Structural Phenomena Introduced by Rotary Swaging: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FSI-S-23-8231
Brno University of Technology
PubMed
38255633
PubMed Central
PMC10820319
DOI
10.3390/ma17020466
PII: ma17020466
Knihovny.cz E-zdroje
- Klíčová slova
- grain size, intensive plastic deformation, microstructure, rotary swaging,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rotary swaging is an industrially applicable intensive plastic deformation method. Due to its versatility, it is popular, especially in the automotive industry. Similar to the well-known methods of severe plastic deformation (SPD), rotary swaging imparts high shear strain into the swaged materials and thus introduces grain refinement down to a very fine, even ultra-fine, level. However, contrary to SPD methods, one of the primary characteristics of which is that they retain the shapes and dimensions of the processed sample, rotary swaging enables the imparting of required shapes and dimensions of workpieces (besides introducing structure refinement and the consequent enhancement of properties and performance). Therefore, under optimized conditions, swaging can be used to process workpieces of virtually any metallic material with theoretically any required dimensions. The main aim of this review is to present the principle of the rotary swaging method and its undeniable advantages. The focus is primarily on assessing its pros and cons by evaluating the imparted microstructures.
Zobrazit více v PubMed
Park G.D., Tran V.L., Hong S.-T., Jeong Y.-H., Yeo T.S., Nam M.J., Kim M.-J., Jin S.-W., Han H.N. Electrically Assisted Stress Relief Annealing of Automotive Springs. J. Mech. Sci. Technol. 2017;31:3943–3948. doi: 10.1007/s12206-017-0740-x. DOI
Javier C., LeBlanc J., Shukla A. Shock Response of Composite Materials Subjected to Aggressive Marine Environments. In: Sutton M., Reu P.L., editors. Proceedings of the International Digital Imaging Correlation Society, Proceedings of the First Annual Conference; Philadelphia, PA, USA. 7–10 November 2016; Cham, Swizterland: Springer; 2017. pp. 169–171.
Macháčková A., Kocich R., Bojko M., Klečková Z. Numerical Analysis of Secondary Heat Exchanger Designed for CHP Units with Microturbine. Int. J. Heat Mass Transf. 2015;83:487–498. doi: 10.1016/j.ijheatmasstransfer.2014.12.038. DOI
Kocich R., Bojko M., Macháčková A., Klečková Z. Numerical Analysis of the Tubular Heat Exchanger Designed for Co-Generating Units on the Basis of Microturbines. Int. J. Heat Mass Transf. 2012;55:5336–5342. doi: 10.1016/j.ijheatmasstransfer.2012.05.050. DOI
Macháčková A., Kocich R., Bojko M., Kunčická L., Polko K. Numerical and Experimental Investigation of Flue Gases Heat Recovery via Condensing Heat Exchanger. Int. J. Heat Mass Transf. 2018;124:1321–1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.051. DOI
Greger M., Kocich R., Kander L., Jonsta P. Nanostructured Titanium for Dental Applications; Proceedings of the Metal 2010: 19th International Metallurgical and Materials Conference; Roznov pod Radhostem, Czech Republic. 18–20 May 2020; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 182–186.
Zach L., Kunčická L., Růžička P., Kocich R. Design, Analysis and Verification of a Knee Joint Oncological Prosthesis Finite Element Model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI
Malygin G.A. Strength and Plasticity of Nanocrystalline Metals with a Bimodal Grain Structure. Phys. Solid State. 2008;50:1032–1038. doi: 10.1134/S1063783408060061. DOI
Kudrya A.V., Sokolovskaya E.A., Ngo K.N., Kaikibaeva A.S. Relation between the Nonuniformity of the Properties and the Structure of Large Forgings. Russ. Metall. 2018;2018:589–592. doi: 10.1134/S0036029518060125. DOI
Panin V.E., Moiseenko D.D., Elsukova T.F. Multiscale Model of Deformed Polycrystals. Hall-Petch Problem. Phys. Mesomech. 2014;17:1–14. doi: 10.1134/S1029959914010019. DOI
Trusov P.V., Gribov D.S. The Three-Level Elastoviscoplastic Model and Its Application to Describing Complex Cyclic Loading of Materials with Different Stacking Fault Energies. Materials. 2022;15:760. doi: 10.3390/ma15030760. PubMed DOI PMC
Haddou H., Gaudin C., Feaugas X. Stacking Fault Energy (s.f.e.) and Grain Size Effects (d) on the Tensile Behaviour of f.c.c. Polycrystalline Alloys at 300 K: Back Stress and Effective Stress Evolutions. J. Phys. IV. 2001;11:Pr4–Pr283. doi: 10.1051/jp4:2001435. DOI
Wang H., Lu C., Tieu K. Crystal Plasticity Modelling of Microbands in a Rolled Aluminium Single Crystal. Materialia. 2019;8:100488. doi: 10.1016/j.mtla.2019.100488. DOI
Jagatramka R., Daly M. The Competition Between Deformation Twinning and Dislocation Slip in Deformed Face-Centered Cubic Metals. JOM. 2022;74:3799–3810. doi: 10.1007/s11837-022-05437-3. DOI
