Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature

. 2019 Dec 13 ; 12 (24) : . [epub] 20191213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31847263

Grantová podpora
SP 2019/74 Ministerstvo Školství, Mládeže a Tělovýchovy
SP 2019/43 Ministerstvo Školství, Mládeže a Tělovýchovy

This study focuses on numerical prediction and experimental investigation of deformation behaviour of a tungsten heavy alloy prepared via powder metallurgy and subsequent cold (20 °C) and warm (900 °C) rotary swaging. Special emphasis was placed on the prediction of the effects of the applied induction heating. As shown by the results, the predicted material behaviour was in good correlation with the real experiment. The differences in the plastic flow during cold and warm swaging imparted differences in structural development and the occurrence of residual stress. Both the swaged pieces exhibited the presence of residual stress in the peripheries of W agglomerates. However, the NiCO matrix of the warm-swaged piece also exhibited the presence of residual stress, and it also featured regions with increased W content. Testing of mechanical properties revealed the ultimate tensile strength of the swaged pieces to be approximately twice as high as of the sintered piece (860 MPa compared to 1650 MPa and 1828 MPa after warm and cold swaging, respectively).

Zobrazit více v PubMed

Pappu S., Kennedy C., Murr L.E., Magness L.S., Kapoor D. Microstructure analysis and comparison of tungsten alloy rod and [001] oriented columnar-grained tungsten rod ballistic penetrators. Mater. Sci. Eng. A. 1999;262:115–128. doi: 10.1016/S0921-5093(98)00997-6. DOI

Gong X., Fan J., Ding F. Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25–1100 °C. Mater. Sci. Eng. A. 2015;646:315–321. doi: 10.1016/j.msea.2015.08.079. DOI

Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI

Das J., Ravi Kiran U., Chakraborty A., Eswara Prasad A. Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique. Int. J. Refract. Met. Hard Mater. 2009;27:577–583. doi: 10.1016/j.ijrmhm.2008.08.003. DOI

Bose A., Schuh C.A., Tobia J.C., Tuncer N., Mykulowycz N.M., Preston A., Barbati A.C., Kernan B., Gibson M.A., Krause D., et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int. J. Refract. Met. Hard Mater. 2018;73:22–28. doi: 10.1016/j.ijrmhm.2018.01.019. DOI

Ravi Kiran U., Panchal A., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys. Mater. Sci. Eng. A. 2015;640:82–90. doi: 10.1016/j.msea.2015.05.046. DOI

Upadhyaya A. Processing strategy for consolidating tungsten heavy alloys for ordnance applications Mater. Chem. Phys. 2001;67:101–110.

Ripoll R.M., Očenášek J. Microstructure and texture evolution during the drawing of tungsten wires. Eng. Fract. Mech. 2009;76:1485–1499. doi: 10.1016/j.engfracmech.2009.02.012. DOI

Ravi Kiran U., Kumar J., Kumar V., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of cyclic heat treatment and swaging on mechanical properties of the tungsten heavy alloys. Mater. Sci. Eng. A. 2016;656:256–265. doi: 10.1016/j.msea.2016.01.024. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Kocich R., Greger M., Macháčková A. Finite element investigation of influence of selected factors on ECAP process; Proceedings of the Metal 2010, 19th International Conference on Metallurgy and Materials; Brno, Czech Republic. 18–20 May 2010; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.

Tohidlou E., Bertram A. Effect of strain hardening on subgrain formation during ECAP process. Mech. Mater. 2019;137:103077. doi: 10.1016/j.mechmat.2019.103077. DOI

Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI

Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI

Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD. 6th International Conference on Nanomaterials by Severe Plastic Deformation (NANOSPD6), Metz, France, 30 Jun–4 Jul 2014. IOP Conf. Ser. Mater. Sci. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI

Kunčická L., Kocich R. Comprehensive characterisation of a newly developed Mg–Dy–Al–Zn–Zr alloy structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI

Murashkin M., Medvedev A., Kazykhanov V., Krokhon A., Raab G., Enikeev N., Valiev R.Z. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform. Metals. 2015;5:2148–2164. doi: 10.3390/met5042148. DOI

Medvedev A., Arutyunyan A., Lomakin I., Bondarenko A., Kazykhanov V., Enikeev N., Raab G., Murashkin M. Fatigue properties of ultra-fine grained Al-Mg-Si wires with enhanced mechanical strength and electrical conductivity. Metals. 2018;8:1034. doi: 10.3390/met8121034. DOI

Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI

Ghalehbandi S.A., Massoud M., Gupta M. Accumulative Roll Bonding—A Review. Appl. Sci. 2019;9:3627. doi: 10.3390/app9173627. DOI

Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI

Kuncicka L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. 5th Global Conference on Polymer and Composite Materials (PCM), Kitakyushu, Japan, 10–13 April 2018. IOP Conf. Ser. Mater. Sci. 2018;369:012029.

Zhang Q., Jin K., Mu D. Tube/tube joining technology by using rotary swaging forming method. J. Mater. Process. Technol. 2014;214:2085–2094. doi: 10.1016/j.jmatprotec.2014.02.002. DOI

Moumi E., Ishkina S., Kuhfuss B., Hochrainera T., Struss A., Hunkel M. 2D-simulation of material flow during infeed rotary swaging using finite element method. Procedia Eng. 2014;81:2342–2347. doi: 10.1016/j.proeng.2014.10.331. DOI

Lin C.W., Chen K.J., Hung F.Y., Lui T.S., Chen H.P. Impact of solid-solution treatment on microstructural characteristics and formability of rotary-swaged 2024 alloy tubes. J. Mater. Res. Technol. 2019;8:3137–3148. doi: 10.1016/j.jmrt.2018.12.029. DOI

Gan W.M., Huang Y.D., Wang R., Zhong Z.Y., Hort N., Kainer K.U., Schell N., Brokmeier H.G., Schreyer A. Bulk and local textures of pure magnesium processed by rotary swaging. J. Magnes. Alloy. 2013;1:341–345. doi: 10.1016/j.jma.2013.12.004. DOI

Yang Y., Nie J., Mao Q., Zhao Y. Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation. Results Phys. 2019;13:102236. doi: 10.1016/j.rinp.2019.102236. DOI

Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Yang X.R., Zhang W.Y., Lui X.Y., Luo L., Feng G.H., Wang X.H., Zhao X.C. Low Cycle Fatigue Behavior of Ultrafine Grained CP-Zr Processed by ECAP and RS. Rare Met. Mater. Eng. 2019;48:1202–1207.

Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI

Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray Diffraction, ATEX Software. [(accessed on 21 November 2018)]; Available online: www.atex-software.eu.

Yang B.J., Hattiangadi A., Li W.Z., Zhou G.F., McGreevy T.E. Simulation of steel microstructure evolution during induction heating. Mater. Sci. Eng. A. 2010;527:2978–2984. doi: 10.1016/j.msea.2010.01.038. DOI

Wang J., Xiao Y., Song W., Chen C., Pan P., Zhang D. Self-Healing Property of Ultra-Thin Wearing Courses by Induction Heating. Materials. 2018;11:1392. PubMed PMC

Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2019:105120. in press.

Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging

. 2024 Sep 30 ; 17 (19) : . [epub] 20240930

Influence of Imposed Strain on Weldability of Dievar Alloy

. 2024 May 14 ; 17 (10) : . [epub] 20240514

Structural Phenomena Introduced by Rotary Swaging: A Review

. 2024 Jan 18 ; 17 (2) : . [epub] 20240118

Effect of Stacking Sequence on Mechanical Properties and Microstructural Features within Al/Cu Laminates

. 2023 Oct 04 ; 16 (19) : . [epub] 20231004

(Sub)structure Development in Gradually Swaged Electroconductive Bars

. 2023 Jul 28 ; 16 (15) : . [epub] 20230728

Influence of Structure Development on Performance of Copper Composites Processed via Intensive Plastic Deformation

. 2023 Jul 02 ; 16 (13) : . [epub] 20230702

High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging

. 2023 Apr 26 ; 16 (9) : . [epub] 20230426

Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling

. 2022 Nov 15 ; 15 (22) : . [epub] 20221115

The Effect of Predeformation on Creep Strength of 9% Cr Steel

. 2020 Nov 25 ; 13 (23) : . [epub] 20201125

Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials

. 2020 Oct 20 ; 13 (20) : . [epub] 20201020

Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging

. 2020 Jun 26 ; 13 (12) : . [epub] 20200626

Effect of Imposed Shear Strain on Steel Ring Surfaces during Milling in High-Speed Disintegrator

. 2020 May 13 ; 13 (10) : . [epub] 20200513

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...