Antibacterial surface treatment for orthopaedic implants
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
25116685
PubMed Central
PMC4159828
DOI
10.3390/ijms150813849
PII: ijms150813849
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology therapeutic use MeSH
- Bacteria drug effects MeSH
- Coated Materials, Biocompatible pharmacology therapeutic use MeSH
- Prosthesis-Related Infections prevention & control MeSH
- Humans MeSH
- Orthopedics MeSH
- Surface Properties MeSH
- Prostheses and Implants MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Coated Materials, Biocompatible MeSH
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be "smart" and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.
See more in PubMed
Cats-Baril W., Gehrke T., Huff K., Kendoff D., Maltenfort M., Parvizi J. International consensus on periprosthetic joint infection: Description of the consensus process. Clin. Orthop. Relat. Res. 2013;471:4065–4075. doi: 10.1007/s11999-013-3329-4. PubMed DOI PMC
Lentino J.R. Prosthetic joint infections: Bane of orthopedists, challenge for infectious disease specialists. Clin. Infect. Dis. 2003;36:1157–1161. PubMed
Dale H., Hallan G., Hallan G., Espehaug B., Havelin L.I., Engesaeter L.B. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop. 2009;80:639–645. PubMed PMC
Aggarwal V.K., Bakhshi H., Ecker N.U., Parvizi J., Gehrke T., Kendoff D. Organism profile in periprosthetic joint infection: Pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J. Knee Surg. 2014;10 doi: 10.1055/s-0033-1364102. PubMed DOI
Zmistowski B., Karam J.A., Durinka J.B., Casper D.S., Parvizi J. Periprosthetic joint infection increases the risk of one-year mortality. J. Bone Jt. Surg. Am. 2013;95:2177–2184. doi: 10.2106/JBJS.L.00789. PubMed DOI
Kurtz S.M., Lau E., Watson H., Schmier J.K., Parvizi J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast. 2012;27:61–65. PubMed
Illingworth K.D., Mihalko W.M., Parvizi J., Sculco T., McArthur B., el Bitar Y., Saleh K.J. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: A multicenter approach: AAOS exhibit selection. J. Bone Jt. Surg. Am. 2013;95:e50. PubMed
An Y.H., Friedman R.J. Prevention of sepsis in total joint arthroplasty. J. Hosp. Infect. 1996;33:93–108. doi: 10.1016/S0195-6701(96)90094-8. PubMed DOI
Humphreys H. Surgical site infection, ultraclean ventilated operating theatres and prosthetic joint surgery: Where now? J. Hosp. Infect. 2012;81:71–72. PubMed
Zhang S.Y., Herman M., Ciancanelli M.J., de Diego P.R., Sancho-Shimizu V., Abel L., Casanova J.L. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 2013;25:19–33. PubMed PMC
Ziakas P.D., Prodromou M.L., el Khoury J., Zintzaras E., Mylonakis E. The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: A review and meta-analysis of genetic association studies. PLoS One. 2013;8:e81047. PubMed PMC
Navratilova Z., Gallo J., Mrazek F., Lostak J., Petrek M. MBL2 gene variation affecting serum MBL is associated with prosthetic joint infection in Czech patients after total joint arthroplasty. Tissue Antigens. 2012;80:444–451. PubMed
Malik M.H., Bayat A., Jury F., Kay P.R., Ollier W.E. Genetic susceptibility to total hip arthroplasty failure—Positive association with mannose-binding lectin. J. Arthroplast. 2007;22:265–270. doi: 10.1016/j.arth.2006.02.163. PubMed DOI
Pruzansky J.S., Bronson M.J., Grelsamer R.P., Strauss E., Moucha C.S. Prevalence of modifiable surgical site infection risk factors in hip and knee joint arthroplasty patients at an urban academic hospital. J. Arthroplast. 2014;29:272–276. doi: 10.1016/j.arth.2013.06.019. PubMed DOI
Aggarwal V.K., Tischler E.H., Lautenbach C., Williams G.R., Jr., Abboud J.A., Altena M., Bradbury T.L., Calhoun J.H., Dennis D.A., del Gaizo D.J., et al. Mitigation and education. J. Arthroplast. 2014;29:19–25. doi: 10.1016/j.arth.2013.09.028. PubMed DOI
Gristina A.G., Naylor P., Myrvik Q. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 1988;14:205–224. PubMed
Busscher H.J., van der Mei H.C. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 2012;8:e1002440. doi: 10.1371/journal.ppat.1002440. PubMed DOI PMC
Costerton W., Veeh R., Shirtliff M., Pasmore M., Post C., Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Investig. 2003;112:1466–1477. doi: 10.1172/JCI200320365. PubMed DOI PMC
Chen Y., Busscher H.J., van der Mei H.C., Norde W. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. Appl. Environ. Microbiol. 2011;77:5065–5070. doi: 10.1128/AEM.00502-11. PubMed DOI PMC
Wang Y., Subbiahdoss G., de Vries J., Libera M., van der Mei H.C., Busscher H.J. Effect of adsorbed fibronectin on the differential adhesion of osteoblast-like cells and Staphylococcus aureus with and without fibronectin-binding proteins. Biofouling. 2012;28:1011–1021. doi: 10.1080/08927014.2012.725471. PubMed DOI
Wagner C., Aytac S., Hansch G.M. Biofilm growth on implants: Bacteria prefer plasma coats. Int. J. Artif. Organs. 2011;34:811–817. doi: 10.5301/ijao.5000061. PubMed DOI
Ribeiro M., Monteiro F.J., Ferraz M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176–194. doi: 10.4161/biom.22905. PubMed DOI PMC
Chagnot C., Zorgani M.A., Astruc T., Desvaux M. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective. Front. Microbiol. 2013;4 doi: 10.3389/fmicb.2013.00303. PubMed DOI PMC
Jenney C.R., Anderson J.M. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J. Biomed. Mater. Res. 2000;49:435–447. doi: 10.1002/(SICI)1097-4636(20000315)49:4<435::AID-JBM2>3.0.CO;2-Y. PubMed DOI
Thevenot P., Hu W., Tang L. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 2008;8:270–280. doi: 10.2174/156802608783790901. PubMed DOI PMC
Roach P., Eglin D., Rohde K., Perry C.C. Modern biomaterials: A review—Bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 2007;18:1263–1277. doi: 10.1007/s10856-006-0064-3. PubMed DOI
Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M.J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005;11:1–18. doi: 10.1089/ten.2005.11.1. PubMed DOI
Stoodley P., Ehrlich G.D., Sedghizadeh P.P., Hall-Stoodley L., Baratz M.E., Altman D.T., Sotereanos N.G. Orthopaedic biofilm infections. Curr. Orthop. Pract. 2011;22:558–563. doi: 10.1097/BCO.0b013e318230efcf. PubMed DOI PMC
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Laverty G., Gorman S.P., Gilmore B.F. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 2013;8:509–524. doi: 10.2217/fmb.13.7. PubMed DOI
Foster T.J., Geoghegan J.A., Ganesh V.K., Hook M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 2014;12:49–62. PubMed PMC
Fux C.A., Costerton J.W., Stewart P.S., Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13:34–40. doi: 10.1016/j.tim.2004.11.010. PubMed DOI
Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Gardner A.B., Lee S.K., Woods E.C., Acharya A.P. Biomaterials-based modulation of the immune system. Biomed. Res. Int. 2013;2013 doi: 10.1155/2013/732182. PubMed DOI PMC
Harvey A.G., Hill E.W., Bayat A. Designing implant surface topography for improved biocompatibility. Expert Rev. Med. Devices. 2013;10:257–267. PubMed
Cohen H.C., Joyce E.J., Kao W.J. Biomaterials selectively modulate interactions between human blood-derived polymorphonuclear leukocytes and monocytes. Am. J. Pathol. 2013;182:2180–2190. doi: 10.1016/j.ajpath.2013.02.022. PubMed DOI PMC
Busscher H.J., van der Mei H.C., Subbiahdoss G., Jutte P.C., van den Dungen J.J., Zaat S.A., Schultz M.J., Grainger D.W. Biomaterial-associated infection: Locating the finish line in the race for the surface. Sci. Transl. Med. 2012;4:153rv10. PubMed
Nish S., Medzhitov R. Host defense pathways: Role of redundancy and compensation in infectious disease phenotypes. Immunity. 2011;34:629–636. doi: 10.1016/j.immuni.2011.05.009. PubMed DOI PMC
Zimmerli W., Lew P.D., Waldvogel F.A. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J. Clin. Investig. 1984;73:1191–1200. doi: 10.1172/JCI111305. PubMed DOI PMC
Higgins D.M., Basaraba R.J., Hohnbaum A.C., Lee E.J., Grainger D.W., Gonzalez-Juarrero M. Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am. J. Pathol. 2009;175:161–170. doi: 10.2353/ajpath.2009.080962. PubMed DOI PMC
Zimmerli W., Sendi P. Pathogenesis of implant-associated infection: The role of the host. Semin. Immunopathol. 2011;33:295–306. doi: 10.1007/s00281-011-0275-7. PubMed DOI
Berbari E.F., Osmon D.R., Lahr B., Eckel-Passow J.E., Tsaras G., Hanssen A.D., Mabry T., Steckelberg J., Thompson R. The Mayo prosthetic joint infection risk score: Implication for surgicalsite infection reporting and risk stratification. Infect. Control Hosp. Epidemiol. 2012;33:774–781. doi: 10.1086/666641. PubMed DOI
Engelsman A.F., Saldarriaga-Fernandez I.C., Nejadnik M.R., van Dam G.M., Francis K.P., Ploeg R.J., Busscher H.J., van der Mer H.C. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling. 2010;26:761–767. doi: 10.1080/08927014.2010.515027. PubMed DOI
Gastmeier P., Breier A.C., Brandt C. Influence of laminar airflow on prosthetic joint infections: A systematic review. J. Hosp. Infect. 2012;81:73–78. doi: 10.1016/j.jhin.2012.04.008. PubMed DOI
Merollini K.M., Zheng H., Graves N. Most relevant strategies for preventing surgical site infection after total hip arthroplasty: Guideline recommendations and expert opinion. Am. J. Infect. Control. 2013;41:221–226. doi: 10.1016/j.ajic.2012.03.027. PubMed DOI
Cristina M.L., Spagnolo A.M., Sartini M., Panatto D., Gasparini R., Orlando P., Ottria G., Perdelli F. Can particulate air sampling predict microbial load in operating theatres for arthroplasty? PLoS One. 2012;7:e52809. doi: 10.1371/journal.pone.0052809. PubMed DOI PMC
Breier A.C., Brandt C., Sohr D., Geffers C., Gastmeier P. Laminar airflow ceiling size: No impact on infection rates following hip and knee prosthesis. Infect. Control Hosp. Epidemiol. 2011;32:1097–1102. doi: 10.1086/662182. PubMed DOI
Engesaeter L.B., Lie S.A., Espehaug B., Furnes O., Vollset S.E., Havelin L.I. Antibiotic prophylaxis in total hip arthroplasty: Effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop. Scand. 2003;74:644–651. doi: 10.1080/00016470310018135. PubMed DOI
Hawn M.T., Richman J.S., Vick C.C., Deierhoi R.J., Graham L.A., Henderson W.G., Itani K.M. Timing of surgical antibiotic prophylaxis and the risk of surgical site infection. JAMA Surg. 2013;148:649–657. doi: 10.1001/jamasurg.2013.134. PubMed DOI
Wang J., Zhu C., Cheng T., Peng X., Zhang W., Qin H., Zhang X. A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One. 2013;8:e82745. PubMed PMC
Andersson A.E., Bergh I., Karlsson J., Eriksson B.I., Nilsson K. Traffic flow in the operating room: An explorative and descriptive study on air quality during orthopedic trauma implant surgery. Am. J. Infect. Control. 2012;40:750–755. doi: 10.1016/j.ajic.2011.09.015. PubMed DOI
Clyburn T.A., Evans R.P., Moucha C.S., Prokuski L. Surgical site infection prevention: The operating room environment. Instr. Course Lect. 2011;60:565–574. PubMed
Hester R.A., Nelson C.L., Harrison S. Control of contamination of the operative team in total joint arthroplasty. J. Arthroplast. 1992;7:267–269. doi: 10.1016/0883-5403(92)90047-T. PubMed DOI
Hey J.D., Patel M.S. Prevention and cure? Or: Is an ounce of prevention worth a pound of cure? J. Health Econ. 1983;2:119–138. doi: 10.1016/0167-6296(83)90002-4. PubMed DOI
Corvec S., Portillo M.E., Pasticci B.M., Borens O., Trampuz A. Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int. J. Artif. Organs. 2012;35:923–934. PubMed
Cataldo M.A., Petrosillo N., Cipriani M., Cauda R., Tacconelli E. Prosthetic joint infection: Recent developments in diagnosis and management. J. Infect. 2010;61:443–448. doi: 10.1016/j.jinf.2010.09.033. PubMed DOI
Tsaras G., Osmon D.R., Mabry T., Lahr B., St Sauveur J., Yawn B., Kurland R., Berbari E.F. Incidence, secular trends, and outcomes of prosthetic joint infection: A population-based study, olmsted county, Minnesota, 1969–2007. Infect. Control Hosp. Epidemiol. 2012;33:1207–1212. doi: 10.1086/668421. PubMed DOI PMC
Dale H., Fenstad A.M., Hallan G., Havelin L.I., Furnes O., Overgaard S., Pedersen A.B., Kärrholm J., Garellick G., Pulkkinen P., et al. Increasing risk of prosthetic joint infection after total hip arthroplasty. Acta Orthop. 2012;83:449–458. doi: 10.3109/17453674.2012.733918. PubMed DOI PMC
Rasouli M.R., Maltenfort M.G., Purtill J.J., Hozack W.J., Parvizi J. Has the rate of in-hospital infections after total joint arthroplasty decreased? Clin. Orthop. Relat. Res. 2013;471:3102–3111. doi: 10.1007/s11999-013-2949-z. PubMed DOI PMC
Bozic K.J., Ward D.T., Lau E.C., Chan V., Wetters N.G., Naziri Q., Odum S., Fehring T.K., Mont M.A., Gioe T.J., et al. Risk factors for periprosthetic joint infection following primary total hip arthroplasty: A case control study. J. Arthroplast. 2014;29:154–156. doi: 10.1016/j.arth.2013.04.015. PubMed DOI
Namba R.S., Inacio M.C., Paxton E.W. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: An analysis of 56,216 knees. J. Bone Jt. Surg. Am. 2013;95:775–782. doi: 10.2106/JBJS.L.00211. PubMed DOI
Everhart J.S., Altneu E., Calhoun J.H. Medical comorbidities are independent preoperative risk factors for surgical infection after total joint arthroplasty. Clin. Orthop. Relat. Res. 2013;471:3112–3119. doi: 10.1007/s11999-013-2923-9. PubMed DOI PMC
Jamsen E., Nevalainen P., Eskelinen A., Huotari K., Kalliovalkama J., Moilanen T. Obesity, diabetes, and preoperative hyperglycemia as predictors of periprosthetic joint infection: A single-center analysis of 7181 primary hip and knee replacements for osteoarthritis. J. Bone Jt. Surg. Am. 2012;94:e101. doi: 10.2106/JBJS.L.00193. PubMed DOI
Van de Vosse E., van Dissel J.T., Ottenhoff T.H. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect. Dis. 2009;9:688–698. doi: 10.1016/S1473-3099(09)70255-5. PubMed DOI
Kause A., Odegard J. The genetic analysis of tolerance to infections: A review. Front. Genet. 2012;3:262. PubMed PMC
Stahelova A., Mrazek F., Smizansky M., Petrek M., Gallo J. Variation in the IL1B, TNF and IL6 genes and individual susceptibility to prosthetic joint infection. BMC Immunol. 2012;13:25. doi: 10.1186/1471-2172-13-25. PubMed DOI PMC
Ratner B.D., Schoen F.J. The concept and assessment of biocompatibility. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2013. pp. 588–592. 1.