Chen B., Zhu L., Xin Y., Lei J. Grain Rotation in Plastic Deformation. Quantum Beam Sci. 2019;3:17. doi: 10.3390/qubs3030017. DOI
Panin V.E., Egorushkin V.E., Elsukova T.F. Physical Mesomechanics of Grain Boundary Sliding in a Deformable Polycrystal. Phys. Mesomech. 2013;16:1–8. doi: 10.1134/S1029959913010013. DOI
Cao Y., Ni S., Liao X., Song M., Zhu Y. Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation. Mater. Sci. Eng. R Rep. 2018;133:1–59. doi: 10.1016/j.mser.2018.06.001. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Liao B., Cao L., Wu X., Zou Y., Huang G., Rometsch P., Couper M., Liu Q. Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055. Materials. 2019;12:311. doi: 10.3390/ma12020311. PubMed DOI PMC
Borodin E.N., Mayer A.E. A Simple Mechanical Model for Grain Boundary Sliding in Nanocrystalline Metals. Mater. Sci. Eng. A. 2012;532:245–248. doi: 10.1016/j.msea.2011.10.086. DOI
Trusov P.V., Shveykin A.I., Sharifullina E.R., Kondratev N.S. Model of Polycrystalline Inelastic Deformation with Grain Boundary Sliding Description. Adv. Mater. Res. 2014;1040:86–91.
Mohammadi A., Enikeev N.A., Murashkin M.Y., Arita M., Edalati K. Examination of Inverse Hall-Petch Relation in Nanostructured Aluminum Alloys by Ultra-Severe Plastic Deformation. J. Mater. Sci. Technol. 2021;91:78–89. doi: 10.1016/j.jmst.2021.01.096. DOI
Kocich R., Lukáč P. Handbook of Mechanical Nanostructuring. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2015. SPD Processes–Methods for Mechanical Nanostructuring; pp. 235–262.
Chuvil’deev V.N., Myshlyaev M.M., Nokhrin A.V., Kopylov V.I., Lopatin Y.G., Pirozhnikova O.E., Piskunov A.V., Semenycheva A.V., Bobrov A.A. Effect of the Severe Plastic Deformation Temperature on the Diffusion Properties of the Grain Boundaries in Ultrafine-Grained Metals. Russ. Metall. 2017;2017:413–425. doi: 10.1134/S0036029517050044. DOI
Purcek G., Saray O., Nagimov M.I., Nazarov A.A., Safarov I.M., Danilenko V.N., Valiakhmetov O.R., Mulyukov R.R. Microstructure and Mechanical Behavior of UFG Copper Processed by ECAP Following Different Processing Regimes. Philos. Mag. 2012;92:690–704. doi: 10.1080/14786435.2011.634842. DOI
Stolyarov V.V., Ermolenko A.S., Gunderov D., Popov A.G., Raab G.I., Puzanova T.Z., Valiev R., Gaviko V.S., Belozerov E.V. Equal-Channel Angular Pressing, Microstructure and Hysteresis Properties of Ultrafine–Grained Pr20Fe73.5B5Cu1.5–Alloy. Mater. Sci. Forum. 2001;373–376:265–268. doi: 10.4028/www.scientific.net/MSF.373-376.265. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of Influence of Preparation and Heat Treatment on Deformation Behaviour of the Alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Kocich R., Greger M., Macháčková A. Finite Element Investigation of Influence of Selected Factors on ECAP Process; Proceedings of the Metal 2010: 19th International Metallurgical and Materials Conference; Roznov pod Radhostem, Czech Republic. 18–20 May 2020; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.
Kocich R., Kursa M., Szurman I., Dlouhý A. The Influence of Imposed Strain on the Development of Microstructure and Transformation Characteristics of Ni–Ti Shape Memory Alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the Metal 2013: 22nd International Metallurgical and Materials Conference; Brno, Czech Republic. 15–17 March 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 391–396.
Kocich R., Kunčická L., Král P., Macháčková A. Sub-Structure and Mechanical Properties of Twist Channel Angular Pressed Aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Kocich R., Macháčková A., Kunčická L. Twist Channel Multi-Angular Pressing (TCMAP) as a New SPD Process: Numerical and Experimental Study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of Strain Path on Severely Deformed Aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing ( TCMAP ) as a Method for Increasing the Efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of Deformation Behavior, Structure and Mechanical Properties of the AlSiMnFe Alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI
Kocich R. Deformation Behavior of Al/Cu Clad Composite During Twist Channel Angular Pressing. Materials. 2020;13:4047. doi: 10.3390/ma13184047. PubMed DOI PMC
Kocich R., Macháčková A., Andreyachshenko V.A. A Study of Plastic Deformation Behaviour of Ti Alloy during Equal Channel Angular Pressing with Partial Back Pressure. Comput. Mater. Sci. 2015;101:233–241. doi: 10.1016/J.COMMATSCI.2015.02.003. DOI
Naizabekov A.B., Andreyachshenko V.A., Kliber J., Kocich R. Tool for Realization Severe Plastic Deformation; Proceedings of the Metals 2013: 22nd International Metallurgical and Materials Conference; Brno, Czech Republic. 15–17 May 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 317–321.
