Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32118132
PubMed Central
PMC7045315
DOI
10.1021/acsomega.9b03072
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Successful surgeries involving orthopedic implants depend on the avoidance of biofilm development on the implant surface during the early postoperative period. Here, we investigate the potential of novel antibacterial compounds-second-generation lipophosphonoxins (LPPOs II)-as additives to surgical bone cements. We demonstrate (i) excellent thermostability of LPPOs II, which is essential to withstand elevated temperatures during exothermic cement polymerization; (ii) unchanged tensile strength and elongation at the break properties of the composite cements containing LPPOs II compared to cements without additives; (iii) convenient elution kinetics on the order of days; and (iv) the strong antibiofilm activity of the LPPO II-loaded cements even against bacteria resistant to the medicinally utilized antibiotic, gentamicin. Thus, LPPOs II display promising potential as antimicrobial additives to surgical bone cements.
Zobrazit více v PubMed
Thet N. T.; Wallace L.; Wibaux A.; Boote N.; Jenkins A. T. A. Development of a mixed-species biofilm model and its virulence implications in device related infections. J. Biomed. Mater. Res., Part B 2019, 107, 129–137. 10.1002/jbm.b.34103. PubMed DOI
Peel T. N.; Cheng A. C.; Buising K. L.; Choong P. F. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: are current antibiotic prophylaxis guidelines effective?. Antimicrob. Agents Chemother. 2012, 56, 2386–2391. 10.1128/AAC.06246-11. PubMed DOI PMC
Gallo J.; Holinka M.; Moucha C. S. Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 2014, 15, 13849–13880. 10.3390/ijms150813849. PubMed DOI PMC
Gallo J.; Panacek A.; Prucek R.; Kriegova E.; Hradilova S.; Hobza M.; Holinka M. Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection. Materials 2016, 9, 33710.3390/ma9050337. PubMed DOI PMC
Miola M.; Bistolfi A.; Valsania M. C.; Bianco C.; Fucale G.; Verne E. Antibiotic-loaded acrylic bone cements: an in vitro study on the release mechanism and its efficacy. Mater. Sci. Eng., C 2013, 33, 3025–3032. 10.1016/j.msec.2013.03.032. PubMed DOI
Baker S.; Thomson N.; Weill F. X.; Holt K. E. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 2018, 360, 733–738. 10.1126/science.aar3777. PubMed DOI PMC
Marston H. D.; Dixon D. M.; Knisely J. M.; Palmore T. N.; Fauci A. S. Antimicrobial Resistance. J. Am. Med. Assoc. 2016, 316, 1193–1204. 10.1001/jama.2016.11764. PubMed DOI
Rejman D.; Rabatinova A.; Pombinho A. R.; Kovackova S.; Pohl R.; Zbornikova E.; Kolar M.; Bogdanova K.; Nyc O.; Sanderova H.; Latal T.; Bartunek P.; Krasny L. Lipophosphonoxins: New Modular Molecular Structures with Significant Antibacterial Properties. J. Med. Chem. 2011, 54, 7884–7898. 10.1021/jm2009343. PubMed DOI
Panova N.; Zbornikova E.; Simak O.; Pohl R.; Kolar M.; Bogdanova K.; Vecerova R.; Seydlova G.; Fiser R.; Hadravova R.; Sanderova H.; Viovska D.; Sikova M.; Latal T.; Lovecka P.; Barvik I.; Krasny L.; Rejman D. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins. PLoS One 2015, 10, e014591810.1371/journal.pone.0145918. PubMed DOI PMC
Seydlová G.; Pohl R.; Zbornikova E.; Ehn M.; Simak O.; Panova N.; Kolar M.; Bogdanova K.; Vecerova R.; Fiser R.; Sanderova H.; Vitovska D.; Sudzinova P.; Pospisil J.; Benada O.; Krizek T.; Sedlak D.; Bartunek P.; Krasny L.; Rejman D. Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents. J. Med. Chem. 2017, 60, 6098–6118. 10.1021/acs.jmedchem.7b00355. PubMed DOI
Anagnostakos K.; Fink B. Antibiotic-loaded cement spacers - lessons learned from the past 20 years. Expert Rev. Med. Devices 2018, 15, 231–245. 10.1080/17434440.2018.1435270. PubMed DOI
Cafiso V.; Bertuccio T.; Santagati M.; Campanile F.; Amicosante G.; Perilli M. G.; Selan L.; Artini M.; Nicoletti G.; Stefani S. Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production. Clin. Microbiol. Infect. 2004, 10, 1081–1088. 10.1111/j.1469-0691.2004.01024.x. PubMed DOI
Gundtoft P. H. Prosthetic Joint Infection following Total Hip Arthroplasty - Incidence, Mortality and Validation of the Diagnosis in the Danish Hip Arthroplasty Register. Dan. Med. J. 2017, 64, B5397. PubMed
Fillingham Y.; Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016, 98-B, 6–9. 10.1302/0301-620X.98B.36350. PubMed DOI
Tan H. L.; Lin W. T.; Tang T. T. The use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments. Int. J. Artif. Organs 2012, 35, 832–839. 10.5301/ijao.5000163. PubMed DOI
Gálvez-López R.; Pena-Monje A.; Antelo-Lorenzo R.; Guardia-Olmedo J.; Moliz J.; Hernandez-Quero J.; Parra-Ruiz J. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement. Diagn. Microbiol. Infect. Dis. 2014, 78, 70–74. 10.1016/j.diagmicrobio.2013.09.014. PubMed DOI
Krause K. M.; Serio A. W.; Kane T. R.; Connolly L. E. Aminoglycosides: An Overview. Cold Spring Harbor Perspect. Med. 2016, 6, a02702910.1101/cshperspect.a027029. PubMed DOI PMC
Dowding J. E. Mechanisms of gentamicin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1977, 11, 47–50. 10.1128/AAC.11.1.47. PubMed DOI PMC
Vaishya R.; Chauhan M.; Vaish A. Bone cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. 10.1016/j.jcot.2013.11.005. PubMed DOI PMC
Webb J. C.; Gbejuade H.; Lovering A.; Spencer R. Characterisation of in vivo release of gentamicin from polymethyl methacrylate cement using a novel method. Int. Orthop. 2013, 37, 2031–2036. 10.1007/s00264-013-1914-5. PubMed DOI PMC
Anagnostakos K.; Meyer C. Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review. BioMed Res. Int. 2017, 2017, 1–7. 10.1155/2017/4657874. PubMed DOI PMC
Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin. Immunopathol. 2012, 34, 201–214. 10.1007/s00281-011-0296-2. PubMed DOI PMC
Le K. Y.; Dastgheyb S.; Ho T. V.; Otto M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front. Cell. Infect. Microbiol. 2014, 4, 16710.3389/fcimb.2014.00167. PubMed DOI PMC
Smith P. A.; Koehler M. F. T.; Girgis H. S.; Yan D.; Chen Y.; Chen Y.; Crawford J. J.; Durk M. R.; Higuchi R. I.; Kang J.; Murray J.; Paraselli P.; Park S.; Phung W.; Quinn J. G.; Roberts T. C.; Rouge L.; Schwarz J. B.; Skippington E.; Wai J.; Xu M.; Yu Z.; Zhang H.; Tan M. W.; Heise C. E. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 2018, 561, 189–194. 10.1038/s41586-018-0483-6. PubMed DOI
ISO 527. Plastics—Determination of Tensile Properties; International Organization for Standardization: Genéve, 2012; p 23.
Lipophosphonoxins-A Novel Group of Broad Spectrum Antibacterial Compounds
LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials