jbm.b.33179. PubMed DOI
Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI
Ketabchi A., Komm K., Miles-Rossouw M., Cassani D.A., Variola F. Nanoporous titanium surfaces for sustained elution of proteins and antibiotics. PLoS ONE. 2014;9:e92080. doi: 10.1371/journal.pone.0092080. PubMed DOI PMC
Hizal F., Zhuk I., Sukhishvili S., Busscher H.J., van der Mei H.C., Choi C.H. Impact of 3d hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl. Mater. Interfaces. 2015;7:20304–20313. doi: 10.1021/acsami.5b05947. PubMed DOI
Tian B., Chen W., Yu D., Lei Y., Ke Q., Guo Y., Zhu Z. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J. Mech. Behav. Biomed. Mater. 2016;61:345–359. doi: 10.1016/j.jmbbm.2016.04.002. PubMed DOI
Gallo J., Holinka M., Moucha C.S. Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 2014;15:13849–13880. doi: 10.3390/ijms150813849. PubMed DOI PMC
Baker C., Pradhan A., Pakstis L., Pochan D.J., Shah S.I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005;5:244–249. doi: 10.1166/jnn.2005.034. PubMed DOI
Chen C.Y., Chiang C.L. Preparation of cotton fibers with antibacterial silver nanoparticles. Mater. Lett. 2008;62:3607–3609. doi: 10.1016/j.matlet.2008.04.008. DOI
Martinez-Castanon G.A., Nino-Martinez N., Martinez-Gutierrez F., Martinez-Mendoza J.R., Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 2008;10:1343–1348. doi: 10.1007/s11051-008-9428-6. DOI
Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC
Panacek A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V.K., Nevecna T., Zboril R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI
Sharma V.K., Yngard R.A., Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009;145:83–96. doi: 10.1016/j.cis.2008.09.002. PubMed DOI
Ansari M.A., Khan H.M., Khan A.A., Cameotra S.S., Saquib Q., Musarrat J. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of pseudomonas aeruginosa. J. Basic Microbiol. 2014;54:688–699. doi: 10.1002/jobm.201300748. PubMed DOI
AshaRani P.V., Mun G.L.K., Hande M.P., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. Acs Nano. 2009;3:279–290. doi: 10.1021/nn800596w. PubMed DOI
Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI
Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J. In vitro toxicity of nanoparticles in brl 3a rat liver cells; Proceedings of the 13th International Workshop on in Vitro Toxicology; Zegrze, Poland. 8–11 September 2004; pp. 975–983. PubMed
Afkhami F., Pourhashemi S.J., Sadegha M., Salehi Y., Fard M.J.K. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against enterococcus faecalis. J. Dent. 2015;43:1573–1579. doi: 10.1016/j.jdent.2015.08.012. PubMed DOI
Agarwala M., Barman T., Gogoi D., Choudhury B., Pal A.R., Yadav R.N.S. Highly effective antibiofilm coating of silver-polymer nanocomposite on polymeric medical devices deposited by one step plasma process. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:1223–1235. doi: 10.1002/jbm.b.33106. PubMed DOI
Alberto Perez-Diaz M., Boegli L., James G., Velasquillo C., Sanchez-Sanchez R., Martinez-Martinez R.-E., Alejandro Martinez-Castanon G., Martinez-Gutierrez F. Silver nanoparticles with antimicrobial activities against streptococcus mutans and their cytotoxic effect. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;55:360–366. doi: 10.1016/j.msec.2015.05.036. PubMed DOI
Ali K., Ahmed B., Dwivedi S., Saquib Q., Al-Khedhairy A.A., Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE. 2015;10:e0131178. doi: 10.1371/journal.pone.0131178. PubMed DOI PMC
Besinis A., De Peralta T., Handy R.D. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8:745–754. doi: 10.3109/17435390.2013.825343. PubMed DOI
Fufa O., Andronescu E., Grumezescu V., Holban A.M., Mogoanta L., Mogosanu G.D., Socol G., Iordache F., Chifiriuc M.C., Grumezescu A.M. Silver nanostructurated surfaces prepared by maple for biofilm prevention. Biointerface Res. Appl. Chem. 2015;5:1011–1017.