Bernthal N.M., Stavrakis A.I., Billi F., Cho J.S., Kremen T.J., Simon S.I., Cheung A.L., Finerman G.A., Lieberman J.R., Adams J.S., et al. A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One. 2010;5:e12580. doi: 10.1371/journal.pone.0012580. PubMed DOI PMC
Follmann H.D., Martins A.F., Gerola A.P., Burgo T.A., Nakamura C.V., Rubira A.F., Muniz E.C. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Biomacromolecules. 2012;13:3711–3722. doi: 10.1021/bm3011962. PubMed DOI
Neoh K.G., Kang E.T. Combating bacterial colonization on metals via polymer coatings: Relevance to marine and medical applications. ACS Appl. Mater. Interfaces. 2011;3:2808–2819. doi: 10.1021/am200646t. PubMed DOI
Muszanska A.K., Rochford E.T., Gruszka A., Bastian A.A., Busscher H.J., Norde W., van der Mei H.C., Herrmann A. Antiadhesive polymer brush coating functionalized with antimicrobial and rgd peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15:2019–2026. doi: 10.1021/bm500168s. PubMed DOI
An Y.H., Stuart G.W., McDowell S.J., McDaniel S.E., Kang Q., Friedman R.J. Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. J. Orthop. Res. 1996;14:846–849. doi: 10.1002/jor.1100140526. PubMed DOI
Zhu H., Guo Z., Liu W. Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. (Camb.) 2014;18:3900–3913. PubMed
Stallard C.P., McDonnell K.A., Onayemi O.D., O’Gara J.P., Dowling D.P. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases. 2012;7:31. PubMed
Poncin-Epaillard F., Herry J.M., Marmey P., Legeay G., Debarnot D., Bellon-Fontaine M.N. Elaboration of highly hydrophobic polymeric surface—A potential strategy to reduce the adhesion of pathogenic bacteria? Mater. Sci. Eng. C. 2013;33:1152–1161. doi: 10.1016/j.msec.2012.12.020. PubMed DOI
Shida T., Koseki H., Yoda I., Horiuchi H., Sakoda H., Osaki M. Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: An in vitro study. Int. J. Nanomed. 2013;8:3955–3961. PubMed PMC
Singh A.V., Vyas V., Patil R., Sharma V., Scopelliti P.E., Bongiorno G., Podestà A., Lenardi C., Gade W.N., Milani P. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One. 2011;6:e25029. doi: 10.1371/journal.pone.0025029. PubMed DOI PMC
Ivanova E.P., Truong V.K., Wang J.Y., Berndt C.C., Jones R.T., Yusuf I.I., Peake I., Schmidt H.W., Fluke C., Barnes D., et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26:1973–1982. doi: 10.1021/la902623c. PubMed DOI
Truong V.K., Lapovok R., Estrin Y.S., Rundell S., Wang J.Y., Fluke C.J., Crawford R.J., Ivanova E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31:3674–3683. doi: 10.1016/j.biomaterials.2010.01.071. PubMed DOI
Pandit V., Zuidema J.M., Venuto K.N., Macione J., Dai G., Gilbert R.J., Kotha S.P. Evaluation of multifunctional polysaccharide hydrogels with varying stiffness for bone tissue engineering. Tissue Eng. A. 2013;19:2452–2463. doi: 10.1089/ten.tea.2012.0644. PubMed DOI PMC
Zhao C., Li X., Li L., Cheng G., Gong X., Zheng J. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir. 2013;29:1517–1524. doi: 10.1021/la304511s. PubMed DOI
Zan X., Kozlov M., McCarthy T.J., Su Z. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid) Biomacromolecules. 2010;11:1082–1088. doi: 10.1021/bm100048q. PubMed DOI
Drago L., Boot W., Dimas K., Malizos K., Hansch G.M., Stuyck J., Gawlitta D., Romanò C.L. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin. Orthop. Relat. Res. 2014 doi: 10.1007/s11999-014-3558-1. PubMed DOI PMC
Cheng H., Li Y., Huo K., Gao B., Xiong W. Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J. Biomed. Mater. Res. A. 2013 doi: 10.1002/jbm.a.35019. PubMed DOI
Gao A., Hang R., Huang X., Zhao L., Zhang X., Wang L., Tang B., Ma S., Chu P.K. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35:4223–4235. doi: 10.1016/j.biomaterials.2014.01.058. PubMed DOI
Mei S., Wang H., Wang W., Tong L., Pan H., Ruan C., Ma Q., Liu M., Yang H., Zhang L., et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials. 2014;35:4255–4265. doi: 10.1016/j.biomaterials.2014.02.005. PubMed DOI
Dong W., Zhu Y., Zhang J., Lu L., Zhao C., Qin L., Li Y. Investigation on the antibacterial micro-porous titanium with silver nano-particles. J. Nanosci. Nanotechnol. 2013;13:6782–6786. doi: 10.1166/jnn.2013.7757. PubMed DOI
Panacek A., Balzerova A., Prucek R., Ranc V., Vecerova R., Husickova V., Pechoušek J., Filip J., Zbořil R., Kvítek L. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids Surf. B Biointerfaces. 2013;110:191–198. doi: 10.1016/j.colsurfb.2013.04.031. PubMed DOI
Kvitek L., Panacek A., Soukupova J., Kolar M., Vecerova R., Prucek R., Holecová M., Zbořil R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) J. Phys. Chem. C. 2008;112:5825–5834. doi: 10.1021/jp711616v. DOI
Knetsch M.L.W., Koole L.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers. 2011;3:340–366. doi: 10.3390/polym3010340. DOI
Koseki H., Asahara T., Shida T., Yoda I., Horiuchi H., Baba K., Osaki M. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins. Int. J. Nanomed. 2013;8:593–599. PubMed PMC
Haenle M., Fritsche A., Zietz C., Bader R., Heidenau F., Mittelmeier W., Gollwitzer H. An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: In vitro effectiveness against MRSA and mechanical properties. J. Mater. Sci. Mater. Med. 2011;22:381–387. doi: 10.1007/s10856-010-4204-4. PubMed DOI
Yue C., Kuijer R., Kaper H.J., van der Mei H.C., Busscher H.J. Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials. 2014;35:2580–2587. doi: 10.1016/j.biomaterials.2013.12.036. PubMed DOI
Holinka J., Pilz M., Kubista B., Presterl E., Windhager R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Jt. J. 2013;95:678–682. doi: 10.2106/JBJS.J.01447. PubMed DOI
Tran P.A., Webster T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC
Rodriguez-Valencia C., Lopez-Alvarez M., Cochon-Cores B., Pereiro I., Serra J., Gonzalez P. Novel selenium-doped hydroxyapatite coatings for biomedical applications. J. Biomed. Mater. Res. A. 2013;101:853–861. PubMed
Hans M., Erbe A., Mathews S., Chen Y., Solioz M., Mucklich F. Role of copper oxides in contact killing of bacteria. Langmuir. 2013;29:16160–16166. doi: 10.1021/la404091z. PubMed DOI
Hoene A., Prinz C., Walschus U., Lucke S., Patrzyk M., Wilhelm L., Neumann H.G., Schlosser M. In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomed. Mater. 2013;8 doi: 10.1088/1748-6041/8/3/035009. PubMed DOI
Elizabeth E., Baranwal G., Krishnan A.G., Menon D., Nair M. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology. 2014;25 doi: 10.1088/0957-4484/25/11/115101. PubMed DOI
Hu H., Zhang W., Qiao Y., Jiang X., Liu X., Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–915. doi: 10.1016/j.actbio.2011.09.031. PubMed DOI
Antoci V., Jr., Adams C.S., Parvizi J., Ducheyne P., Shapiro I.M., Hickok N.J. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin. Orthop. Relat. Res. 2007;461:81–87. PubMed
Antoci V., Jr., King S.B., Jose B., Parvizi J., Zeiger A.R., Wickstrom E., Freeman T.A., Composto R.J., Ducheyne P., Shapiro I.M., et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 2007;25:858–866. doi: 10.1002/jor.20348. PubMed DOI
Walter M.S., Frank M.J., Satue M., Monjo M., Ronold H.J., Lyngstadaas S.P., Haugen H.J. Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo. Dent. Mater. 2014;30:200–214. doi: 10.1016/j.dental.2013.11.006. PubMed DOI
Chennell P., Feschet-Chassot E., Devers T., Awitor K.O., Descamps S., Sautou V. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int. J. Pharm. 2013;455:298–305. doi: 10.1016/j.ijpharm.2013.07.014. PubMed DOI
Hickok N.J., Shapiro I.M. Immobilized antibiotics to prevent orthopaedic implant infections. Adv. Drug Deliv. Rev. 2012;64:1165–1176. doi: 10.1016/j.addr.2012.03.015. PubMed DOI PMC
Norowski P.A., Courtney H.S., Babu J., Haggard W.O., Bumgardner J.D. Chitosan coatings deliver antimicrobials from titanium implants: A preliminary study. Implant Dent. 2011;20:56–67. doi: 10.1097/ID.0b013e3182087ac4. PubMed DOI
Chen X.N., Gu Y.X., Lee J.H., Lee W.Y., Wang H.J. Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation. Eur. Cells Mater. 2012;24:237–248. PubMed
Renoud P., Toury B., Benayoun S., Attik G., Grosgogeat B. Functionalization of titanium with chitosan via silanation: Evaluation of biological and mechanical performances. PLoS One. 2012;7:e39367. PubMed PMC
Tan H., Ma R., Lin C., Liu Z., Tang T. Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int. J. Mol. Sci. 2013;14:1854–1869. doi: 10.3390/ijms14011854. PubMed DOI PMC
Rapsch K., Bier F.F., Tadros M., von Nickisch-Rosenegk M. Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties. Bioconjug. Chem. 2014;25:308–319. doi: 10.1021/bc4004469. PubMed DOI
Costa F., Carvalho I.F., Montelaro R.C., Gomes P., Martins M.C. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011;7:1431–1440. doi: 10.1016/j.actbio.2010.11.005. PubMed DOI
Zheng D., Neoh K.G., Shi Z., Kang E.T. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium. J. Colloid Interface Sci. 2013;406:238–246. doi: 10.1016/j.jcis.2013.05.060. PubMed DOI
Lopez-Leban F., Kiran M.D., Wolcott R., Balaban N. Molecular mechanisms of RIP, an effective inhibitor of chronic infections. Int. J. Artif. Organs. 2010;33:582–589. PubMed
Chen F., Gao Y., Chen X., Yu Z., Li X. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int. J. Mol. Sci. 2013;14:17477–17500. doi: 10.3390/ijms140917477. PubMed DOI PMC
Bouchet A.M., Iannucci N.B., Pastrian M.B., Cascone O., Santos N.C., Disalvo E.A., Hollmann A. Biological activity of antibacterial peptides matches synergism between electrostatic and non electrostatic forces. Colloids Surf. B. 2014;114:363–371. doi: 10.1016/j.colsurfb.2013.10.025. PubMed DOI
Li B., McKeague A.L. Emerging ideas: Interleukin-12 nanocoatings prevent open fracture-associated infections. Clin. Orthop. Relat. Res. 2011;469:3262–3265. doi: 10.1007/s11999-010-1690-0. PubMed DOI PMC
Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 2013;8:97–109. doi: 10.1002/biot.201200313. PubMed DOI
Chua P.H., Neoh K.G., Kang E.T., Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412–1421. doi: 10.1016/j.biomaterials.2007.12.019. PubMed DOI
Glinel K., Thebault P., Humblot V., Pradier C.M., Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8:1670–1684. doi: 10.1016/j.actbio.2012.01.011. PubMed DOI
He T., Chan V. Covalent layer-by-layer assembly of polyethyleneimine multilayer for antibacterial applications. J. Biomed. Mater. Res. A. 2010;95:454–464. PubMed
Fu J., Ji J., Fan D., Shen J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J. Biomed. Mater. Res. A. 2006;79:665–674. PubMed
Zhou B., Li Y., Deng H., Hu Y., Li B. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf. B. 2014;116:432–438. doi: 10.1016/j.colsurfb.2014.01.016. PubMed DOI
Huang W., Li X., Xue Y., Huang R., Deng H., Ma Z. Antibacterial multilayer films fabricated by LBL immobilizing lysozyme and HTCC on nanofibrous mats. Int. J. Biol. Macromol. 2013;53:26–31. doi: 10.1016/j.ijbiomac.2012.10.024. PubMed DOI
Min J., Braatz R.D., Hammond P.T. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials. 2014;35:2507–2517. doi: 10.1016/j.biomaterials.2013.12.009. PubMed DOI PMC
Rizzello L., Pompa P.P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2013;7:1501–1518. PubMed
Gottenbos B., van der Mei H.C., Klatter F., Grijpma D.W., Feijen J., Nieuwenhuis P., Busscher H.J. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24:2707–2710. doi: 10.1016/S0142-9612(03)00083-8. PubMed DOI
Yu Q., Cho J., Shivapooja P., Ista L.K., Lopez G.P. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl. Mater. Interfaces. 2013;5:9295–9304. doi: 10.1021/am4022279. PubMed DOI
Holzapfel B.M., Reichert J.C., Schantz J.T., Gbureck U., Rackwitz L., Nöth U., Jakob F., Rudert M., Groll J., Hutmacher D.W. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 2013;65:581–603. PubMed
Parvizi J., Antoci V., Jr., Hickok N.J., Shapiro I.M. Selfprotective smart orthopedic implants. Expert Rev. Med. Devices. 2007;4:55–64. doi: 10.1586/17434440.4.1.55. PubMed DOI
Mastronardi E., Foster A., Zhang X., Derosa M.C. Smart materials based on DNA aptamers: Taking aptasensing to the next level. Sensors. 2014;14:3156–3171. doi: 10.3390/s140203156. PubMed DOI PMC
Ehrlich G.D., Stoodley P., Kathju S., Zhao Y., McLeod B.R., Balaban N., Hu F.Z., Sotereanos N.G., Costerton J.W., Stewart P.S., et al. Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin. Orthop. Relat. Res. 2005;437:59–66. PubMed PMC
Shchukin D.G., Mohwald H. Self-repairing coatings containing active nanoreservoirs. Small. 2007;3:926–943. doi: 10.1002/smll.200700064. PubMed DOI
Shchukin D., Mohwald H. Materials science. A coat of many functions. Science. 2013;341:1458–1459. doi: 10.1126/science.1242895. PubMed DOI
Yilmaz C., Colak M., Yilmaz B.C., Ersoz G., Kutateladze M., Gozlugol M. Bacteriophage therapy in implant-related infections: An experimental study. J. Bone Jt. Surg. Am. 2013;95:117–125. doi: 10.2106/JBJS.K.01135. PubMed DOI
Ratner B.D., Hoffman A.S. Physicochemical surface modifications of materials used in medicine. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press (Elsevier); Waltham, MA, USA: 2013. pp. 259–276.
