Structural Phenomena Introduced by Rotary Swaging: A Review

. 2024 Jan 18 ; 17 (2) : . [epub] 20240118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38255633

Grantová podpora
FSI-S-23-8231 Brno University of Technology

Rotary swaging is an industrially applicable intensive plastic deformation method. Due to its versatility, it is popular, especially in the automotive industry. Similar to the well-known methods of severe plastic deformation (SPD), rotary swaging imparts high shear strain into the swaged materials and thus introduces grain refinement down to a very fine, even ultra-fine, level. However, contrary to SPD methods, one of the primary characteristics of which is that they retain the shapes and dimensions of the processed sample, rotary swaging enables the imparting of required shapes and dimensions of workpieces (besides introducing structure refinement and the consequent enhancement of properties and performance). Therefore, under optimized conditions, swaging can be used to process workpieces of virtually any metallic material with theoretically any required dimensions. The main aim of this review is to present the principle of the rotary swaging method and its undeniable advantages. The focus is primarily on assessing its pros and cons by evaluating the imparted microstructures.

Zobrazit více v PubMed

Park G.D., Tran V.L., Hong S.-T., Jeong Y.-H., Yeo T.S., Nam M.J., Kim M.-J., Jin S.-W., Han H.N. Electrically Assisted Stress Relief Annealing of Automotive Springs. J. Mech. Sci. Technol. 2017;31:3943–3948. doi: 10.1007/s12206-017-0740-x. DOI

Javier C., LeBlanc J., Shukla A. Shock Response of Composite Materials Subjected to Aggressive Marine Environments. In: Sutton M., Reu P.L., editors. Proceedings of the International Digital Imaging Correlation Society, Proceedings of the First Annual Conference; Philadelphia, PA, USA. 7–10 November 2016; Cham, Swizterland: Springer; 2017. pp. 169–171.

Macháčková A., Kocich R., Bojko M., Klečková Z. Numerical Analysis of Secondary Heat Exchanger Designed for CHP Units with Microturbine. Int. J. Heat Mass Transf. 2015;83:487–498. doi: 10.1016/j.ijheatmasstransfer.2014.12.038. DOI

Kocich R., Bojko M., Macháčková A., Klečková Z. Numerical Analysis of the Tubular Heat Exchanger Designed for Co-Generating Units on the Basis of Microturbines. Int. J. Heat Mass Transf. 2012;55:5336–5342. doi: 10.1016/j.ijheatmasstransfer.2012.05.050. DOI

Macháčková A., Kocich R., Bojko M., Kunčická L., Polko K. Numerical and Experimental Investigation of Flue Gases Heat Recovery via Condensing Heat Exchanger. Int. J. Heat Mass Transf. 2018;124:1321–1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.051. DOI

Greger M., Kocich R., Kander L., Jonsta P. Nanostructured Titanium for Dental Applications; Proceedings of the Metal 2010: 19th International Metallurgical and Materials Conference; Roznov pod Radhostem, Czech Republic. 18–20 May 2020; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 182–186.

Zach L., Kunčická L., Růžička P., Kocich R. Design, Analysis and Verification of a Knee Joint Oncological Prosthesis Finite Element Model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI

Malygin G.A. Strength and Plasticity of Nanocrystalline Metals with a Bimodal Grain Structure. Phys. Solid State. 2008;50:1032–1038. doi: 10.1134/S1063783408060061. DOI

Kudrya A.V., Sokolovskaya E.A., Ngo K.N., Kaikibaeva A.S. Relation between the Nonuniformity of the Properties and the Structure of Large Forgings. Russ. Metall. 2018;2018:589–592. doi: 10.1134/S0036029518060125. DOI

Panin V.E., Moiseenko D.D., Elsukova T.F. Multiscale Model of Deformed Polycrystals. Hall-Petch Problem. Phys. Mesomech. 2014;17:1–14. doi: 10.1134/S1029959914010019. DOI

Trusov P.V., Gribov D.S. The Three-Level Elastoviscoplastic Model and Its Application to Describing Complex Cyclic Loading of Materials with Different Stacking Fault Energies. Materials. 2022;15:760. doi: 10.3390/ma15030760. PubMed DOI PMC

Haddou H., Gaudin C., Feaugas X. Stacking Fault Energy (s.f.e.) and Grain Size Effects (d) on the Tensile Behaviour of f.c.c. Polycrystalline Alloys at 300 K: Back Stress and Effective Stress Evolutions. J. Phys. IV. 2001;11:Pr4–Pr283. doi: 10.1051/jp4:2001435. DOI

Wang H., Lu C., Tieu K. Crystal Plasticity Modelling of Microbands in a Rolled Aluminium Single Crystal. Materialia. 2019;8:100488. doi: 10.1016/j.mtla.2019.100488. DOI