Ghosh S., Jagtap S., More P., Shete U.J., Maheshwari N.O., Rao S.J., Kitture R., Kale S., Bellare J., Patil S., et al. Dioscorea bulbifera mediated synthesis of novel aucoreagshell nanoparticles with potent antibiofilm and antileishmanial activity. J. Nanomater. 2015 doi: 10.1155/2015/562938. DOI
Jaiswal S., Bhattacharya K., McHale P., Duffy B. Dual effects of beta-cyclodextrin-stabilised silver nanoparticles: Enhanced biofilm inhibition and reduced cytotoxicity. J. Mater. Sci. Mater. Med. 2015;26:5367. doi: 10.1007/s10856-014-5367-1. PubMed DOI
Palanisamy N.K., Ferina N., Amirulhusni A.N., Mohd-Zain Z., Hussaini J., Ping L.J., Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against pseudomonas aeruginosa. J. Nanobiotechnol. 2014;12:2. doi: 10.1186/1477-3155-12-2. PubMed DOI PMC
Rajiv S., Drilling A., Bassiouni A., James C., Vreugde S., Wormald P.-J. Topical colloidal silver as an anti-biofilm agent in a staphylococcus aureus chronic rhinosinusitis sheep model. Int. Forum Allergy Rhinol. 2015;5:283–288. doi: 10.1002/alr.21459. PubMed DOI
Taglietti A., Arciola C.R., D’Agostino A., Dacarro G., Montanaro L., Campoccia D., Cucca L., Vercellino M., Poggi A., Pallavicini P., et al. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 2014;35:1779–1788. doi: 10.1016/j.biomaterials.2013.11.047. PubMed DOI
Taraszkiewicz A., Fila G., Grinholc M., Nakonieczna J. Innovative strategies to overcome biofilm resistance. Biomed. Res. Int. 2013 doi: 10.1155/2013/150653. PubMed DOI PMC
Thomas R., Soumya K.R., Mathew J., Radhakrishnan E.K. Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonization efficiency of coagulase negative staphylococci. J. Photochem. Photobiol. B Biol. 2015;149:68–77. doi: 10.1016/j.jphotobiol.2015.04.034. PubMed DOI
Wu D., Fan W., Kishen A., Gutmann J.L., Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against enterococcus faecalis biofilm. J. Endod. 2014;40:285–290. doi: 10.1016/j.joen.2013.08.022. PubMed DOI
Xie C.M., Lu X., Wang K.F., Meng F.Z., Jiang O., Zhang H.P., Zhi W., Fang L.M. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces. 2014;6:8580–8589. doi: 10.1021/am501428e. PubMed DOI
Rodriguez-Cano A., Pacha-Olivenza M.A., Babiano R., Cintas P., Gonzalez-Martin M.L. Non-covalent derivatization of aminosilanized titanium alloy implants silver-enhanced coating of antibacterial organics. Surf. Coat. Technol. 2014;245:66–73. doi: 10.1016/j.surfcoat.2014.02.041. DOI
Zhao C.J., Feng B., Li Y.T., Tan J., Lu X., Weng J. Preparation and antibacterial activity of titanium nanotubes loaded with ag nanoparticles in the dark and under the uv light. Appl. Surf. Sci. 2013;280:8–14. doi: 10.1016/j.apsusc.2013.04.057. DOI
Wang Z., Sun Y., Wang D., Liu H., Boughton R.I. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation. Int. J. Nanomed. 2013;8:2903–2916. PubMed PMC
Saidin S., Chevallier P., Kadir M.R.A., Hermawan H., Mantovani D. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:4715–4724. doi: 10.1016/j.msec.2013.07.026. PubMed DOI
De Giglio E., Cafagna D., Cometa S., Allegretta A., Pedico A., Giannossa L.C., Sabbatini L., Mattioli-Belmonte M., Iatta R. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: Development and analytical characterization. Anal. Bioanal. Chem. 2013;405:805–816. doi: 10.1007/s00216-012-6293-z. PubMed DOI
Secinti K.D., Ozalp H., Attar A., Sargon M.F. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J. Clin. Neurosci. 2011;18:391–395. doi: 10.1016/j.jocn.2010.06.022. PubMed DOI
Cao H.L., Liu X.Y., Meng F.H., Chu P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials. 2011;32:693–705. doi: 10.1016/j.biomaterials.2010.09.066. PubMed DOI
