Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP 2019/74
Ministerstvo Školství, Mládeže a Tělovýchovy
SP 2019/43
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31847263
PubMed Central
PMC6947254
DOI
10.3390/ma12244200
PII: ma12244200
Knihovny.cz E-zdroje
- Klíčová slova
- deformation behaviour, finite element analysis, residual stress, rotary swaging, tungsten heavy alloy,
- Publikační typ
- časopisecké články MeSH
This study focuses on numerical prediction and experimental investigation of deformation behaviour of a tungsten heavy alloy prepared via powder metallurgy and subsequent cold (20 °C) and warm (900 °C) rotary swaging. Special emphasis was placed on the prediction of the effects of the applied induction heating. As shown by the results, the predicted material behaviour was in good correlation with the real experiment. The differences in the plastic flow during cold and warm swaging imparted differences in structural development and the occurrence of residual stress. Both the swaged pieces exhibited the presence of residual stress in the peripheries of W agglomerates. However, the NiCO matrix of the warm-swaged piece also exhibited the presence of residual stress, and it also featured regions with increased W content. Testing of mechanical properties revealed the ultimate tensile strength of the swaged pieces to be approximately twice as high as of the sintered piece (860 MPa compared to 1650 MPa and 1828 MPa after warm and cold swaging, respectively).
Zobrazit více v PubMed
Pappu S., Kennedy C., Murr L.E., Magness L.S., Kapoor D. Microstructure analysis and comparison of tungsten alloy rod and [001] oriented columnar-grained tungsten rod ballistic penetrators. Mater. Sci. Eng. A. 1999;262:115–128. doi: 10.1016/S0921-5093(98)00997-6. DOI
Gong X., Fan J., Ding F. Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25–1100 °C. Mater. Sci. Eng. A. 2015;646:315–321. doi: 10.1016/j.msea.2015.08.079. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Das J., Ravi Kiran U., Chakraborty A., Eswara Prasad A. Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique. Int. J. Refract. Met. Hard Mater. 2009;27:577–583. doi: 10.1016/j.ijrmhm.2008.08.003. DOI
Bose A., Schuh C.A., Tobia J.C., Tuncer N., Mykulowycz N.M., Preston A., Barbati A.C., Kernan B., Gibson M.A., Krause D., et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int. J. Refract. Met. Hard Mater. 2018;73:22–28. doi: 10.1016/j.ijrmhm.2018.01.019. DOI
Ravi Kiran U., Panchal A., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys. Mater. Sci. Eng. A. 2015;640:82–90. doi: 10.1016/j.msea.2015.05.046. DOI
Upadhyaya A. Processing strategy for consolidating tungsten heavy alloys for ordnance applications Mater. Chem. Phys. 2001;67:101–110.
Ripoll R.M., Očenášek J. Microstructure and texture evolution during the drawing of tungsten wires. Eng. Fract. Mech. 2009;76:1485–1499. doi: 10.1016/j.engfracmech.2009.02.012. DOI
Ravi Kiran U., Kumar J., Kumar V., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of cyclic heat treatment and swaging on mechanical properties of the tungsten heavy alloys. Mater. Sci. Eng. A. 2016;656:256–265. doi: 10.1016/j.msea.2016.01.024. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Kocich R., Greger M., Macháčková A. Finite element investigation of influence of selected factors on ECAP process; Proceedings of the Metal 2010, 19th International Conference on Metallurgy and Materials; Brno, Czech Republic. 18–20 May 2010; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.
Tohidlou E., Bertram A. Effect of strain hardening on subgrain formation during ECAP process. Mech. Mater. 2019;137:103077. doi: 10.1016/j.mechmat.2019.103077. DOI
Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD. 6th International Conference on Nanomaterials by Severe Plastic Deformation (NANOSPD6), Metz, France, 30 Jun–4 Jul 2014. IOP Conf. Ser. Mater. Sci. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Kunčická L., Kocich R. Comprehensive characterisation of a newly developed Mg–Dy–Al–Zn–Zr alloy structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Murashkin M., Medvedev A., Kazykhanov V., Krokhon A., Raab G., Enikeev N., Valiev R.Z. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform. Metals. 2015;5:2148–2164. doi: 10.3390/met5042148. DOI
Medvedev A., Arutyunyan A., Lomakin I., Bondarenko A., Kazykhanov V., Enikeev N., Raab G., Murashkin M. Fatigue properties of ultra-fine grained Al-Mg-Si wires with enhanced mechanical strength and electrical conductivity. Metals. 2018;8:1034. doi: 10.3390/met8121034. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Ghalehbandi S.A., Massoud M., Gupta M. Accumulative Roll Bonding—A Review. Appl. Sci. 2019;9:3627. doi: 10.3390/app9173627. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kuncicka L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. 5th Global Conference on Polymer and Composite Materials (PCM), Kitakyushu, Japan, 10–13 April 2018. IOP Conf. Ser. Mater. Sci. 2018;369:012029.
Zhang Q., Jin K., Mu D. Tube/tube joining technology by using rotary swaging forming method. J. Mater. Process. Technol. 2014;214:2085–2094. doi: 10.1016/j.jmatprotec.2014.02.002. DOI
Moumi E., Ishkina S., Kuhfuss B., Hochrainera T., Struss A., Hunkel M. 2D-simulation of material flow during infeed rotary swaging using finite element method. Procedia Eng. 2014;81:2342–2347. doi: 10.1016/j.proeng.2014.10.331. DOI
Lin C.W., Chen K.J., Hung F.Y., Lui T.S., Chen H.P. Impact of solid-solution treatment on microstructural characteristics and formability of rotary-swaged 2024 alloy tubes. J. Mater. Res. Technol. 2019;8:3137–3148. doi: 10.1016/j.jmrt.2018.12.029. DOI
Gan W.M., Huang Y.D., Wang R., Zhong Z.Y., Hort N., Kainer K.U., Schell N., Brokmeier H.G., Schreyer A. Bulk and local textures of pure magnesium processed by rotary swaging. J. Magnes. Alloy. 2013;1:341–345. doi: 10.1016/j.jma.2013.12.004. DOI
Yang Y., Nie J., Mao Q., Zhao Y. Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation. Results Phys. 2019;13:102236. doi: 10.1016/j.rinp.2019.102236. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Yang X.R., Zhang W.Y., Lui X.Y., Luo L., Feng G.H., Wang X.H., Zhao X.C. Low Cycle Fatigue Behavior of Ultrafine Grained CP-Zr Processed by ECAP and RS. Rare Met. Mater. Eng. 2019;48:1202–1207.
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray Diffraction, ATEX Software. [(accessed on 21 November 2018)]; Available online: www.atex-software.eu.
Yang B.J., Hattiangadi A., Li W.Z., Zhou G.F., McGreevy T.E. Simulation of steel microstructure evolution during induction heating. Mater. Sci. Eng. A. 2010;527:2978–2984. doi: 10.1016/j.msea.2010.01.038. DOI
Wang J., Xiao Y., Song W., Chen C., Pan P., Zhang D. Self-Healing Property of Ultra-Thin Wearing Courses by Induction Heating. Materials. 2018;11:1392. PubMed PMC
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2019:105120. in press.
Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.
Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging
Influence of Imposed Strain on Weldability of Dievar Alloy
Structural Phenomena Introduced by Rotary Swaging: A Review
(Sub)structure Development in Gradually Swaged Electroconductive Bars
The Effect of Predeformation on Creep Strength of 9% Cr Steel
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging
Effect of Imposed Shear Strain on Steel Ring Surfaces during Milling in High-Speed Disintegrator