Straumal B., Korneva a., Zięba P. Phase Transitions in Metallic Alloys Driven by the High Pressure Torsion. Arch. Civ. Mech. Eng. 2014;14:242–249. doi: 10.1016/j.acme.2013.07.002. DOI
Straumal B.B., Pontikis V., Kilmametov A.R., Mazilkin A.A., Dobatkin S.V., Baretzky B. Competition between Precipitation and Dissolution in Cu–Ag Alloys under High Pressure Torsion. Acta Mater. 2017;122:60–71. doi: 10.1016/j.actamat.2016.09.024. DOI
You G.L., Ho N.J., Kao P.W. Aluminum Based in Situ Nanocomposite Produced from Al-Mg-CuO Powder Mixture by Using Friction Stir Processing. Mater. Lett. 2013;100:219–222. doi: 10.1016/j.matlet.2013.03.074. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of Strain and Stress Conditions in Conventional and ARB Rolling Processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Sun Y.F., Tsuji N., Fujii H., Li F.S. Cu/Zr Nanoscaled Multi-Stacks Fabricated by Accumulative Roll Bonding. J. Alloys Compd. 2010;504:S443–S447. doi: 10.1016/j.jallcom.2010.02.201. DOI
Kozhevnikov A.V., Skripalenko M.M., Kozhevnikova I.A., Skripalenko M.N. Comparative Evaluation of the Kinematic Parameters at Symmetric and Asymmetric Cold Rolling of Strip Using Computer Simulation. CIS Iron Steel Rev. 2023;25:51–57. doi: 10.17580/cisisr.2023.01.09. DOI
Pustovoytov D., Pesin A., Tandon P. Asymmetric (Hot, Warm, Cold, Cryo) Rolling of Light Alloys: A Review. Metals. 2021;11:956. doi: 10.3390/met11060956. DOI
Pesin A., Pustovoytov D., Lokotunina N. Modeling of the Roll Wear and Material Damage during High-Ratio Differential Speed Rolling of Aluminium Alloy 7075. MATEC Web Conf. 2016;80:04006. doi: 10.1051/matecconf/20168004006. DOI
Yang Q., Zhang D., Peng P., Wei G., Zhang J., Jiang B., Pan F. Asymmetric Extrusion Technology of Mg Alloy: A Review. Materials. 2023;16:5255. doi: 10.3390/ma16155255. PubMed DOI PMC
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2022;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI
Vinogradov A., Serebryany V.N., Dobatkin S.V. Tailoring Microstructure and Properties of Fine Grained Magnesium Alloys by Severe Plastic Deformation. Adv. Eng. Mater. 2018;20 doi: 10.1002/adem.201700785. DOI
Mazilkin A.A., Abrosimova G.E., Protasova S.G., Straumal B.B., Schütz G., Dobatkin S.V., Bakai A.S. Transmission Electron Microscopy Investigation of Boundaries between Amorphous “Grains” in Ni50Nb20Y30 Alloy. J. Mater. Sci. 2011;46:4336–4342. doi: 10.1007/s10853-011-5304-3. DOI
Straumal B.B., Mazilkin A.A., Protasova S.G., Goll D., Baretzky B., Bakai B., Dobatkin S.V. Formation of Two Amorphous Phases in the Ni60Nb18Y22 Alloy after High Pressure Torsion. Met. Mater. 2021;49:17–22. doi: 10.4149/km_2011_1_17. DOI
Korznikova G. Modifications de Structure et de Propriétés de Composés Intermétalliques Par Déformation Plastique Intense. Ann. Chim. Sci. Matériaux. 2002;27:35–44. doi: 10.1016/S0151-9107(02)80005-8. DOI
Suru M.G., Lohan N.M., Pricop B., Spiridon I.P., Mihalache E., Comaneci R.I., Bujoreanu L.G. Structural Effects of High-Temperature Plastic Deformation Process on Martensite Plate Morphology in a Fe-Mn-Si-Cr SMA. Int. J. Mater. Prod. Technol. 2015;50:276. doi: 10.1504/IJMPT.2015.068534. DOI
Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Kunčická L., Kocich R. Effect of Stacking Sequence on Mechanical Properties and Microstructural Features within Al/Cu Laminates. Materials. 2023;16:6555. doi: 10.3390/ma16196555. PubMed DOI PMC
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 Composite by Severe Plastic Deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Kocich R., Kunčická L., Benč M. Development of Microstructure and Properties within Oxide Dispersion Strengthened Steel Directly Consolidated by Hot Rotary Swaging. Mater. Lett. 2023;353:135276. doi: 10.1016/j.matlet.2023.135276. DOI
Kocich R., Opěla P., Marek M. Influence of Structure Development on Performance of Copper Composites Processed via Intensive Plastic Deformation. Materials. 2023;16:4780. doi: 10.3390/ma16134780. PubMed DOI PMC
Böhmermann F., Hasselbruch H., Herrmann M., Riemer O., Mehner A., Zoch H.-W., Kuhfuss B. Dry Rotary Swaging–Approaches for Lubricant Free Process Design. Int. J. Precis. Eng. Manuf. Technol. 2015;2:325–331. doi: 10.1007/s40684-015-0039-2. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP. Kov. Mater. Mater. 2007;45:115–120.