Jagatramka R., Daly M. The Competition Between Deformation Twinning and Dislocation Slip in Deformed Face-Centered Cubic Metals. JOM. 2022;74:3799–3810. doi: 10.1007/s11837-022-05437-3. DOI

Chen B., Zhu L., Xin Y., Lei J. Grain Rotation in Plastic Deformation. Quantum Beam Sci. 2019;3:17. doi: 10.3390/qubs3030017. DOI

Panin V.E., Egorushkin V.E., Elsukova T.F. Physical Mesomechanics of Grain Boundary Sliding in a Deformable Polycrystal. Phys. Mesomech. 2013;16:1–8. doi: 10.1134/S1029959913010013. DOI

Cao Y., Ni S., Liao X., Song M., Zhu Y. Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation. Mater. Sci. Eng. R Rep. 2018;133:1–59. doi: 10.1016/j.mser.2018.06.001. DOI

Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.

Liao B., Cao L., Wu X., Zou Y., Huang G., Rometsch P., Couper M., Liu Q. Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055. Materials. 2019;12:311. doi: 10.3390/ma12020311. PubMed DOI PMC

Borodin E.N., Mayer A.E. A Simple Mechanical Model for Grain Boundary Sliding in Nanocrystalline Metals. Mater. Sci. Eng. A. 2012;532:245–248. doi: 10.1016/j.msea.2011.10.086. DOI

Trusov P.V., Shveykin A.I., Sharifullina E.R., Kondratev N.S. Model of Polycrystalline Inelastic Deformation with Grain Boundary Sliding Description. Adv. Mater. Res. 2014;1040:86–91.

Mohammadi A., Enikeev N.A., Murashkin M.Y., Arita M., Edalati K. Examination of Inverse Hall-Petch Relation in Nanostructured Aluminum Alloys by Ultra-Severe Plastic Deformation. J. Mater. Sci. Technol. 2021;91:78–89. doi: 10.1016/j.jmst.2021.01.096. DOI

Kocich R., Lukáč P. Handbook of Mechanical Nanostructuring. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2015. SPD Processes–Methods for Mechanical Nanostructuring; pp. 235–262.

Chuvil’deev V.N., Myshlyaev M.M., Nokhrin A.V., Kopylov V.I., Lopatin Y.G., Pirozhnikova O.E., Piskunov A.V., Semenycheva A.V., Bobrov A.A. Effect of the Severe Plastic Deformation Temperature on the Diffusion Properties of the Grain Boundaries in Ultrafine-Grained Metals. Russ. Metall. 2017;2017:413–425. doi: 10.1134/S0036029517050044. DOI

Purcek G., Saray O., Nagimov M.I., Nazarov A.A., Safarov I.M., Danilenko V.N., Valiakhmetov O.R., Mulyukov R.R. Microstructure and Mechanical Behavior of UFG Copper Processed by ECAP Following Different Processing Regimes. Philos. Mag. 2012;92:690–704. doi: 10.1080/14786435.2011.634842. DOI

Stolyarov V.V., Ermolenko A.S., Gunderov D., Popov A.G., Raab G.I., Puzanova T.Z., Valiev R., Gaviko V.S., Belozerov E.V. Equal-Channel Angular Pressing, Microstructure and Hysteresis Properties of Ultrafine–Grained Pr20Fe73.5B5Cu1.5–Alloy. Mater. Sci. Forum. 2001;373–376:265–268. doi: 10.4028/www.scientific.net/MSF.373-376.265. DOI

Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of Influence of Preparation and Heat Treatment on Deformation Behaviour of the Alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Kocich R., Greger M., Macháčková A. Finite Element Investigation of Influence of Selected Factors on ECAP Process; Proceedings of the Metal 2010: 19th International Metallurgical and Materials Conference; Roznov pod Radhostem, Czech Republic. 18–20 May 2020; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.

Kocich R., Kursa M., Szurman I., Dlouhý A. The Influence of Imposed Strain on the Development of Microstructure and Transformation Characteristics of Ni–Ti Shape Memory Alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI

Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the Metal 2013: 22nd International Metallurgical and Materials Conference; Brno, Czech Republic. 15–17 March 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 391–396.

Kocich R., Kunčická L., Král P., Macháčková A. Sub-Structure and Mechanical Properties of Twist Channel Angular Pressed Aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI

Kocich R., Macháčková A., Kunčická L. Twist Channel Multi-Angular Pressing (TCMAP) as a New SPD Process: Numerical and Experimental Study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI

Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of Strain Path on Severely Deformed Aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI

Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing ( TCMAP ) as a Method for Increasing the Efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI

Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of Deformation Behavior, Structure and Mechanical Properties of the AlSiMnFe Alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI

Kocich R. Deformation Behavior of Al/Cu Clad Composite During Twist Channel Angular Pressing. Materials. 2020;13:4047. doi: 10.3390/ma13184047. PubMed DOI PMC

Kocich R., Macháčková A., Andreyachshenko V.A. A Study of Plastic Deformation Behaviour of Ti Alloy during Equal Channel Angular Pressing with Partial Back Pressure. Comput. Mater. Sci. 2015;101:233–241. doi: 10.1016/J.COMMATSCI.2015.02.003. DOI

Naizabekov A.B., Andreyachshenko V.A., Kliber J., Kocich R. Tool for Realization Severe Plastic Deformation; Proceedings of the Metals 2013: 22nd International Metallurgical and Materials Conference; Brno, Czech Republic. 15–17 May 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 317–321.