Daghighi S., Sjollema J., van der Mei H.C., Busscher H.J., Rochford E.T. Infection resistance of degradable versus non-degradable biomaterials: An assessment of the potential mechanisms. Biomaterials. 2013;34:8013–8017. doi: 10.1016/j.biomaterials.2013.07.044. PubMed DOI
Campoccia D., Cangini I., Selan L., Vercellino M., Montanaro L., Visai L., Arciola C.R. An overview of the methodological approach to the in vitro study of anti-infective biomaterials. Int. J. Artif. Organs. 2012;35:800–816. PubMed
Stoodley P., Hall-Stoodley L., Costerton B., DeMeo P., Shirtliff M., Gawalt E., Kathju S. Biofilms, biomaterials, and device-related infections. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press (Elsevier); Waltham, MA, USA: 2013. pp. 565–583.
Barros J., Grenho L., Manuel C.M., Ferreira C., Melo L.F., Nunes O.C., Monteiro F.J., Ferraz M.P. .A modular reactor to simulate biofilm development in orthopedic materials. Int. Microbiol. 2013;16:191–198. PubMed
Ludecke C., Jandt K.D., Siegismund D., Kujau M.J., Zang E., Rettenmayr M., Bossert J., Roth M. Reproducible biofilm cultivation of chemostat-grown Escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter. PLoS One. 2014;9:e84837. doi: 10.1371/journal.pone.0084837. PubMed DOI PMC
Zaborowska M., Welch K., Branemark R., Khalilpour P., Engqvist H., Thomsen P., Trobos M. Bacteria-material surface interactions: Methodological development for the assessment of implant surface induced antibacterial effects. J. Biomed. Mater. Res. B Appl. Biomater. 2014 doi: 10.1002/jbm.b.33179. PubMed DOI
Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–8554. doi: 10.1016/j.biomaterials.2013.07.089. PubMed DOI
Rojo L., Barcenilla J.M., Vazquez B., Gonzalez R., San Roman J. Intrinsically antibacterial materials based on polymeric derivatives of eugenol for biomedical applications. Biomacromolecules. 2008;9:2530–2535. doi: 10.1021/bm800570u. PubMed DOI
Song C., Zheng Y. Wetting-controlled strategies: From theories to bio-inspiration. J. Colloid Interface Sci. 2013 doi: 10.1016/j.jcis.2013.10.067. PubMed DOI
MacCallum J.L., Tieleman D.P. Hydrophobicity scales: A thermodynamic looking glass into lipid-protein interactions. Trends Biochem. Sci. 2011;36:653–662. PubMed
Bieser A.M., Tiller J.C. Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities. Macromol. Biosci. 2011;11:526–534. doi: 10.1002/mabi.201000398. PubMed DOI
Braem A., van Mellaert L., Mattheys T., Hofmans D., de Waelheyns E., Geris L., Anné J., Schrooten J., Vleugels J. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J. Biomed. Mater. Res. A. 2013 doi: 10.1002/jbm.a.34688. PubMed DOI
Vadillo-Rodriguez V., Pacha-Olivenza M.A., Gonzalez-Martin M.L., Bruque J.M., Gallardo-Moreno A.M. Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment. J. Biomed. Mater. Res. A. 2013;101:1397–1404. PubMed
Yeo I.S., Kim H.Y., Lim K.S., Han J.S. Implant surface factors and bacterial adhesion: A review of the literature. Int. J. Artif. Organs. 2012;35:762–772. doi: 10.5301/ijao.5000154. PubMed DOI
Lu T., Qiao Y., Liu X. Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus. 2012;2:325–336. doi: 10.1098/rsfs.2012.0003. PubMed DOI PMC
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Badihi Hauslich L., Sela M.N., Steinberg D., Rosen G., Kohavi D. The adhesion of oral bacteria to modified titanium surfaces: Role of plasma proteins and electrostatic forces. Clin. Oral Implants Res. 2013;24:49–56. doi: 10.1111/j.1600-0501.2011.02364.x. PubMed DOI
Dale H., Skramm I., Lower H.L., Eriksen H.M., Espehaug B., Furnes O., Skjeldestad F.E., Havelin L.I., Engesaeter L.B. Infection after primary hip arthroplasty: A comparison of 3 Norwegian health registers. Acta Orthop. 2011;82:646–654. doi: 10.3109/17453674.2011.636671. PubMed DOI PMC
Engesaeter L.B., Espehaug B., Lie S.A., Furnes O., Havelin L.I. Does cement increase the risk of infection in primary total hip arthroplasty? Revision rates in 56,275 cemented and uncemented primary THAs followed for 0–16 years in the Norwegian Arthroplasty Register. Acta Orthop. 2006;77:351–358. doi: 10.1080/17453670610046253. PubMed DOI
Anselme K., Davidson P., Popa A.M., Giazzon M., Liley M., Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010;6:3824–3846. doi: 10.1016/j.actbio.2010.04.001. PubMed DOI
Puckett S.D., Taylor E., Raimondo T., Webster T.J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–713. doi: 10.1016/j.biomaterials.2009.09.081. PubMed DOI
Mitik-Dineva N., Wang J., Mocanasu R.C., Stoddart P.R., Crawford R.J., Ivanova E.P. Impact of nano-topography on bacterial attachment. Biotechnol. J. 2008;3:536–544. doi: 10.1002/biot.200700244. PubMed DOI
Mitik-Dineva N., Wang J., Truong V.K., Stoddart P., Malherbe F., Crawford R.J., Ivanova E.P. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol. 2009;58:268–273. doi: 10.1007/s00284-008-9320-8. PubMed DOI
An Y.H., Bradley J., Powers D.L., Friedman R.J. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. J. Bone Jt. Surg. Br. 1997;79:816–819. doi: 10.1302/0301-620X.79B5.7228. PubMed DOI
Harris L.G., Tosatti S., Wieland M., Textor M., Richards R.G. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25:4135–4148. doi: 10.1016/j.biomaterials.2003.11.033. PubMed DOI
Foka A., Katsikogianni M.G., Anastassiou E.D., Spiliopoulou I., Missirlis Y.F. The combined effect of surface chemistry and flow conditions on Staphylococcus epidermidis adhesion and ica operon expression. Eur. Cells Mater. 2012;24:386–402. PubMed
Leisner M., Kuhr J.T., Radler J.O., Frey E., Maier B. Kinetics of genetic switching into the state of bacterial competence. Biophys. J. 2009;96:1178–1188. doi: 10.1016/j.bpj.2008.10.034. PubMed DOI PMC
Norman T.M., Lord N.D., Paulsson J., Losick R. Memory and modularity in cell-fate decision making. Nature. 2013;503:481–486. doi: 10.1038/nature12804. PubMed DOI PMC
Decuzzi P., Ferrari M. Modulating cellular adhesion through nanotopography. Biomaterials. 2010;31:173–179. doi: 10.1016/j.biomaterials.2009.09.018. PubMed DOI
Carson L., Gorman S.P., Gilmore B.F. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol. Med. Microbiol. 2010;59:447–455. PubMed