Kuhfuss B., Moumi E., Piwek V. Micro Rotary Swaging: Process Limitations and Attempts to Their Extension. Microsyst. Technol. 2008;14:1995–2000. doi: 10.1007/s00542-008-0633-0. DOI
Şchiopu V., Luca D. A New Net-Shape Plating Technology for Axisymmetric Metallic Parts Using Rotary Swaging. Int. J. Adv. Manuf. Technol. 2016;85:2471–2482. doi: 10.1007/s00170-015-8089-8. DOI
Hao Q.L., Han J.T., Song J.J., Ji S. Causes and Remedies for Some Physical Defects in Rotary Swaged Products. Adv. Mater. Res. 2014;941–944:1797–1801. doi: 10.4028/www.scientific.net/AMR.941-944.1797. DOI
Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI
Kunčická L., Kocich R. Deformation Behaviour of Cu-Al Clad Composites Produced by Rotary Swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and Residual Stress within Rotary Swaged Cu/Al Clad Composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Moumi E., Ishkina S., Kuhfuss B., Hochrainer T., Struss A., Hunkel M. 2D-Simulation of Material Flow during Infeed Rotary Swaging Using Finite Element Method. Procedia Eng. 2014;81:2342–2347. doi: 10.1016/j.proeng.2014.10.331. DOI
Panov D.O., Chernichenko R.S., Naumov S.V., Pertcev A.S., Stepanov N.D., Zherebtsov S.V., Salishchev G.A. Excellent Strength-Toughness Synergy in Metastable Austenitic Stainless Steel Due to Gradient Structure Formation. Mater. Lett. 2021;303:130585. doi: 10.1016/j.matlet.2021.130585. DOI
Panov D., Chernichenko R., Kudryavtsev E., Klimenko D., Naumov S., Pertcev A. Effect of Cold Swaging on the Bulk Gradient Structure Formation and Mechanical Properties of a 316-Type Austenitic Stainless Steel. Materials. 2022;15:2468. doi: 10.3390/ma15072468. PubMed DOI PMC
Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-Channel Angular Pressing: Effect of the Strain Path on Grain Refinement and Mechanical Properties of Copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI
Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist Channel Angular Pressing (TCAP) as a Method for Increasing the Efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI
Kopeček J., Bajtošová L., Veřtát P., Šimek D. (Sub)Structure Development in Gradually Swaged Electroconductive Bars. Materials. 2023;16:5324. doi: 10.3390/ma16155324. PubMed DOI PMC
Huang A.H., Wang Y.F., Wang M.S., Song L.Y., Li Y.S., Gao L., Huang C.X., Zhu Y.T. Optimizing the Strength, Ductility and Electrical Conductivity of a Cu-Cr-Zr Alloy by Rotary Swaging and Aging Treatment. Mater. Sci. Eng. A. 2019;746:211–216. doi: 10.1016/j.msea.2019.01.002. DOI
Martynenko N., Rybalchenko O., Bodyakova A., Prosvirnin D., Rybalchenko G., Morozov M., Yusupov V., Dobatkin S. Effect of Rotary Swaging on the Structure, Mechanical Characteristics and Aging Behavior of Cu-0.5%Cr-0.08%Zr Alloy. Materials. 2022;16:105. doi: 10.3390/ma16010105. PubMed DOI PMC
Martynenko N.S., Bochvar N.R., Rybalchenko O.V., Prosvirnin D.V., Rybalchenko G.V., Kolmakov A.G., Morozov M.M., Yusupov V.S., Dobatkin S.V. Increase in the Strength and Electrical Conductivity of a Cu–0.8Hf Alloy after Rotary Swaging and Subsequent Aging. Russ. Metall. 2023;2023:466–474. doi: 10.1134/S0036029523040158. DOI
Ouyang Y., Gan X., Li Z., Zhou K., Zhang S., Jiang Y., Zhang X. Microstructure Evolution of a Cu-15Ni-8Sn-0.8Nb Alloy during Prior Deformation and Aging Treatment. Mater. Sci. Eng. A. 2017;704:128–137. doi: 10.1016/j.msea.2017.07.065. DOI
Zhao L., Chen L., Luo B., Liang Y., Shi J., Zhang S., Lin Z., Shi P., Zheng T., Zhou B., et al. Low-Dislocation-Density Ultrafine Lamellar Structure Buffering Triples Ductility in Cu-8wt.%Sn Alloy Treated by Rotary Swaging and Appropriate Annealing. Mater. Sci. Eng. A. 2024;889:145847. doi: 10.1016/j.msea.2023.145847. DOI
Cao M., Wang J., Zhang Q., Huang K. In Situ Observation of Deformation-Induced Spherical Grains in Semi-Solid State of C5191 Copper Alloy. Materials. 2020;13:5496. doi: 10.3390/ma13235496. PubMed DOI PMC