Della Valle C., Visai L., Santin M., Cigada A., Candiani G., Pezzoli D., Arciola C.R., Imbriani M., Chiesa R. A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int. J. Artif. Organs. 2012;35:864–875. doi: 10.5301/ijao.5000161. PubMed DOI
Ionita D., Grecu M., Ungureanu C., Demetrescu I. Antimicrobial activity of the surface coatings on tialzr implant biomaterial. J. Biosci. Bioeng. 2011;112:630–634. doi: 10.1016/j.jbiosc.2011.07.022. PubMed DOI
Brennan S.A., Ni Fhoghlu C., Devitt B.M., O’Mahony F.J., Brabazon D., Walsh A. Silver nanoparticles and their orthopaedic applications. Bone Jt. J. 2015;97-B:582–589. doi: 10.1302/0301-620X.97B5.33336. PubMed DOI
Saleh N.B., Chambers B., Aich N., Plazas-Tuttle J., Phung-Ngoc H.N., Kirisits M.J. Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: Implications for interactions between nanomaterials and biofilm bacteria. Front. Microbiol. 2015;6:677. doi: 10.3389/fmicb.2015.00677. PubMed DOI PMC
Zhong X., Song Y.J., Yang P., Wang Y., Jiang S.Y., Zhang X., Li C.Y. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic acid antibacterial multilayer via layer-by-layer self-assembly. PLoS ONE. 2016;11:e0146957. doi: 10.1371/journal.pone.0146957. PubMed DOI PMC
Fabrega J., Renshaw J.C., Lead J.R. Interactions of silver nanoparticles with pseudomonas putida biofilms. Environ. Sci. Technol. 2009;43:9004–9009. doi: 10.1021/es901706j. PubMed DOI
Choi O.Y., Yu C.P., Fernandez G.E., Hu Z.Q. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44:6095–6103. doi: 10.1016/j.watres.2010.06.069. PubMed DOI
Mohanty S., Mishra S., Jena P., Jacob B., Sarkar B., Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. 2012;8:916–924. doi: 10.1016/j.nano.2011.11.007. PubMed DOI
Peulen T.O., Wilkinson K.J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011;45:3367–3373. doi: 10.1021/es103450g. PubMed DOI
Qin H., Cao H.L., Zhao Y.C., Zhu C., Cheng T., Wang Q.J., Peng X.C., Cheng M.Q., Wang J.X., Jin G.D., et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35:9114–9125. doi: 10.1016/j.biomaterials.2014.07.040. PubMed DOI
Bai L., Hang R.Q., Gao A., Zhang X.Y., Huang X.B., Wang Y.Y., Tang B., Zhao L.Z., Chu P.K. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering. Appl. Surf. Sci. 2015;355:32–44. doi: 10.1016/j.apsusc.2015.07.064. DOI
Zhang X.M., Li Z.Y., Yuan X.B., Cui Z.D., Bao H.J., Li X., Liu Y.D., Yang X.J. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:2816–2820. doi: 10.1016/j.msec.2013.03.010. PubMed DOI
Esfandiari N., Simchi A., Bagheri R. Size tuning of ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants. J. Biomed. Mater. Res. A. 2014;102:2625–2635. doi: 10.1002/jbm.a.34934. PubMed DOI
Chen X.Y., Cai K.Y., Fang J.J., Lai M., Li J.H., Hou Y.H., Luo Z., Hu Y., Tang L.L. Dual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS) Surf. Coat. Technol. 2013;216:158–165. doi: 10.1016/j.surfcoat.2012.11.049. DOI
Li W.R., Xie X.B., Shi Q.S., Duan S.S., Ouyang Y.S., Chen Y.B. Antibacterial effect of silver nanoparticles on staphylococcus aureus. Biometals. 2011;24:135–141. doi: 10.1007/s10534-010-9381-6. PubMed DOI
Li W.R., Xie X.B., Shi Q.S., Zeng H.Y., Ou-Yang Y.S., Chen Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010;85:1115–1122. doi: 10.1007/s00253-009-2159-5. PubMed DOI
Cui L., Chen P.Y., Chen S.D., Yuan Z.H., Yu C.P., Ren B., Zhang K.S. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced raman spectroscopy. Anal. Chem. 2013;85:5436–5443. doi: 10.1021/ac400245j. PubMed DOI
Lara H.H., Ayala-Nunez N.V., Turrent L.D.I., Padilla C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010;26:615–621. doi: 10.1007/s11274-009-0211-3. DOI
Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H.Z., Tam P.K.H., Chiu J.F., Che C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006;5:916–924. doi: 10.1021/pr0504079. PubMed DOI
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E-coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Choi O., Hu Z.Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008;42:4583–4588. doi: 10.1021/es703238h. PubMed DOI
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Xu H.Y., Qu F., Xu H., Lai W.H., Wang Y.A., Aguilar Z.P., Wei H. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli o157:H7. Biometals. 2012;25:45–53. doi: 10.1007/s10534-011-9482-x. PubMed DOI
Cabiscol E., Tamarit J., Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 2000;3:3–8. PubMed
Silver S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003;27:341–353. doi: 10.1016/S0168-6445(03)00047-0. PubMed DOI
Silver S., Phung L.T., Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 2006;33:627–634. doi: 10.1007/s10295-006-0139-7. PubMed DOI
Kremer A.N., Hoffmann H. Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the enterobacter cloacae complex. J. Clin. Microbiol. 2012;50:3249–3257. doi: 10.1128/JCM.00885-12. PubMed DOI PMC
Haefeli C., Franklin C., Hardy K. Plasmid-determined silver resistance in pseudomonas-stutzeri isolated from a silver mine. J. Bacteriol. 1984;158:389–392. PubMed PMC
Gupta A., Matsui K., Lo J.F., Silver S. Molecular basis for resistance to silver cations in salmonella. Nat. Med. 1999;5:183–188. doi: 10.1038/5545. PubMed DOI
Li X.Z., Nikaido H., Williams K.E. Silver-resistant mutants of Escherichia coli display active efflux of ag+ and are deficient in porins. J. Bacteriol. 1997;179:6127–6132. PubMed PMC
Nies D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003;27:313–339. doi: 10.1016/S0168-6445(03)00048-2. PubMed DOI
Potara M., Jakab E., Damert A., Popescu O., Canpean V., Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on staphylococcus aureus. Nanotechnology. 2011;22:13. doi: 10.1088/0957-4484/22/13/135101. PubMed DOI
Vertelov G.K., Krutyakov Y.A., Efremenkova O.V., Olenin A.Y., Lisichkin G.V. A versatile synthesis of highly bactericidal myramistin (r) stabilized silver nanoparticles. Nanotechnology. 2008;19:35. doi: 10.1088/0957-4484/19/35/355707. PubMed DOI
Ammons M.C.B., Ward L.S., James G.A. Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int. Wound J. 2011;8:268–273. doi: 10.1111/j.1742-481X.2011.00781.x. PubMed DOI PMC
Ruden S., Hilpert K., Berditsch M., Wadhwani P., Ulrich A.S. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob. Agents Chemother. 2009;53:3538–3540. doi: 10.1128/AAC.01106-08. PubMed DOI PMC
Birla S.S., Tiwari V.V., Gade A.K., Ingle A.P., Yadav A.P., Rai M.K. Fabrication of silver nanoparticles by phoma glomerata and its combined effect against Escherichia coli, pseudomonas aeruginosa and staphylococcus aureus. Lett. Appl. Microbiol. 2009;48:173–179. doi: 10.1111/j.1472-765X.2008.02510.x. PubMed DOI
Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. 2010;6:103–109. doi: 10.1016/j.nano.2009.04.006. PubMed DOI
Ghosh S., Patil S., Ahire M., Kitture R., Kale S., Pardesi K., Cameotra S.S., Bellare J., Dhavale D.D., Jabgunde A., et al. Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012;7:483–496. PubMed PMC
Muhsin T.M., Hachim A.K. Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J. Microbiol. Biotechnol. 2014;30:2081–2090. doi: 10.1007/s11274-014-1634-z. PubMed DOI