Straumal B., Korneva a., Zięba P. Phase Transitions in Metallic Alloys Driven by the High Pressure Torsion. Arch. Civ. Mech. Eng. 2014;14:242–249. doi: 10.1016/j.acme.2013.07.002. DOI

Straumal B.B., Pontikis V., Kilmametov A.R., Mazilkin A.A., Dobatkin S.V., Baretzky B. Competition between Precipitation and Dissolution in Cu–Ag Alloys under High Pressure Torsion. Acta Mater. 2017;122:60–71. doi: 10.1016/j.actamat.2016.09.024. DOI

You G.L., Ho N.J., Kao P.W. Aluminum Based in Situ Nanocomposite Produced from Al-Mg-CuO Powder Mixture by Using Friction Stir Processing. Mater. Lett. 2013;100:219–222. doi: 10.1016/j.matlet.2013.03.074. DOI

Kocich R., Macháčková A., Fojtík F. Comparison of Strain and Stress Conditions in Conventional and ARB Rolling Processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI

Sun Y.F., Tsuji N., Fujii H., Li F.S. Cu/Zr Nanoscaled Multi-Stacks Fabricated by Accumulative Roll Bonding. J. Alloys Compd. 2010;504:S443–S447. doi: 10.1016/j.jallcom.2010.02.201. DOI

Kozhevnikov A.V., Skripalenko M.M., Kozhevnikova I.A., Skripalenko M.N. Comparative Evaluation of the Kinematic Parameters at Symmetric and Asymmetric Cold Rolling of Strip Using Computer Simulation. CIS Iron Steel Rev. 2023;25:51–57. doi: 10.17580/cisisr.2023.01.09. DOI

Pustovoytov D., Pesin A., Tandon P. Asymmetric (Hot, Warm, Cold, Cryo) Rolling of Light Alloys: A Review. Metals. 2021;11:956. doi: 10.3390/met11060956. DOI

Pesin A., Pustovoytov D., Lokotunina N. Modeling of the Roll Wear and Material Damage during High-Ratio Differential Speed Rolling of Aluminium Alloy 7075. MATEC Web Conf. 2016;80:04006. doi: 10.1051/matecconf/20168004006. DOI

Yang Q., Zhang D., Peng P., Wei G., Zhang J., Jiang B., Pan F. Asymmetric Extrusion Technology of Mg Alloy: A Review. Materials. 2023;16:5255. doi: 10.3390/ma16155255. PubMed DOI PMC

Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI

Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2022;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI

Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI

Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI

Vinogradov A., Serebryany V.N., Dobatkin S.V. Tailoring Microstructure and Properties of Fine Grained Magnesium Alloys by Severe Plastic Deformation. Adv. Eng. Mater. 2018;20 doi: 10.1002/adem.201700785. DOI

Mazilkin A.A., Abrosimova G.E., Protasova S.G., Straumal B.B., Schütz G., Dobatkin S.V., Bakai A.S. Transmission Electron Microscopy Investigation of Boundaries between Amorphous “Grains” in Ni50Nb20Y30 Alloy. J. Mater. Sci. 2011;46:4336–4342. doi: 10.1007/s10853-011-5304-3. DOI

Straumal B.B., Mazilkin A.A., Protasova S.G., Goll D., Baretzky B., Bakai B., Dobatkin S.V. Formation of Two Amorphous Phases in the Ni60Nb18Y22 Alloy after High Pressure Torsion. Met. Mater. 2021;49:17–22. doi: 10.4149/km_2011_1_17. DOI

Korznikova G. Modifications de Structure et de Propriétés de Composés Intermétalliques Par Déformation Plastique Intense. Ann. Chim. Sci. Matériaux. 2002;27:35–44. doi: 10.1016/S0151-9107(02)80005-8. DOI

Suru M.G., Lohan N.M., Pricop B., Spiridon I.P., Mihalache E., Comaneci R.I., Bujoreanu L.G. Structural Effects of High-Temperature Plastic Deformation Process on Martensite Plate Morphology in a Fe-Mn-Si-Cr SMA. Int. J. Mater. Prod. Technol. 2015;50:276. doi: 10.1504/IJMPT.2015.068534. DOI

Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI

Kunčická L., Kocich R. Effect of Stacking Sequence on Mechanical Properties and Microstructural Features within Al/Cu Laminates. Materials. 2023;16:6555. doi: 10.3390/ma16196555. PubMed DOI PMC

Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 Composite by Severe Plastic Deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI

Kocich R., Kunčická L., Benč M. Development of Microstructure and Properties within Oxide Dispersion Strengthened Steel Directly Consolidated by Hot Rotary Swaging. Mater. Lett. 2023;353:135276. doi: 10.1016/j.matlet.2023.135276. DOI

Kocich R., Opěla P., Marek M. Influence of Structure Development on Performance of Copper Composites Processed via Intensive Plastic Deformation. Materials. 2023;16:4780. doi: 10.3390/ma16134780. PubMed DOI PMC

Böhmermann F., Hasselbruch H., Herrmann M., Riemer O., Mehner A., Zoch H.-W., Kuhfuss B. Dry Rotary Swaging–Approaches for Lubricant Free Process Design. Int. J. Precis. Eng. Manuf. Technol. 2015;2:325–331. doi: 10.1007/s40684-015-0039-2. DOI

Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI

Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP. Kov. Mater. Mater. 2007;45:115–120.

Kuhfuss B., Moumi E., Piwek V. Micro Rotary Swaging: Process Limitations and Attempts to Their Extension. Microsyst. Technol. 2008;14:1995–2000. doi: 10.1007/s00542-008-0633-0. DOI

Şchiopu V., Luca D. A New Net-Shape Plating Technology for Axisymmetric Metallic Parts Using Rotary Swaging. Int. J. Adv. Manuf. Technol. 2016;85:2471–2482. doi: 10.1007/s00170-015-8089-8. DOI

Hao Q.L., Han J.T., Song J.J., Ji S. Causes and Remedies for Some Physical Defects in Rotary Swaged Products. Adv. Mater. Res. 2014;941–944:1797–1801. doi: 10.4028/www.scientific.net/AMR.941-944.1797. DOI

Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI

Kunčická L., Kocich R. Deformation Behaviour of Cu-Al Clad Composites Produced by Rotary Swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and Residual Stress within Rotary Swaged Cu/Al Clad Composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC

Moumi E., Ishkina S., Kuhfuss B., Hochrainer T., Struss A., Hunkel M. 2D-Simulation of Material Flow during Infeed Rotary Swaging Using Finite Element Method. Procedia Eng. 2014;81:2342–2347. doi: 10.1016/j.proeng.2014.10.331. DOI

Panov D.O., Chernichenko R.S., Naumov S.V., Pertcev A.S., Stepanov N.D., Zherebtsov S.V., Salishchev G.A. Excellent Strength-Toughness Synergy in Metastable Austenitic Stainless Steel Due to Gradient Structure Formation. Mater. Lett. 2021;303:130585. doi: 10.1016/j.matlet.2021.130585. DOI

Panov D., Chernichenko R., Kudryavtsev E., Klimenko D., Naumov S., Pertcev A. Effect of Cold Swaging on the Bulk Gradient Structure Formation and Mechanical Properties of a 316-Type Austenitic Stainless Steel. Materials. 2022;15:2468. doi: 10.3390/ma15072468. PubMed DOI PMC

Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-Channel Angular Pressing: Effect of the Strain Path on Grain Refinement and Mechanical Properties of Copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI

Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist Channel Angular Pressing (TCAP) as a Method for Increasing the Efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI

Kopeček J., Bajtošová L., Veřtát P., Šimek D. (Sub)Structure Development in Gradually Swaged Electroconductive Bars. Materials. 2023;16:5324. doi: 10.3390/ma16155324. PubMed DOI PMC

Huang A.H., Wang Y.F., Wang M.S., Song L.Y., Li Y.S., Gao L., Huang C.X., Zhu Y.T. Optimizing the Strength, Ductility and Electrical Conductivity of a Cu-Cr-Zr Alloy by Rotary Swaging and Aging Treatment. Mater. Sci. Eng. A. 2019;746:211–216. doi: 10.1016/j.msea.2019.01.002. DOI

Martynenko N., Rybalchenko O., Bodyakova A., Prosvirnin D., Rybalchenko G., Morozov M., Yusupov V., Dobatkin S. Effect of Rotary Swaging on the Structure, Mechanical Characteristics and Aging Behavior of Cu-0.5%Cr-0.08%Zr Alloy. Materials. 2022;16:105. doi: 10.3390/ma16010105. PubMed DOI PMC

Martynenko N.S., Bochvar N.R., Rybalchenko O.V., Prosvirnin D.V., Rybalchenko G.V., Kolmakov A.G., Morozov M.M., Yusupov V.S., Dobatkin S.V. Increase in the Strength and Electrical Conductivity of a Cu–0.8Hf Alloy after Rotary Swaging and Subsequent Aging. Russ. Metall. 2023;2023:466–474. doi: 10.1134/S0036029523040158. DOI