Abdulstaar M.A., El-Danaf E.A., Waluyo N.S., Wagner L. Severe Plastic Deformation of Commercial Purity Aluminum by Rotary Swaging: Microstructure Evolution and Mechanical Properties. Mater. Sci. Eng. A. 2013;565:351–358. doi: 10.1016/j.msea.2012.12.046. DOI
Yang Y., Nie J., Mao Q., Zhao Y. Improving the Combination of Electrical Conductivity and Tensile Strength of Al 1070 by Rotary Swaging Deformation. Results Phys. 2019;13:102236. doi: 10.1016/J.RINP.2019.102236. DOI
Nokhrin A.V., Nagicheva G.S., Chuvil’deev V.N., Kopylov V.I., Bobrov A.A., Tabachkova N.Y. Effect of Er, Si, Hf and Nb Additives on the Thermal Stability of Microstructure, Electrical Resistivity and Microhardness of Fine-Grained Aluminum Alloys of Al-0.25%Zr. Materials. 2023;16:2114. doi: 10.3390/ma16052114. PubMed DOI PMC
Bochvar N.R., Rybalchenko O.V., Leonova N.P., Tabachkova N.Y., Rybalchenko G.V., Rokhlin L.L. Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions. J. Alloys Compd. 2020;821:153426. doi: 10.1016/j.jallcom.2019.153426. DOI
Jin H., Guan R., Tie D. Mechanical and Conductive Performance of Aged 6xxx Aluminum Alloy during Rotary Swaging. Crystals. 2022;12:530. doi: 10.3390/cryst12040530. DOI
Lourenço J.C., Souza L.P., Silva G., Suzuki P.A., Robin A.L.M., Nunes C.A., Tomachuk C.R., Lourenço J.C., Souza L.P., Silva G., et al. Effects of Solidification, Rotary Swaging and Recrystallization on the Microstructure, Crystallographic Orientation and Electrochemical Behavior of an Al-4.5 Wt.% Cu Alloy. Int. J. Electrochem. Sci. 2021;16:211054. doi: 10.20964/2021.10.43. DOI
Lin C.-W., Chen K.-J., Hung F.-Y., Lui T.-S., Chen H.-P. Impact of Solid-Solution Treatment on Microstructural Characteristics and Formability of Rotary-Swaged 2024 Alloy Tubes. J. Mater. Res. Technol. 2019;8:3137–3148. doi: 10.1016/j.jmrt.2018.12.029. DOI
Rogachev S.O., Sundeev R.V., Andreev V.A., Andreev N.V., Tabachkova N.Y., Korotkova N.O. The Microstructure and Conductivity of Copper–Aluminum Composites Prepared by Rotary Swaging. Phys. Met. Metallogr. 2022;123:1193–1200. doi: 10.1134/S0031918X22601640. DOI
Wang H., Han J., Hao Q. Fabrication of Laminated-Metal Composite Tubes by Multi-Billet Rotary Swaging Technique. Int. J. Adv. Manuf. Technol. 2015;76:713–719. doi: 10.1007/s00170-014-6302-9. DOI
Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation Behavior of Multilayered Al-Cu Clad Composite during Cold-Swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of Mechanical and Electrical Properties of Rotary Swaged Al-Cu Clad Composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Canelo-Yubero D., Kocich R., Šaroun J., Strunz P. Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging. Materials. 2023;16:2102. doi: 10.3390/ma16052102. PubMed DOI PMC
Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI
Kocich R. Optimizing Thermomechanical Processing of Bimetallic Laminates. Materials. 2023;16:3480. doi: 10.3390/ma16093480. PubMed DOI PMC
Kunčická L., Macháčková A., Krátká L., Kocich R. Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Materials. 2019;12:3462. doi: 10.3390/ma12213462. PubMed DOI PMC
Kocich R. Effects of Twist Channel Angular Pressing on Structure and Properties of Bimetallic Al/Cu Clad Composites. Mater. Des. 2020;196:109255. doi: 10.1016/j.matdes.2020.109255. DOI
Tian W., Zhang F., Han S., Chen X., Gao P., Zheng K. Analysis of Microstructure and Properties in Cold Rotary Swaged Copper-Clad Magnesium Wires. Metals. 2023;13:467. doi: 10.3390/met13030467. DOI
Yu Y., Zhang W. Tungsten Copper Composite Fabricated by Compound Plastic Deformation Technologies. Mater. Res. Express. 2018;5:066551. doi: 10.1088/2053-1591/aacba9. DOI
Lu F., Nie J., Ma X., Li Y., Jiang Z., Zhang Y., Zhao Y., Liu X. Simultaneously Improving the Tensile Strength and Ductility of the AlNp/ Al Composites by the Particle’s Hierarchical Structure with Bimodal Distribution and Nano-Network. Mater. Sci. Eng. A. 2020;770:138519. doi: 10.1016/j.msea.2019.138519. DOI