Naqvi S.Z.H., Kiran U., Ali M.I., Jamal A., Hameed A., Ahmed S., Ali N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomed. 2013;8:3187–3195. doi: 10.2147/IJN.S49284. PubMed DOI PMC
Sathiyanarayanan G., Kiran G.S., Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine bacillus subtilis MSBN17. Colloid Surface B. 2013;102:13–20. doi: 10.1016/j.colsurfb.2012.07.032. PubMed DOI
Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. 2007;3:168–171. doi: 10.1016/j.nano.2007.02.001. PubMed DOI
Hwang I.S., Hwang J.H., Choi H., Kim K.J., Lee D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 2012;61:1719–1726. doi: 10.1099/jmm.0.047100-0. PubMed DOI
Li P., Li J., Wu C.Z., Wu Q.S., Li J. Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005;16:1912–1917. doi: 10.1088/0957-4484/16/9/082. DOI
Markowska K., Grudniak A.M., Krawczyk K., Wrobel I., Wolska K.I. Modulation of antibiotic resistance and induction of a stress response in pseudomonas aeruginosa by silver nanoparticles. J. Med. Microbiol. 2014;63:849–854. doi: 10.1099/jmm.0.068833-0. PubMed DOI
Singh R., Wagh P., Wadhwani S., Gaidhani S., Kumbhar A., Bellare J., Chopade B.A. Synthesis, optimization, and characterization of silver nanoparticles from acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013;8:4277–4289. PubMed PMC
Brown A.N., Smith K., Samuels T.A., Lu J.R., Obare S.O., Scott M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of pseudomonas aeruginosa and enterobacter aerogenes and methicillin-resistant staphylococcus aureus. Appl. Environ. Microbiol. 2012;78:2768–2774. doi: 10.1128/AEM.06513-11. PubMed DOI PMC
Smekalova M., Aragon V., Panacek A., Prucek R., Zboril R., Kvitek L. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J. 2016;209:174–179. doi: 10.1016/j.tvjl.2015.10.032. PubMed DOI
Panacek A., Smekalova M., Kilianova M., Prucek R., Bogdanova K., Vecerova R., Kolar M., Havrdova M., Plaza G.A., Chojniak J., et al. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules. 2015;21 doi: 10.3390/molecules21010026. PubMed DOI PMC
Panáček A., Smékalová M., Večeřová R., Bogdanová K., Röderová M., Kolář M., Kilianová M., Hradilová Š., Froning J.P., Havrdová M., et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant enterobacteriaceae. Colloids Surfaces B Biointerfaces. 2016;142:392–399. doi: 10.1016/j.colsurfb.2016.03.007. PubMed DOI
Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874. doi: 10.3390/molecules20058856. PubMed DOI PMC
Arora S., Jain J., Rajwade J.M., Paknikar K.M. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharmacol. 2009;236:310–318. doi: 10.1016/j.taap.2009.02.020. PubMed DOI
Scavone M., Armentano I., Fortunati E., Cristofaro F., Mattioli S., Torre L., Kenny J.M., Imbriani M., Arciola C.R., Visai L. Antimicrobial properties and cytocompatibility of plga/ag nanocomposites. Materials. 2016;9 doi: 10.3390/ma9010037. PubMed DOI PMC
Kwon H.B., Lee J.H., Lee S.H., Lee A.Y., Choi J.S., Ahn Y.S. A case of argyria following colloidal silver ingestion. Ann. Dermatol. 2009;21:308–310. doi: 10.5021/ad.2009.21.3.308. PubMed DOI PMC
Mayr M., Kim M.J., Wanner D., Helmut H., Schroeder J., Mihatsch M.J. Argyria and decreased kidney function: Are silver compounds toxic to the kidney? Am. J. Kidney Dis. 2009;53:890–894. doi: 10.1053/j.ajkd.2008.08.028. PubMed DOI
Drake P.L., Hazelwood K.J. Exposure-related health effects of silver and silver compounds: A review. Ann. Occup. Hyg. 2005;49:575–585. doi: 10.1093/annhyg/mei019. PubMed DOI
Shahbazzadeh D., Ahari H., Motalebi A.A., Anvar A.A., Moaddab S., Asadi T., Shokrgozar M.A., Rahman-Nya J. In vitro effect of nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran. J. Fish. Sci. 2011;10:487–496.