Ouyang Y., Gan X., Li Z., Zhou K., Zhang S., Jiang Y., Zhang X. Microstructure Evolution of a Cu-15Ni-8Sn-0.8Nb Alloy during Prior Deformation and Aging Treatment. Mater. Sci. Eng. A. 2017;704:128–137. doi: 10.1016/j.msea.2017.07.065. DOI

Zhao L., Chen L., Luo B., Liang Y., Shi J., Zhang S., Lin Z., Shi P., Zheng T., Zhou B., et al. Low-Dislocation-Density Ultrafine Lamellar Structure Buffering Triples Ductility in Cu-8wt.%Sn Alloy Treated by Rotary Swaging and Appropriate Annealing. Mater. Sci. Eng. A. 2024;889:145847. doi: 10.1016/j.msea.2023.145847. DOI

Cao M., Wang J., Zhang Q., Huang K. In Situ Observation of Deformation-Induced Spherical Grains in Semi-Solid State of C5191 Copper Alloy. Materials. 2020;13:5496. doi: 10.3390/ma13235496. PubMed DOI PMC

Abdulstaar M.A., El-Danaf E.A., Waluyo N.S., Wagner L. Severe Plastic Deformation of Commercial Purity Aluminum by Rotary Swaging: Microstructure Evolution and Mechanical Properties. Mater. Sci. Eng. A. 2013;565:351–358. doi: 10.1016/j.msea.2012.12.046. DOI

Yang Y., Nie J., Mao Q., Zhao Y. Improving the Combination of Electrical Conductivity and Tensile Strength of Al 1070 by Rotary Swaging Deformation. Results Phys. 2019;13:102236. doi: 10.1016/J.RINP.2019.102236. DOI

Nokhrin A.V., Nagicheva G.S., Chuvil’deev V.N., Kopylov V.I., Bobrov A.A., Tabachkova N.Y. Effect of Er, Si, Hf and Nb Additives on the Thermal Stability of Microstructure, Electrical Resistivity and Microhardness of Fine-Grained Aluminum Alloys of Al-0.25%Zr. Materials. 2023;16:2114. doi: 10.3390/ma16052114. PubMed DOI PMC

Bochvar N.R., Rybalchenko O.V., Leonova N.P., Tabachkova N.Y., Rybalchenko G.V., Rokhlin L.L. Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions. J. Alloys Compd. 2020;821:153426. doi: 10.1016/j.jallcom.2019.153426. DOI

Jin H., Guan R., Tie D. Mechanical and Conductive Performance of Aged 6xxx Aluminum Alloy during Rotary Swaging. Crystals. 2022;12:530. doi: 10.3390/cryst12040530. DOI

Lourenço J.C., Souza L.P., Silva G., Suzuki P.A., Robin A.L.M., Nunes C.A., Tomachuk C.R., Lourenço J.C., Souza L.P., Silva G., et al. Effects of Solidification, Rotary Swaging and Recrystallization on the Microstructure, Crystallographic Orientation and Electrochemical Behavior of an Al-4.5 Wt.% Cu Alloy. Int. J. Electrochem. Sci. 2021;16:211054. doi: 10.20964/2021.10.43. DOI

Lin C.-W., Chen K.-J., Hung F.-Y., Lui T.-S., Chen H.-P. Impact of Solid-Solution Treatment on Microstructural Characteristics and Formability of Rotary-Swaged 2024 Alloy Tubes. J. Mater. Res. Technol. 2019;8:3137–3148. doi: 10.1016/j.jmrt.2018.12.029. DOI

Rogachev S.O., Sundeev R.V., Andreev V.A., Andreev N.V., Tabachkova N.Y., Korotkova N.O. The Microstructure and Conductivity of Copper–Aluminum Composites Prepared by Rotary Swaging. Phys. Met. Metallogr. 2022;123:1193–1200. doi: 10.1134/S0031918X22601640. DOI

Wang H., Han J., Hao Q. Fabrication of Laminated-Metal Composite Tubes by Multi-Billet Rotary Swaging Technique. Int. J. Adv. Manuf. Technol. 2015;76:713–719. doi: 10.1007/s00170-014-6302-9. DOI

Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation Behavior of Multilayered Al-Cu Clad Composite during Cold-Swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI

Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of Mechanical and Electrical Properties of Rotary Swaged Al-Cu Clad Composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI

Canelo-Yubero D., Kocich R., Šaroun J., Strunz P. Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging. Materials. 2023;16:2102. doi: 10.3390/ma16052102. PubMed DOI PMC

Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI

Kocich R. Optimizing Thermomechanical Processing of Bimetallic Laminates. Materials. 2023;16:3480. doi: 10.3390/ma16093480. PubMed DOI PMC

Kunčická L., Macháčková A., Krátká L., Kocich R. Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Materials. 2019;12:3462. doi: 10.3390/ma12213462. PubMed DOI PMC

Kocich R. Effects of Twist Channel Angular Pressing on Structure and Properties of Bimetallic Al/Cu Clad Composites. Mater. Des. 2020;196:109255. doi: 10.1016/j.matdes.2020.109255. DOI