Nie J., Lu F., Huang Z., Ma X., Zhou H., Chen C., Chen X., Yang H., Cao Y., Liu X., et al. Improving the High-Temperature Ductility of Al Composites by Tailoring the Nanoparticle Network. Materialia. 2020;9:100523. doi: 10.1016/j.mtla.2019.100523. DOI
Barkov L.A., Mymrin S.A., Samodurova M.N., Dzhigun N.S., Latfulina Y.S. Compressibility of Tungsten and Molybdenum Bars during Rotary Swaging and Rolling. Russ. Metall. 2015;2015:360–366. doi: 10.1134/S0036029515050031. DOI
Wang F.-Z., Zhang H., Ding B.-J., Zhu R.-H. A Thermionic Tungsten Cathode Activated with Nanothoria and Prepared by Swaging Method. Mater. Sci. Eng. A. 2002;336:59–63. doi: 10.1016/S0921-5093(01)01969-4. DOI
Rieth M., Hoffmann A. Influence of Microstructure and Notch Fabrication on Impact Bending Properties of Tungsten Materials. Int. J. Refract. Met. Hard Mater. 2010;28:679–686. doi: 10.1016/j.ijrmhm.2010.04.010. DOI
Liu R., Xie Z.M., Fang Q.F., Zhang T., Wang X.P., Hao T., Liu C.S., Dai Y. Nanostructured Yttria Dispersion-Strengthened Tungsten Synthesized by Sol–Gel Method. J. Alloys Compd. 2016;657:73–80. doi: 10.1016/j.jallcom.2015.10.059. DOI
Xing H., Sun J. Electron Microscopy Study of Deformation Microstructure in Metastable β Titanium Alloy. Mater. Sci. Forum. 2010;654–656:867–870. doi: 10.4028/www.scientific.net/MSF.654-656.867. DOI
Naydenkin E.V., Mishin I.P., Zabudchenko O.V., Lykova O.N., Manisheva A.I. Structural-Phase State and Mechanical Properties of β Titanium Alloy Produced by Rotary Swaging with Subsequent Aging. J. Alloys Compd. 2023;935:167973. doi: 10.1016/j.jallcom.2022.167973. DOI
Thirathipviwat P., Song G., Bednarcik J., Kühn U., Gemming T., Nielsch K., Han J. Compositional Complexity Dependence of Dislocation Density and Mechanical Properties in High Entropy Alloy Systems. Prog. Nat. Sci. Mater. Int. 2020;30:545–551. doi: 10.1016/j.pnsc.2020.07.002. DOI
Silva H.M., Schneider S.G., Neto C.M. Study of Nontoxic Aluminum and Vanadium-Free Titanium Alloys for Biomedical Applications. Mater. Sci. Eng. C. 2004;24:679–682. doi: 10.1016/j.msec.2004.08.051. DOI
Hanada S., Masahashi N., Jung T.K. Effect of Stress-Induced A″ Martensite on Young’s Modulus of β Ti-33.6Nb-4Sn Alloy. Mater. Sci. Eng. A. 2013;588:403–410. doi: 10.1016/j.msea.2013.09.053. DOI
Jung T.-K., Semboshi S., Masahashi N., Hanada S. Mechanical Properties and Microstructures of β Ti–25Nb–11Sn Ternary Alloy for Biomedical Applications. Mater. Sci. Eng. C. 2013;33:1629–1635. doi: 10.1016/j.msec.2012.12.072. PubMed DOI
Baptista C.A.R., Schneider S., Taddei E., da Silva H. Fatigue Behavior of Arc Melted Ti–13Nb–13Zr Alloy. Int. J. Fatigue. 2004;26:967–973. doi: 10.1016/j.ijfatigue.2004.01.011. DOI
Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of Macroscopic Elastic Moduli of Martensitic Polycrystalline NiTi and NiTiCu Shape Memory Alloys with Pseudoplastic Straining. Acta Mater. 2017;123:146–156. doi: 10.1016/j.actamat.2016.10.024. DOI
Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC
Wang Z., Zhang Y., Liogas K., Chen J., Vaughan G.B.M., Kocich R., Kunčická L., Uzun F., You Z., Korsunsky A.M. In Situ Synchrotron X-Ray Diffraction Analysis of Two-Way Shape Memory Effect in Nitinol. Mater. Sci. Eng. A. 2023;878:145226. doi: 10.1016/j.msea.2023.145226. DOI
Kocich R. Design and Optimization of Induction Heating for Tungsten Heavy Alloy Prior to Rotary Swaging. Int. J. Refract. Met. Hard Mater. 2020;93:105353. doi: 10.1016/j.ijrmhm.2020.105353. DOI
Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC
Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC
Panchal A., Reddy K.V., Azeem P.A., Nandy T.K., Singh A.K. Microstructure, Texture, Tensile Flow and Work Hardening Behavior of Tungsten Heavy Alloys in Swaged and Swaged + Aged Conditions. Metallogr. Microstruct. Anal. 2020;9:438–456. doi: 10.1007/s13632-020-00647-0. DOI