Mukherjee S.G., O’Claonadh N., Casey A., Chambers G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol. In Vitro. 2012;26:238–251. doi: 10.1016/j.tiv.2011.12.004. PubMed DOI
Kim S., Choi J.E., Choi J., Chung K.H., Park K., Yi J., Ryu D.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro. 2009;23:1076–1084. doi: 10.1016/j.tiv.2009.06.001. PubMed DOI
Kawata K., Osawa M., Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 2009;43:6046–6051. doi: 10.1021/es900754q. PubMed DOI
Avalos Funez A., Isabel Haza A., Mateo D., Morales P. In vitro evaluation of silver nanoparticles on human tumoral and normal cells. Toxicol. Mech. Methods. 2013;23:153–160. doi: 10.3109/15376516.2012.762081. PubMed DOI
Asare N., Instanes C., Sandberg W.J., Refsnes M., Schwarze P., Kruszewski M., Brunborg G. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2012;291:65–72. doi: 10.1016/j.tox.2011.10.022. PubMed DOI
Albers C.E., Hofstetter W., Siebenrock K.A., Landmann R., Klenke F.M. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013;7:30–36. doi: 10.3109/17435390.2011.626538. PubMed DOI
Frankova J., Pivodova V., Vagnerova H., Juranova J., Ulrichova J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 2016 doi: 10.5301/jabfm.5000268. PubMed DOI
Galandakova A., Frankova J., Ambrozova N., Habartova K., Pivodova V., Zalesak B., Safarova K., Smekalova M., Ulrichova J. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum. Exp. Toxicol. 2015 doi: 10.1177/0960327115611969. PubMed DOI
Liu W., Wu Y., Wang C., Li H.C., Wang T., Liao C.Y., Cui L., Zhou Q.F., Yan B., Jiang G.B. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology. 2010;4:319–330. doi: 10.3109/17435390.2010.483745. PubMed DOI
De Matteis V., Malvindi M.A., Galeone A., Brunetti V., De Luca E., Kote S., Kshirsagar P., Sabella S., Bardi G., Pompa P.P. Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of ag+ ion release in the cytosol. Nanomed. Nanotechnol. 2015;11:731–739. doi: 10.1016/j.nano.2014.11.002. PubMed DOI
Chairuangkitti P., Lawanprasert S., Roytrakul S., Aueviriyavit S., Phummiratch D., Kulthong K., Chanvorachote P., Maniratanachote R. Silver nanoparticles induce toxicity in a549 cells via ros-dependent and ros-independent pathways. Toxicol. In Vitro. 2013;27:330–338. doi: 10.1016/j.tiv.2012.08.021. PubMed DOI
Hsiao I.L., Hsieh Y.K., Wang C.F., Chen I.C., Huang Y.J. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 2015;49:3813–3821. doi: 10.1021/es504705p. PubMed DOI
Park E.J., Yi J., Kim Y., Choi K., Park K. Silver nanoparticles induce cytotoxicity by a trojan-horse type mechanism. Toxicol. In Vitro. 2010;24:872–878. doi: 10.1016/j.tiv.2009.12.001. PubMed DOI
Yang H., Liu C., Yang D.F., Zhang H.S., Xi Z.G. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 2009;29:69–78. doi: 10.1002/jat.1385. PubMed DOI
Zhang T., Wang L., Chen Q., Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014;55:283–291. doi: 10.3349/ymj.2014.55.2.283. PubMed DOI PMC
Park M., Neigh A.M., Vermeulen J.P., de la Fonteyne L.J.J., Verharen H.W., Briede J.J., van Loveren H., de Jong W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32:9810–9817. doi: 10.1016/j.biomaterials.2011.08.085. PubMed DOI