Siddiq D.M., Darouiche R.O. New strategies to prevent catheter-associated urinary tract infections. Nat. Rev. Urol. 2012;9:305–314. doi: 10.1038/nrurol.2012.68. PubMed DOI
Borovicka J., Metheringham W.J., Madden L.A., Walton C.D., Stoyanov S.D., Paunov V.N. Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J. Am. Chem. Soc. 2013;135:5282–5285. doi: 10.1021/ja400781f. PubMed DOI
Gomes J., Grunau A., Lawrence A.K., Eberl L., Gademann K. Bioinspired surfaces against bacterial infections. Chimia. 2013;67:275–278. doi: 10.2533/chimia.2013.275. PubMed DOI
Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI
Visai L., de Nardo L., Punta C., Melone L., Cigada A., Imbriani M., Arciola C.R. Titanium oxide antibacterial surfaces in biomedical devices. Int. J. Artif. Organs. 2011;34:929–946. doi: 10.5301/ijao.5000050. PubMed DOI
Moseke C., Gbureck U., Elter P., Drechsler P., Zoll A., Thull R., Ewald A. Hard implant coatings with antimicrobial properties. J. Mater. Sci.-Mater. Med. 2011;22:2711–2720. doi: 10.1007/s10856-011-4457-6. PubMed DOI
Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Mijnendonckx K., Leys N., Mahillon J., Silver S., van Houdt R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals. 2013;26:609–621. doi: 10.1007/s10534-013-9645-z. PubMed DOI
Fielding G.A., Roy M., Bandyopadhyay A., Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012;8:3144–3152. doi: 10.1016/j.actbio.2012.04.004. PubMed DOI PMC
Noda I., Miyaji F., Ando Y., Miyamoto H., Shimazaki T., Yonekura Y., Miyazaki M., Mawatari M., Hotokebuchi T. Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J. Biomed. Mater. Res. B Appl. Biomater. 2009;89:456–465. PubMed
Panacek A., Kolar M., Vecerova R., Prucek R., Soukupova J., Krystof V., Hamal P., Zboril R., Kvítek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340. doi: 10.1016/j.biomaterials.2009.07.065. PubMed DOI
Grass G., Rensing C., Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011;77:1541–1547. doi: 10.1128/AEM.02766-10. PubMed DOI PMC
Petrini P., Arciola C.R., Pezzali I., Bozzini S., Montanaro L., Tanzi M.C., Speziale P., Visai L. Antibacterial activity of zinc modified titanium oxide surface. Int. J. Artif. Organs. 2006;29:434–442. PubMed
Elguindi J., Wagner J., Rensing C. Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J. Appl. Microbiol. 2009;106:1448–1455. PubMed PMC
Hodgkinson V., Petris M.J. Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 2012;287:13549–13555. doi: 10.1074/jbc.R111.316406. PubMed DOI PMC
Pelgrift R.Y., Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013;65:1803–1815. doi: 10.1016/j.addr.2013.07.011. PubMed DOI
Vargas-Reus M.A., Memarzadeh K., Huang J., Ren G.G., Allaker R.P. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int. J. Antimicrob. Agents. 2012;40:135–139. doi: 10.1016/j.ijantimicag.2012.04.012. PubMed DOI
Zhao L., Chu P.K., Zhang Y., Wu Z. Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. B. 2009;91:470–480. doi: 10.1002/jbm.b.31463. PubMed DOI
Finke B., Polak M., Hempel F., Rebl H., Zietz C., Stranak V., Lukowski G., Hippler R., Bader R., Nebe J.B., et al. Antimicrobial potential of copper-containing titanium surfaces generated by ion implantation and dual high power impulse magnetron sputtering. Adv. Eng. Mater. 2012;14:B224–B230.
Arenas M.A., Perez-Jorge C., Conde A., Matykina E., Hernandez-Lopez J.M., Perez-Tanoira R., de Damborenea J.J., Gómez-Barrena E., Esteba J. Doped TiO2 anodic layers of enhanced antibacterial properties. Colloids Surf. B Biointerfaces. 2013;105:106–112. doi: 10.1016/j.colsurfb.2012.12.051. PubMed DOI
Xia W., Grandfield K., Hoess A., Ballo A., Cai Y., Engqvist H. Mesoporous titanium dioxide coating for metallic implants. J. Biomed. Mater. Res. B Appl. Biomater. 2012;100:82–93. PubMed
Uhm S.H., Song D.H., Kwon J.S., Lee S.B., Han J.G., Kim K.N. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. J. Biomed. Mater. Res. B. 2014;102:592–603. doi: 10.1002/jbm.b.33038. PubMed DOI
Masse A., Bruno A., Bosetti M., Biasibetti A., Cannas M., Gallinaro P. Prevention of pin track infection in external fixation with silver coated pins: Clinical and microbiological results. J. Biomed. Mater. Res. 2000;53:600–604. doi: 10.1002/1097-4636(200009)53:5<600::AID-JBM21>3.0.CO;2-D. PubMed DOI
Kakinuma H., Ishii K., Ishihama H., Honda M., Toyama Y., Matsumoto M., Aizawa M. Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: Processing, material characterization, cytotoxicity, and antibacterial properties. J. Biomed. Mater. Res. A. 2014 doi: 10.1002/jbm.a.35157. PubMed DOI
Wang Q., Webster T.J. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J. Biomed. Mater. Res. A. 2012;100:3205–3210. doi: 10.1002/jbm.a.34262. PubMed DOI
Martynkova G.S., Valaskova M. Antimicrobial nanocomposites based on natural modified materials: A review of carbons and clays. J. Nanosci. Nanotechnol. 2014;14:673–693. doi: 10.1166/jnn.2014.8903. PubMed DOI
Alt V., Bitschnau A., Osterling J., Sewing A., Meyer C., Kraus R., Meissner S.A., Wenisch S., Domann E., Schnettler R. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials. 2006;27:4627–4634. doi: 10.1016/j.biomaterials.2006.04.035. PubMed DOI
Schmidmaier G., Lucke M., Wildemann B., Haas N.P., Raschke M. Prophylaxis and treatmentof implant-related infections by antibiotic-coated implants: A review. Injury. 2006;37:S105–S112. doi: 10.1016/j.injury.2006.04.016. PubMed DOI
Fei J., Liu G.D., Pan C.J., Chen J.Y., Zhou Y.G., Xiao S.H., Wang Y., Yu H.J. Preparation, release profiles and antibacterial properties of vancomycin-loaded Ca-P coating titanium alloy plate. J. Mater. Sci. Mater. Med. 2011;22:989–995. doi: 10.1007/s10856-011-4277-8. PubMed DOI
Neut D., Dijkstra R.J., Thompson J.I., van der Mei H.C., Busscher H.J. A gentamicin-releasing coating for cementless hip prostheses-Longitudinal evaluation of efficacy using in vitro bio-optical imaging and its wide-spectrum antibacterial efficacy. J. Biomed. Mater. Res. A. 2012;100:3220–3226. PubMed
Shi X., Wu H., Li Y., Wei X., Du Y. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J. Biomed. Mater. Res. A. 2013;101:1373–1378. PubMed