Durlu N., Caliskan N.K., Sakir B. Effect of Swaging on Microstructure and Tensile Properties of W-Ni-Fe Alloys. Int. J. Refract. Met. Hard Mater. 2014;42:126–131. doi: 10.1016/j.ijrmhm.2013.08.013. DOI
Ravi Kiran U., Sambasiva Rao A., Sankaranarayana M., Nandy T.K. Swaging and Heat Treatment Studies on Sintered 90W-6Ni-2Fe-2Co Tungsten Heavy Alloy. Int. J. Refract. Met. Hard Mater. 2012;33:113–121. doi: 10.1016/j.ijrmhm.2012.03.003. DOI
Ravi Kiran U., Rajavardhan B., Kumari A., Panchal A., Nageswara Rao G.V.S., Nandy T.K. Effect of Swaging on Microstructure and Mechanical Properties of W-Ni-Co Alloys. Int. J. Refract. Met. Hard Mater. 2023;116:106333. doi: 10.1016/j.ijrmhm.2023.106333. DOI
Sun J., Zhang L., Huang Y., Chen B., Fan P., Liu W., Ma Y. Effect of Rotary Swaging on Microstructure Evolution and Adiabatic Shear Sensitivity of 90W–7Ni–3Fe Alloy under Dynamic Loading. Mater. Sci. Eng. A. 2022;860:144333. doi: 10.1016/j.msea.2022.144333. DOI
Ravi Kiran U., Panchal A., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of Alloying Addition and Microstructural Parameters on Mechanical Properties of 93{%} Tungsten Heavy Alloys. Mater. Sci. Eng. A. 2015;640:82–90. doi: 10.1016/j.msea.2015.05.046. DOI
Lin Q., Peng B., Liu Z.Y. Four Dimensional Description of the Stress-Strain Relationship of Sintered and Swaged Tungsten Powders. Mater. Sci. Forum. 2013;762:757–762. doi: 10.4028/www.scientific.net/MSF.762.757. DOI
Huang Z.W., Jin S.B., Zhou H., Li Y.S., Cao Y., Zhu Y.T. Evolution of Twinning Systems and Variants during Sequential Twinning in Cryo-Rolled Titanium. Int. J. Plast. 2019;112:52–67. doi: 10.1016/j.ijplas.2018.08.008. DOI
Sun J.L., Trimby P.W., Yan F.K., Liao X.Z., Tao N.R., Wang J.T. Grain Size Effect on Deformation Twinning Propensity in Ultrafine-Grained Hexagonal Close-Packed Titanium. Scr. Mater. 2013;69:428–431. doi: 10.1016/j.scriptamat.2013.06.001. DOI
Wang M., Wang Y., Huang A., Gao L., Li Y., Huang C. Promising Tensile and Fatigue Properties of Commercially Pure Titanium Processed by Rotary Swaging and Annealing Treatment. Materials. 2018;11:2261. doi: 10.3390/ma11112261. PubMed DOI PMC
Molina-Aldareguia J.M., Perez-Prado M.T., Valiev R.Z., Semenova I.P., Sabirov I. High Strength Ultra-Fine Grained Titanium Produced via a Novel SPD Processing Route. Int. J. Mater. Form. 2010;3:407–410. doi: 10.1007/s12289-010-0793-1. DOI
Sabirov I., Perez-Prado M.T., Molina-Aldareguia J.M., Semenova I.P., Salimgareeva G.K., Valiev R.Z. Anisotropy of Mechanical Properties in High-Strength Ultra-Fine-Grained Pure Ti Processed via a Complex Severe Plastic Deformation Route. Scr. Mater. 2011;64:69–72. doi: 10.1016/j.scriptamat.2010.09.006. DOI
Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Tryaev P.V., Tabachkova N.Y., Chegurov M.K., Kozlova N.A., Mikhaylov A.S., Ershova A.V., Grayznov M.Y., et al. Effect of Severe Plastic Deformation Realized by Rotary Swaging on the Mechanical Properties and Corrosion Resistance of Near-α-Titanium Alloy Ti-2.5Al-2.6Zr. J. Alloys Compd. 2019;785:1233–1244. doi: 10.1016/j.jallcom.2019.01.268. DOI
Dyakonov G.S., Yakovleva T.V., Mironov S.Y., Stotskiy A.G., Modina I.M., Semenova I.P. Microstructure of the Advanced Titanium Alloy VT8M-1 Subjected to Rotary Swaging. Materials. 2023;16:6851. doi: 10.3390/ma16216851. PubMed DOI PMC
Wei K., Hu R., Yin D., Xiao L., Pang S., Cao Y., Zhou H., Zhao Y., Zhu Y. Grain Size Effect on Tensile Properties and Slip Systems of Pure Magnesium. Acta Mater. 2021;206:116604. doi: 10.1016/j.actamat.2020.116604. DOI
Greger M., Kocich R. Superplasticity Properties of Magnesium Alloys. In: Jablonski R., Turkowski M., Szewczyk R., editors. Recent Advances in Mechatronics. Springer; Berlin/Heidelberg, Germany: 2007. pp. 421–425.