Liu J.Y., Sonshine D.A., Shervani S., Hurt R.H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4:6903–6913. doi: 10.1021/nn102272n. PubMed DOI PMC
Molleman B., Hiemstra T. Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir. 2015;31:13361–13372. doi: 10.1021/acs.langmuir.5b03686. PubMed DOI
Stoehr L.C., Gonzalez E., Stampfl A., Casals E., Duschl A., Puntes V., Oostingh G.J. Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol. 2011;8 doi: 10.1186/1743-8977-8-36. PubMed DOI PMC
Kasemets K., Suppi S., Mantecca P., Kahru A. Charge and size-dependent toxicity of silver nanoparticles to yeast cells. Toxicol. Lett. 2014;229:S193–S194. doi: 10.1016/j.toxlet.2014.06.657. DOI
Schlinkert P., Casals E., Boyles M., Tischler U., Hornig E., Tran N., Zhao J., Himly M., Riediker M., Oostingh G.J., et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J. Nanobiotechnol. 2015;13 doi: 10.1186/s12951-014-0062-4. PubMed DOI PMC
Dziendzikowska K., Gromadzka-Ostrowska J., Lankoff A., Oczkowski M., Krawczynska A., Chwastowska J., Sadowska-Bratek M., Chajduk E., Wojewodzka M., Dusinska M., et al. Time-dependent biodistribution and excretion of silver nanoparticles in male wistar rats. J. Appl. Toxicol. 2012;32:920–928. doi: 10.1002/jat.2758. PubMed DOI
Loeschner K., Hadrup N., Qvortrup K., Larsen A., Gao X.Y., Vogel U., Mortensen A., Lam H.R., Larsen E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 2011;8 doi: 10.1186/1743-8977-8-18. PubMed DOI PMC
Van der Zande M., Vandebriel R.J., Van Doren E., Kramer E., Rivera Z.H., Serrano-Rojero C.S., Gremmer E.R., Mast J., Peters R.J.B., Hollman P.C.H., et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. Acs Nano. 2012;6:7427–7442. doi: 10.1021/nn302649p. PubMed DOI
Garza-Ocanas L., Ferrer D.A., Burt J., Diaz-Torres L.A., Ramirez Cabrera M., Tamez Rodriguez V., Lujan Rangel R., Romanovicz D., Jose-Yacaman M. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics. 2010;2:204–210. doi: 10.1039/B916107D. PubMed DOI
Pauksch L., Hartmann S., Rohnke M., Szalay G., Alt V., Schnettler R., Lips K.S. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014;10:439–449. doi: 10.1016/j.actbio.2013.09.037. PubMed DOI
Necula B.S., van Leeuwen J.P.T.M., Fratila-Apachitei L.E., Zaat S.A.J., Apachitei I., Duszczyk J. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater. 2012;8:4191–4197. doi: 10.1016/j.actbio.2012.07.005. PubMed DOI
Campoccia D., Cangini I., Selan L., Vercellino M., Montanaro L., Visai L., Arciola C.R. An overview of the methodological approach to the in vitro study of anti-infective biomaterials. Int. J. Artif. Organs. 2012;35:800–816. doi: 10.5301/ijao.5000140. PubMed DOI
Stoodley P., Hall-Stoodley L., Costerton B., DeMeo P., Shirtliff M., Gawalt E., Kathju S. Biofilms, biomaterials, and device-related infections. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science: An Introduction to Materials in Medicine. Volume 1. Academic Press (Elsevier); Waltham, MA, USA: 2013. pp. 565–583.
Barros J., Grenho L., Manuel C.M., Ferreira C., Melo L.F., Nunes O.C., Monteiro F.J., Ferraz M.P. A modular reactor to simulate biofilm development in orthopedic materials. Int. Microbiol. 2013;16:191–198. PubMed
Ludecke C., Jandt K.D., Siegismund D., Kujau M.J., Zang E., Rettenmayr M., Bossert J., Roth M. Reproducible biofilm cultivation of chemostat-grown escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter. PLoS ONE. 2014;9:e84837. PubMed PMC
Rujanapun N., Aueviriyavit S., Boonrungsiman S., Rosena A., Phummiratch D., Riolueang S., Chalaow N., Viprakasit V., Maniratanachote R. Human primary erythroid cells as a more sensitive alternative in vitro hematological model for nanotoxicity studies: Toxicological effects of silver nanoparticles. Toxicol. In Vitro. 2015;29:1982–1992. doi: 10.1016/j.tiv.2015.08.005. PubMed DOI
Albrecht M.A., Evans C.W., Raston C.L. Green chemistry and the health implications of nanoparticles. Green Chem. 2006;8:417–432. doi: 10.1039/b517131h. DOI
Nunez-Anita R.E., Acosta-Torres L.S., Vilar-Pineda J., Martinez-Espinosa J.C., de la Fuente-Hernandez J., Castano V.M. Toxicology of antimicrobial nanoparticles for prosthetic devices. Int. J. Nanomed. 2014;9:3999–4006. PubMed PMC
Sambale F., Wagner S., Stahl F., Khaydarov R.R., Scheper T., Bahnemann D. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J. Nanomater. 2015 doi: 10.1155/2015/136765. DOI
Sussman E.M., Casey B.J., Dutta D., Dair B.J. Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. J. Appl. Toxicol. 2015;35:631–639. doi: 10.1002/jat.3104. PubMed DOI
Liu Y., Li X., Bao S., Lu Z., Li Q., Li C.M. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology. 2013;24:175501. doi: 10.1088/0957-4484/24/17/175501. PubMed DOI
Zou J., Feng H., Mannerstrom M., Heinonen T., Pyykko I. Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J. Nanobiotechnol. 2014;12:52. doi: 10.1186/s12951-014-0052-6. PubMed DOI PMC
Chan E.L., Zhang C., Cheung G.S. Cytotoxicity of a novel nano-silver particle endodontic irrigant. Clin. Cosmet. Investig. Dent. 2015;7:65–74. doi: 10.2147/CCIDE.S68874. PubMed DOI PMC
Albrekt A.S., Johansson H., Borje A., Borrebaeck C., Lindstedt M. Skin sensitizers differentially regulate signaling pathways in mutz-3 cells in relation to their individual potency. BMC Pharmacol. Toxicol. 2014;15:5. doi: 10.1186/2050-6511-15-5. PubMed DOI PMC
Johansson H., Albrekt A.S., Borrebaeck C.A., Lindstedt M. The gard assay for assessment of chemical skin sensitizers. Toxicol. In Vitro. 2013;27:1163–1169. doi: 10.1016/j.tiv.2012.05.019. PubMed DOI
Johansson H., Lindstedt M., Albrekt A.S., Borrebaeck C.A. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genom. 2011;12:399. doi: 10.1186/1471-2164-12-399. PubMed DOI PMC
Wong C.L., Ghassabian S., Smith M.T., Lam A.L. In vitro methods for hazard assessment of industrial chemicals—Opportunities and challenges. Front. Pharmacol. 2015;6:94. doi: 10.3389/fphar.2015.00094. PubMed DOI PMC
Wafa H., Grimer R.J., Reddy K., Jeys L., Abudu A., Carter S.R., Tillman R.M. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: Case-control study. Bone Jt. J. 2015;97:252–257. doi: 10.1302/0301-620X.97B2.34554. PubMed DOI
Lemcke J., Depner F., Meier U. The impact of silver nanoparticle-coated and antibiotic-impregnated external ventricular drainage catheters on the risk of infections: A clinical comparison of 95 patients. Acta Neurochir. Suppl. 2012;114:347–350. PubMed
Antonelli M., De Pascale G., Ranieri V.M., Pelaia P., Tufano R., Piazza O., Zangrillo A., Ferrario A., De Gaetano A., Guaglianone E., et al. Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (agtive(r)) vs. conventional catheters in intensive care unit patients. J. Hosp. Infect. 2012;82:101–107. doi: 10.1016/j.jhin.2012.07.010. PubMed DOI
Grainger D.W., van der Mei H.C., Jutte P.C., van den Dungen J.J., Schultz M.J., van der Laan B.F., Zaat S.A., Busscher H.J. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials. 2013;34:9237–9243. doi: 10.1016/j.biomaterials.2013.08.043. PubMed DOI