Salwiczek M., Qu Y., Gardiner J., Strugnell R.A., Lithgow T., McLean K.M., Thissen H. Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 2013;32:82–90. PubMed
Friedman A., Friedman J. New biomaterials for the sustained release of nitric oxide: Past, present and future. Expert Opin. Drug Deliv. 2009;6:1113–1122. doi: 10.1517/17425240903196743. PubMed DOI
Yount N.Y., Yeaman M.R. Emerging themes and therapeutic prospects for anti-infective peptides. Annu. Rev. Pharmacol. Toxicol. 2012;52:337–360. doi: 10.1146/annurev-pharmtox-010611-134535. PubMed DOI
Guilhelmelli F., Vilela N., Albuquerque P., Derengowski L.D., Silva-Pereira I., Kyaw C.M. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol. 2013;4:353. PubMed PMC
Haney E.F., Hancock R.E. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers. 2013;100:572–583. doi: 10.1002/bip.22250. PubMed DOI PMC
Dobson A.J., Purves J., Kamysz W., Rolff J. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One. 2013;8:e76521. PubMed PMC
Kazemzadeh-Narbat M., Lai B.F., Ding C., Kizhakkedathu J.N., Hancock R.E., Wang R. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 2013;34:5969–5977. doi: 10.1016/j.biomaterials.2013.04.036. PubMed DOI
Kazemzadeh-Narbat M., Kindrachuk J., Duan K., Jenssen H., Hancock R.E., Wang R. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials. 2010;31:9519–9526. doi: 10.1016/j.biomaterials.2010.08.035. PubMed DOI
Forbes S., McBain A.J., Felton-Smith S., Jowitt T.A., Birchenough H.L., Dobson C.B. Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials. 2013;34:5453–5464. doi: 10.1016/j.biomaterials.2013.03.087. PubMed DOI
Holmberg K.V., Abdolhosseini M., Li Y., Chen X., Gorr S.U., Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013;9:8224–8231. doi: 10.1016/j.actbio.2013.06.017. PubMed DOI PMC
Gao G., Lange D., Hilpert K., Kindrachuk J., Zou Y., Cheng J.T., Kazemzadeh-Narbat M., Yu K., Wang R., Straus S.K., et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32:3899–3909. doi: 10.1016/j.biomaterials.2011.02.013. PubMed DOI
Li B., Jiang B., Boyce B.M., Lindsey B.A. Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials. 2009;30:2552–2558. doi: 10.1016/j.biomaterials.2009.01.042. PubMed DOI PMC
Pereira C.S., Thompson J.A., Xavier K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 2013;37:156–181. PubMed
Lui L.T., Xue X., Sui C., Brown A., Pritchard D.I., Halliday N., Winzer K., Howdle S.M., Fernandez-Trillo F., Krasnogor N., et al. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nat. Chem. 2013;5:1058–1065. doi: 10.1038/nchem.1793. PubMed DOI PMC
Gomes J., Grunau A., Lawrence A.K., Eberl L., Gademann K. Bioinspired, releasable quorum sensing modulators. Chem. Commun. (Camb.) 2013;49:155–157. doi: 10.1039/c2cc37287h. PubMed DOI
Brooks J.L., Jefferson K.K. Staphylococcal biofilms: Quest for the magic bullet. Adv. Appl. Microbiol. 2012;81:63–87. PubMed
Kiran M.D., Giacometti A., Cirioni O., Balaban N. Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int. J. Artif. Organs. 2008;31:761–770. PubMed
Chen G., Swem L.R., Swem D.L., Stauff D.L., O’Loughlin C.T., Jeffrey P.D., Bassler B.L., Hughson F.M. A strategy for antagonizing quorum sensing. Mol. Cell. 2011;42:199–209. doi: 10.1016/j.molcel.2011.04.003. PubMed DOI PMC
Ho K.K., Chen R., Willcox M.D., Rice S.A., Cole N., Iskander G., Kumar N. Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry. Biomaterials. 2013;35:2336–2345. PubMed
Bottcher T., Kolodkin-Gal I., Kolter R., Losick R., Clardy J. Synthesis and activity of biomimetic biofilm disruptors. J. Am. Chem. Soc. 2013;135:2927–2930. doi: 10.1021/ja3120955. PubMed DOI PMC
Gu Y., Zhang W., Wang H., Lee W.Y. Chitosan surface enhances the mobility, cytoplasm spreading, and phagocytosis of macrophage. Colloids Surf. B Biointerfaces. 2014;117:42–50. doi: 10.1016/j.colsurfb.2014.01.051. PubMed DOI
Peng Z.X., Tu B., Shen Y., Du L., Wang L., Guo S.R., Tang T.T. Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob. Agents Chemother. 2011;55:860–866. doi: 10.1128/AAC.01005-10. PubMed DOI PMC
Tan H., Peng Z., Li Q., Xu X., Guo S., Tang T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials. 2012;33:365–377. doi: 10.1016/j.biomaterials.2011.09.084. PubMed DOI
Yang C.C., Lin C.C., Liao J.W., Yen S.K. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater. Sci. Eng. C. 2013;33:2203–2212. doi: 10.1016/j.msec.2013.01.038. PubMed DOI
Banerjee M., Mallick S., Paul A., Chattopadhyay A., Ghosh S.S. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir. 2010;26:5901–5908. doi: 10.1021/la9038528. PubMed DOI
Costa F., Maia S., Gomes P., Martins M.C. Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity. Acta Biomater. 2014 doi: 10.1016/j.actbio.2014.02.028. PubMed DOI
Jennison T., McNally M., Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater. 2014;10:595–603. doi: 10.1016/j.actbio.2013.09.019. PubMed DOI
Shi Z., Neoh K.G., Kang E.T., Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27:2440–2449. doi: 10.1016/j.biomaterials.2005.11.036. PubMed DOI
Rizzello L., Cingolani R., Pompa P.P. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond.) 2013;8:807–821. doi: 10.2217/nnm.13.63. PubMed DOI
Taylor E., Webster T.J. Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomed. 2011;6:1463–1473. doi: 10.2217/nnm.11.123. PubMed DOI PMC
Nair L.S., Laurencin C.T. Nanofibers and nanoparticles for orthopaedic surgery applications. J. Bone Jt. Surg. Am. 2008;90:128–131. doi: 10.2106/JBJS.G.01520. PubMed DOI
Campoccia D., Montanaro L., Agheli H., Sutherland D.S., Pirini V., Donati M.E., Arciola C.R. Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry. Int. J. Artif. Organs. 2006;29:622–629. PubMed
Lee F.P., Wang D.J., Chen L.K., Kung C.M., Wu Y.C., Ou K.L., Yu C.H. Antibacterial nanostructured composite films for biomedical applications: Microstructural characteristics, biocompatibility, and antibacterial mechanisms. Biofouling. 2013;29:295–305. doi: 10.1080/08927014.2013.769967. PubMed DOI
Montanaro L., Campoccia D., Arciola C.R. Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: A minireview. Int. J. Artif. Organs. 2008;31:771–776. PubMed