Tian W., Zhang F., Han S., Chen X., Gao P., Zheng K. Analysis of Microstructure and Properties in Cold Rotary Swaged Copper-Clad Magnesium Wires. Metals. 2023;13:467. doi: 10.3390/met13030467. DOI

Yu Y., Zhang W. Tungsten Copper Composite Fabricated by Compound Plastic Deformation Technologies. Mater. Res. Express. 2018;5:066551. doi: 10.1088/2053-1591/aacba9. DOI

Lu F., Nie J., Ma X., Li Y., Jiang Z., Zhang Y., Zhao Y., Liu X. Simultaneously Improving the Tensile Strength and Ductility of the AlNp/ Al Composites by the Particle’s Hierarchical Structure with Bimodal Distribution and Nano-Network. Mater. Sci. Eng. A. 2020;770:138519. doi: 10.1016/j.msea.2019.138519. DOI

Nie J., Lu F., Huang Z., Ma X., Zhou H., Chen C., Chen X., Yang H., Cao Y., Liu X., et al. Improving the High-Temperature Ductility of Al Composites by Tailoring the Nanoparticle Network. Materialia. 2020;9:100523. doi: 10.1016/j.mtla.2019.100523. DOI

Barkov L.A., Mymrin S.A., Samodurova M.N., Dzhigun N.S., Latfulina Y.S. Compressibility of Tungsten and Molybdenum Bars during Rotary Swaging and Rolling. Russ. Metall. 2015;2015:360–366. doi: 10.1134/S0036029515050031. DOI

Wang F.-Z., Zhang H., Ding B.-J., Zhu R.-H. A Thermionic Tungsten Cathode Activated with Nanothoria and Prepared by Swaging Method. Mater. Sci. Eng. A. 2002;336:59–63. doi: 10.1016/S0921-5093(01)01969-4. DOI

Rieth M., Hoffmann A. Influence of Microstructure and Notch Fabrication on Impact Bending Properties of Tungsten Materials. Int. J. Refract. Met. Hard Mater. 2010;28:679–686. doi: 10.1016/j.ijrmhm.2010.04.010. DOI

Liu R., Xie Z.M., Fang Q.F., Zhang T., Wang X.P., Hao T., Liu C.S., Dai Y. Nanostructured Yttria Dispersion-Strengthened Tungsten Synthesized by Sol–Gel Method. J. Alloys Compd. 2016;657:73–80. doi: 10.1016/j.jallcom.2015.10.059. DOI

Xing H., Sun J. Electron Microscopy Study of Deformation Microstructure in Metastable β Titanium Alloy. Mater. Sci. Forum. 2010;654–656:867–870. doi: 10.4028/www.scientific.net/MSF.654-656.867. DOI

Naydenkin E.V., Mishin I.P., Zabudchenko O.V., Lykova O.N., Manisheva A.I. Structural-Phase State and Mechanical Properties of β Titanium Alloy Produced by Rotary Swaging with Subsequent Aging. J. Alloys Compd. 2023;935:167973. doi: 10.1016/j.jallcom.2022.167973. DOI

Thirathipviwat P., Song G., Bednarcik J., Kühn U., Gemming T., Nielsch K., Han J. Compositional Complexity Dependence of Dislocation Density and Mechanical Properties in High Entropy Alloy Systems. Prog. Nat. Sci. Mater. Int. 2020;30:545–551. doi: 10.1016/j.pnsc.2020.07.002. DOI

Silva H.M., Schneider S.G., Neto C.M. Study of Nontoxic Aluminum and Vanadium-Free Titanium Alloys for Biomedical Applications. Mater. Sci. Eng. C. 2004;24:679–682. doi: 10.1016/j.msec.2004.08.051. DOI

Hanada S., Masahashi N., Jung T.K. Effect of Stress-Induced A″ Martensite on Young’s Modulus of β Ti-33.6Nb-4Sn Alloy. Mater. Sci. Eng. A. 2013;588:403–410. doi: 10.1016/j.msea.2013.09.053. DOI

Jung T.-K., Semboshi S., Masahashi N., Hanada S. Mechanical Properties and Microstructures of β Ti–25Nb–11Sn Ternary Alloy for Biomedical Applications. Mater. Sci. Eng. C. 2013;33:1629–1635. doi: 10.1016/j.msec.2012.12.072. PubMed DOI

Baptista C.A.R., Schneider S., Taddei E., da Silva H. Fatigue Behavior of Arc Melted Ti–13Nb–13Zr Alloy. Int. J. Fatigue. 2004;26:967–973. doi: 10.1016/j.ijfatigue.2004.01.011. DOI

Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of Macroscopic Elastic Moduli of Martensitic Polycrystalline NiTi and NiTiCu Shape Memory Alloys with Pseudoplastic Straining. Acta Mater. 2017;123:146–156. doi: 10.1016/j.actamat.2016.10.024. DOI

Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC

Wang Z., Zhang Y., Liogas K., Chen J., Vaughan G.B.M., Kocich R., Kunčická L., Uzun F., You Z., Korsunsky A.M. In Situ Synchrotron X-Ray Diffraction Analysis of Two-Way Shape Memory Effect in Nitinol. Mater. Sci. Eng. A. 2023;878:145226. doi: 10.1016/j.msea.2023.145226. DOI

Kocich R. Design and Optimization of Induction Heating for Tungsten Heavy Alloy Prior to Rotary Swaging. Int. J. Refract. Met. Hard Mater. 2020;93:105353. doi: 10.1016/j.ijrmhm.2020.105353. DOI

Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC

Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC

Panchal A., Reddy K.V., Azeem P.A., Nandy T.K., Singh A.K. Microstructure, Texture, Tensile Flow and Work Hardening Behavior of Tungsten Heavy Alloys in Swaged and Swaged + Aged Conditions. Metallogr. Microstruct. Anal. 2020;9:438–456. doi: 10.1007/s13632-020-00647-0. DOI

Durlu N., Caliskan N.K., Sakir B. Effect of Swaging on Microstructure and Tensile Properties of W-Ni-Fe Alloys. Int. J. Refract. Met. Hard Mater. 2014;42:126–131. doi: 10.1016/j.ijrmhm.2013.08.013. DOI

Ravi Kiran U., Sambasiva Rao A., Sankaranarayana M., Nandy T.K. Swaging and Heat Treatment Studies on Sintered 90W-6Ni-2Fe-2Co Tungsten Heavy Alloy. Int. J. Refract. Met. Hard Mater. 2012;33:113–121. doi: 10.1016/j.ijrmhm.2012.03.003. DOI

Ravi Kiran U., Rajavardhan B., Kumari A., Panchal A., Nageswara Rao G.V.S., Nandy T.K. Effect of Swaging on Microstructure and Mechanical Properties of W-Ni-Co Alloys. Int. J. Refract. Met. Hard Mater. 2023;116:106333. doi: 10.1016/j.ijrmhm.2023.106333. DOI

Sun J., Zhang L., Huang Y., Chen B., Fan P., Liu W., Ma Y. Effect of Rotary Swaging on Microstructure Evolution and Adiabatic Shear Sensitivity of 90W–7Ni–3Fe Alloy under Dynamic Loading. Mater. Sci. Eng. A. 2022;860:144333. doi: 10.1016/j.msea.2022.144333. DOI

Ravi Kiran U., Panchal A., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of Alloying Addition and Microstructural Parameters on Mechanical Properties of 93{%} Tungsten Heavy Alloys. Mater. Sci. Eng. A. 2015;640:82–90. doi: 10.1016/j.msea.2015.05.046. DOI

Lin Q., Peng B., Liu Z.Y. Four Dimensional Description of the Stress-Strain Relationship of Sintered and Swaged Tungsten Powders. Mater. Sci. Forum. 2013;762:757–762. doi: 10.4028/www.scientific.net/MSF.762.757. DOI

Huang Z.W., Jin S.B., Zhou H., Li Y.S., Cao Y., Zhu Y.T. Evolution of Twinning Systems and Variants during Sequential Twinning in Cryo-Rolled Titanium. Int. J. Plast. 2019;112:52–67. doi: 10.1016/j.ijplas.2018.08.008. DOI

Sun J.L., Trimby P.W., Yan F.K., Liao X.Z., Tao N.R., Wang J.T. Grain Size Effect on Deformation Twinning Propensity in Ultrafine-Grained Hexagonal Close-Packed Titanium. Scr. Mater. 2013;69:428–431. doi: 10.1016/j.scriptamat.2013.06.001. DOI

Wang M., Wang Y., Huang A., Gao L., Li Y., Huang C. Promising Tensile and Fatigue Properties of Commercially Pure Titanium Processed by Rotary Swaging and Annealing Treatment. Materials. 2018;11:2261. doi: 10.3390/ma11112261. PubMed DOI PMC

Molina-Aldareguia J.M., Perez-Prado M.T., Valiev R.Z., Semenova I.P., Sabirov I. High Strength Ultra-Fine Grained Titanium Produced via a Novel SPD Processing Route. Int. J. Mater. Form. 2010;3:407–410. doi: 10.1007/s12289-010-0793-1. DOI

Sabirov I., Perez-Prado M.T., Molina-Aldareguia J.M., Semenova I.P., Salimgareeva G.K., Valiev R.Z. Anisotropy of Mechanical Properties in High-Strength Ultra-Fine-Grained Pure Ti Processed via a Complex Severe Plastic Deformation Route. Scr. Mater. 2011;64:69–72. doi: 10.1016/j.scriptamat.2010.09.006. DOI

Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Tryaev P.V., Tabachkova N.Y., Chegurov M.K., Kozlova N.A., Mikhaylov A.S., Ershova A.V., Grayznov M.Y., et al. Effect of Severe Plastic Deformation Realized by Rotary Swaging on the Mechanical Properties and Corrosion Resistance of Near-α-Titanium Alloy Ti-2.5Al-2.6Zr. J. Alloys Compd. 2019;785:1233–1244. doi: 10.1016/j.jallcom.2019.01.268. DOI

Dyakonov G.S., Yakovleva T.V., Mironov S.Y., Stotskiy A.G., Modina I.M., Semenova I.P. Microstructure of the Advanced Titanium Alloy VT8M-1 Subjected to Rotary Swaging. Materials. 2023;16:6851. doi: 10.3390/ma16216851. PubMed DOI PMC

Wei K., Hu R., Yin D., Xiao L., Pang S., Cao Y., Zhou H., Zhao Y., Zhu Y. Grain Size Effect on Tensile Properties and Slip Systems of Pure Magnesium. Acta Mater. 2021;206:116604. doi: 10.1016/j.actamat.2020.116604. DOI

Greger M., Kocich R. Superplasticity Properties of Magnesium Alloys. In: Jablonski R., Turkowski M., Szewczyk R., editors. Recent Advances in Mechatronics. Springer; Berlin/Heidelberg, Germany: 2007. pp. 421–425.

Li B., Chen H., Ke X., Wei G., Yang Q. Improving the Mechanical Properties of Mg-5Al-2Ca-1Mn-0.5Zn Alloy through Rotary Swaging. Materials. 2023;16:4489. doi: 10.3390/ma16124489. PubMed DOI PMC

Yang Y., Chen X., Nie J., Wei K., Mao Q., Lu F., Zhao Y. Achieving Ultra-Strong Magnesium–Lithium Alloys by Low-Strain Rotary Swaging. Mater. Res. Lett. 2021;9:255–262. doi: 10.1080/21663831.2021.1891150. DOI

Zhou G., Yang Y., Luo Y., Li Q., Luo Q., Zhang Y., Jiang B., Peng X., Pan F. Synergistic Improvement of Strength and Plasticity of Mg-6Li-3Al-1Sn Alloy by Microstructure Regulation via Rotary Swaging. Mater. Res. Lett. 2023;11:1031–1039. doi: 10.1080/21663831.2023.2278589. DOI

Wan Y., Tang B., Gao Y., Tang L., Sha G., Zhang B., Liang N., Liu C., Jiang S., Chen Z., et al. Bulk Nanocrystalline High-Strength Magnesium Alloys Prepared via Rotary Swaging. Acta Mater. 2020;200:274–286. doi: 10.1016/j.actamat.2020.09.024. DOI

Chen X., Liu C., Jiang S., Chen Z., Wan Y. Effect of Yttrium on Nanocrystallization of Magnesium Alloys during Cold Rotary Swaging. Mater. Charact. 2022;184:111696. doi: 10.1016/j.matchar.2021.111696. DOI

Wang C., Yu Z., Cui Y., Yu S., Ma X., Liu H. Effect of Hot Rotary Swaging and Subsequent Annealing on Microstructure and Mechanical Properties of Magnesium Alloy WE43. Met. Sci. Heat Treat. 2019;60:777–782. doi: 10.1007/s11041-019-00355-9. DOI

Wang J., Bao Z., Wu C., Zhang S., Wang N., Wang Q., Yi Z. Progress in Partially Degradable Titanium-Magnesium Composites Used as Biomedical Implants. Front. Bioeng. Biotechnol. 2022;10:996195. doi: 10.3389/fbioe.2022.996195. PubMed DOI PMC

Chen X., Liu C., Wan Y., Jiang S., Han X., Chen Z. Formation of Nanocrystalline AZ31B Mg Alloys via Cryogenic Rotary Swaging. J. Magnes. Alloy. 2023;11:1580–1591. doi: 10.1016/j.jma.2021.11.021. DOI

Martynenko N., Anisimova N., Rybalchenko G., Rybalchenko O., Serebryany V., Zheleznyi M., Shinkareva M., Gorbenko A., Temralieva D., Lukyanova E., et al. Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloys. Metals. 2023;13:1386. doi: 10.3390/met13081386. DOI

Rogachev S.O., Andreev V.A., Gorshenkov M.V., Ten D.V., Kuznetsova A.S., Shcherbakov A.B. Rotary Forging to Improve the Strength Properties of the Zr–2.5% Nb Alloy. Phys. Met. Metallogr. 2022;123:939–944. doi: 10.1134/S0031918X22090113. DOI

Ashida M., Morita M., Tsutsumi Y., Nomura N., Doi H., Chen P., Hanawa T. Effects of Cold Swaging on Mechanical Properties and Magnetic Susceptibility of the Zr–1Mo Alloy. Metals. 2018;8:454. doi: 10.3390/met8060454. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...