Li B., Chen H., Ke X., Wei G., Yang Q. Improving the Mechanical Properties of Mg-5Al-2Ca-1Mn-0.5Zn Alloy through Rotary Swaging. Materials. 2023;16:4489. doi: 10.3390/ma16124489. PubMed DOI PMC
Yang Y., Chen X., Nie J., Wei K., Mao Q., Lu F., Zhao Y. Achieving Ultra-Strong Magnesium–Lithium Alloys by Low-Strain Rotary Swaging. Mater. Res. Lett. 2021;9:255–262. doi: 10.1080/21663831.2021.1891150. DOI
Zhou G., Yang Y., Luo Y., Li Q., Luo Q., Zhang Y., Jiang B., Peng X., Pan F. Synergistic Improvement of Strength and Plasticity of Mg-6Li-3Al-1Sn Alloy by Microstructure Regulation via Rotary Swaging. Mater. Res. Lett. 2023;11:1031–1039. doi: 10.1080/21663831.2023.2278589. DOI
Wan Y., Tang B., Gao Y., Tang L., Sha G., Zhang B., Liang N., Liu C., Jiang S., Chen Z., et al. Bulk Nanocrystalline High-Strength Magnesium Alloys Prepared via Rotary Swaging. Acta Mater. 2020;200:274–286. doi: 10.1016/j.actamat.2020.09.024. DOI
Chen X., Liu C., Jiang S., Chen Z., Wan Y. Effect of Yttrium on Nanocrystallization of Magnesium Alloys during Cold Rotary Swaging. Mater. Charact. 2022;184:111696. doi: 10.1016/j.matchar.2021.111696. DOI
Wang C., Yu Z., Cui Y., Yu S., Ma X., Liu H. Effect of Hot Rotary Swaging and Subsequent Annealing on Microstructure and Mechanical Properties of Magnesium Alloy WE43. Met. Sci. Heat Treat. 2019;60:777–782. doi: 10.1007/s11041-019-00355-9. DOI
Wang J., Bao Z., Wu C., Zhang S., Wang N., Wang Q., Yi Z. Progress in Partially Degradable Titanium-Magnesium Composites Used as Biomedical Implants. Front. Bioeng. Biotechnol. 2022;10:996195. doi: 10.3389/fbioe.2022.996195. PubMed DOI PMC
Chen X., Liu C., Wan Y., Jiang S., Han X., Chen Z. Formation of Nanocrystalline AZ31B Mg Alloys via Cryogenic Rotary Swaging. J. Magnes. Alloy. 2023;11:1580–1591. doi: 10.1016/j.jma.2021.11.021. DOI
Martynenko N., Anisimova N., Rybalchenko G., Rybalchenko O., Serebryany V., Zheleznyi M., Shinkareva M., Gorbenko A., Temralieva D., Lukyanova E., et al. Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloys. Metals. 2023;13:1386. doi: 10.3390/met13081386. DOI
Rogachev S.O., Andreev V.A., Gorshenkov M.V., Ten D.V., Kuznetsova A.S., Shcherbakov A.B. Rotary Forging to Improve the Strength Properties of the Zr–2.5% Nb Alloy. Phys. Met. Metallogr. 2022;123:939–944. doi: 10.1134/S0031918X22090113. DOI
Ashida M., Morita M., Tsutsumi Y., Nomura N., Doi H., Chen P., Hanawa T. Effects of Cold Swaging on Mechanical Properties and Magnetic Susceptibility of the Zr–1Mo Alloy. Metals. 2018;8:454. doi: 10.3390/met8060454. DOI