Wang H., Cheng M., Hu J., Wang C., Xu S., Han C.C. Preparation and optimization of silver nanoparticles embedded electrospun membrane for implant associated infections prevention. ACS Appl. Mater. Interfaces. 2013;5:11014–11021. doi: 10.1021/am403250t. PubMed DOI
Lischer S., Korner E., Balazs D.J., Shen D., Wick P., Grieder K., Haas D., Heuberger M., Hegemann D. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings. J. R. Soc. Interface. 2011;8:1019–1030. doi: 10.1098/rsif.2010.0596. PubMed DOI PMC
Zhang X., Li Z., Yuan X., Cui Z., Bao H., Li X., Liu Y., Yang X. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Mater. Sci. Eng. C. 2013;33:2816–2820. doi: 10.1016/j.msec.2013.03.010. PubMed DOI
Song J., Jang J. Antimicrobial polymer nanostructures: Synthetic route, mechanism of action and perspective. Adv. Colloid Interface Sci. 2014;203:37–50. doi: 10.1016/j.cis.2013.11.007. PubMed DOI
Marková Z., Šišková K., Filip J., Šafářová K., Prucek R., Panáček A., Kolář M., Zbořil R. Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem. 2012;14:2550–2558. doi: 10.1039/c2gc35545k. DOI
Prucek R., Tucek J., Kilianova M., Panacek A., Kvitek L., Filip J., Kolář M., Tománková K., Zbořil R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–4713. doi: 10.1016/j.biomaterials.2011.03.039. PubMed DOI
Panacek A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V.K., Nevecna T., Zboril R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 2006;110:16248–16253. PubMed
Bondarenko O., Ivask A., Kakinen A., Kurvet I., Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One. 2013;8:e64060. PubMed PMC
Agnihotri S., Mukherji S., Mukherji S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013;5:7328–7340. doi: 10.1039/c3nr00024a. PubMed DOI
Martinez-Gutierrez F., Boegli L., Agostinho A., Sanchez E.M., Bach H., Ruiz F., James G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013;29:651–660. doi: 10.1080/08927014.2013.794225. PubMed DOI
Kose N., Otuzbir A., Peksen C., Kiremitci A., Dogan A. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin. Orthop. Relat. Res. 2013;471:2532–2539. doi: 10.1007/s11999-013-2894-x. PubMed DOI PMC
Della Valle C., Visai L., Santin M., Cigada A., Candiani G., Pezzoli D., Arciola C.R., Imbriani M., Chiesa R. A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int. J. Artif. Organs. 2012;35:864–875. PubMed
Liu Y., Zheng Z., Zara J.N., Hsu C., Soofer D.E., Lee K.S., Siu R.K., Miller L.S., Zhang X., Carpenter D., et al. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (dl-lactic-co-glycolic acid)-coated stainless steel. Biomaterials. 2012;33:8745–8756. doi: 10.1016/j.biomaterials.2012.08.010. PubMed DOI
Lan M.Y., Liu C.P., Huang H.H., Lee S.W. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One. 2013;8:e75364. PubMed PMC
Seil J.T., Webster T.J. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnology. 2012;23:495101. doi: 10.1088/0957-4484/23/49/495101. PubMed DOI
Vishwakarma V., Josephine J., George R.P., Krishnan R., Dash S., Kamruddin M., Kalavathi S., Manoharan N., Tyagi A.K., Dayal R.K. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium. Biofouling. 2009;25:705–710. doi: 10.1080/08927010903132183. PubMed DOI
Jan T., Iqbal J., Ismail M., Zakaullah M., Naqvi S.H., Badshah N. Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomed. 2013;8:3679–3687. PubMed PMC
Campoccia D., Montanaro L., Arciola C.R. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34:8018–8029. doi: 10.1016/j.biomaterials.2013.07.048. PubMed DOI
Shirwaiker R.A., Samberg M.E., Cohen P.H., Wysk R.A., Monteiro-Riviere N.A. Nanomaterialsand synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:191–204. doi: 10.1002/wnan.1201. PubMed DOI PMC
Wang J., Zhu Y., Bawa H.K., Ng G., Wu Y., Libera M., van der Mei H.C., Busscher H.J., Yu X. Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl. Mater. Interfaces. 2011;3:67–73. doi: 10.1021/am100862h. PubMed DOI
Gallo P.M., Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front. Immunol. 2013;4:138. PubMed PMC
Shtansky D.V., Gloushankova N.A., Bashkova I.A., Kharitonova M.A., Moizhess T.G., Sheveiko A.N., Kiryukhantsev-Korneev F.V., Petrzhik M.I., Levashov E.A. Multifunctional Ti-(Ca,Zr)-(C,N,O,P) films for load-bearing implants. Biomaterials. 2006;27:3519–3531. PubMed
Hardes J., von Eiff C., Streitbuerger A., Balke M., Budny T., Henrichs M.P., Hauschild G., Ahrens H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J. Surg. Oncol. 2010;101:389–395. PubMed
Hussmann B., Johann I., Kauther M.D., Landgraeber S., Jager M., Lendemans S. Measurement of the silver ion concentration in wound fluids after implantation of silver-coated megaprostheses: Correlation with the clinical outcome. BioMed Res. Int. 2013;2013:763096. PubMed PMC
Tran P.A., Sarin L., Hurt R.H., Webster T.J. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J. Biomed. Mater. Res. A. 2010;93:1417–1428. PubMed
Pishbin F., Mourino V., Flor S., Kreppel S., Salih V., Ryan M.P., Boccaccini A.R. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl. Mater. Interfaces. 2014;6:8796–8806. doi: 10.1021/am5014166. PubMed DOI
Zhuang J., Gordon M.R., Ventura J., Li L., Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 2013;42:7421–7435. doi: 10.1039/c3cs60094g. PubMed DOI PMC
Furth M.E., Atala A., van Dyke M.E. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28:5068–5073. doi: 10.1016/j.biomaterials.2007.07.042. PubMed DOI
Schneider G.F., Decher G. From “nano-bags” to “micro-pouches”. Understanding and tweaking flocculation-based processes for the preparation of new nanoparticle-composites. Nano Lett. 2008;8:3598–3604. doi: 10.1021/nl801511w. PubMed DOI
Zhao X., Meng G., Han F., Li X., Chen B., Xu Q., Zhu X., Chu Z., Kong M., Huang Q. Nanocontainers made of various materials with tunable shape and size. Sci. Rep. 2013;3:2238. PubMed PMC
Grainger D.W., van der Mei H.C., Jutte P.C., van den Dungen J.J., Schultz M.J., van der Laan B.F., Zaat S.A., Busscher H.J. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials. 2013;34:9237–9243. doi: 10.1016/j.biomaterials.2013.08.043. PubMed DOI
Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement
Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film
Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection