Comparative cytogenetics of three Zoraptera species as a basis for understanding chromosomal evolution in Polyneoptera insects
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39399435
PubMed Central
PMC11471171
DOI
10.7717/peerj.18051
PII: 18051
Knihovny.cz E-zdroje
- Klíčová slova
- Karyotype, Microsatellites, Sex chromosomes, Telomere, rDNA,
- MeSH
- chromozomy hmyzu * genetika MeSH
- cytogenetika metody MeSH
- histony genetika MeSH
- hmyz genetika klasifikace MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- mikrosatelitní repetice genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- histony MeSH
Zoraptera (also called "angel insects") is one of the most unexplored insect orders. However, it holds promise for understanding the evolution of insect karyotypes and genome organization given its status as an early branching group of Polyneoptera and Pterygota (winged insects) during the Paleozoic. Here, we provide karyotype descriptions of three Zorapteran species: Brazilozoros huxleyi (2n♂; ♀ = 42; 42), B. kukalovae (2n♂; ♀ = 43; 44) and Latinozoros cacaoensis (2n♂; ♀ = 36; 36). These species represent two of the four recently recognized Zorapteran subfamilies. Contrary to an earlier suggestion that Zoraptera has holocentric chromosomes, we found karyotypes that were always monocentric. Interestingly, we detected both X0 (B. kukalovae) and XY (B. huxleyi, L. cacaoensis) sex chromosome systems. In addition to conventional karyotype descriptions, we applied fluorescent in situ hybridization for the first time in Zoraptera to map karyotype distributions of 18S rDNA, histone H3 genes, telomeres and (CAG)n and (GATA)n microsatellites. This study provides a foundation for cytogenetic research in Zoraptera.
Department of Biology and Ecology University of Ostrava Ostrava Czech Republic
Department of Zoology Charles University Prague Praha 2 Czech Republic
Zobrazit více v PubMed
Aksenova AY, Mirkin SM. At the beginning of the end and in the middle of the beginning: structure and maintenance of telomeric DNA repeats and interstitial telomeric sequences. Genes. 2019;10:118. doi: 10.3390/genes10020118. PubMed DOI PMC
Andrés AM, Soldevila M, Lao O, Volpini V, Saitou N, Jacobs HT, Hayasaka I, Calafell F, Bertranpetit J. Comparative genetics of functional trinucleotide tandem repeats in humans and apes. Journal of Molecular Evolution. 2004;59:329–339. doi: 10.1007/s00239-004-2628-5. PubMed DOI
Anjos A, Paladini A, Evangelista O, Cabral-de Mello DC. Insights into chromosomal evolution of Cicadomorpha using fluorochrome staining and mapping 18S rRNA and H3 histone genes. Journal of Zoological Systematics and Evolutionary Research. 2019;57:314–322. doi: 10.1111/jzs.12254. DOI
Arnemann J, Jakubiczka S, Schmidtke J, Schäfer R, Epplen JT. Clustered GATA repeats (Bkm sequences) on the human Y chromosome. Human Genetics. 1986;73:301–303. doi: 10.1007/BF00279090. PubMed DOI
Bedo DG. Undifferentiated sex chromosomes in Mastotermes darwiniensis Froggatt (Isoptera; Mastotermitidae) and the evolution of eusociality in termites. Genome. 1987;29:76–79. doi: 10.1139/g87-013. DOI
Beutel RG, Gorb SN. Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. Journal of Zoological Systematics and Evolutionary Research. 2001;39:177–207. doi: 10.1046/j.1439-0469.2001.00155.x. DOI
Beutel RG, Weide D. Cephalic anatomy of Zorotypus hubbardi (Hexapoda: Zoraptera): new evidence for a relationship with Acercaria. Zoomorphology. 2005;124:121–136. doi: 10.1007/s00435-005-0117-z. DOI
Blackmon H, Ross L, Bachtrog D. Sex determination, sex chromosomes, and karyotype evolution in insects. Journal of Heredity. 2017;108:78–93. doi: 10.1093/jhered/esw047. PubMed DOI PMC
Blanke A, Wipfler B, Letsch H, Koch M, Beckmann F, Beutel R, Misof B. Revival of Palaeoptera—head characters support a monophyletic origin of Odonata and Ephemeroptera (Insecta) Cladistics. 2012;28:560–581. doi: 10.1111/j.1096-0031.2012.00405.x. PubMed DOI
Bolívar Y Pieltain C, Coronado GL. Estudio de un nuevo Zorotypus proveniente de la Region Amazonica Peruana (Ins., Zoraptera) Ciencia (Mexico) 1963;22:93–100.
Bueno D, Palacios-Gimenez OM, Cabral-de Mello DC. Chromosomal mapping of repetitive DNAs in the grasshopper Abracris flavolineata reveal possible ancestry of the B chromosome and H3 histone spreading. PLOS ONE. 2013;8:e66532. doi: 10.1371/journal.pone.0066532. PubMed DOI PMC
Cabral-de Mello DC, Moura RC, Martins C. Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity. 2010;104:393–400. doi: 10.1038/hdy.2009.126. PubMed DOI
Cabral-de Mello DC, Moura RC, Martins C. Cytogenetic mapping of rRNAs and Histone H3 genes in 14 species of dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenetic and Genome Research. 2011;134:127–135. doi: 10.1159/000326803. PubMed DOI
Cabral-De-Mello DC, Martins C, Souza MJ, Moura RC. Cytogenetic mapping of 5S and 18S rRNAs and H3 Histone Genes in 4 ancient proscopiidae grasshopper species: contribution to understanding the evolutionary dynamics of multigene families. Cytogenetic and Genome Research. 2011a;132:89–93. doi: 10.1159/000317476. PubMed DOI
Cabral-de Mello DC, Oliveira SG, De Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genetics. 2011b;12:88. doi: 10.1186/1471-2156-12-88. PubMed DOI PMC
Cabrero J, López-León MAD, Teruel M, Camacho JPM. Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Research. 2009;17:397–404. doi: 10.1007/s10577-009-9030-5. PubMed DOI
Camacho JPM, Ruiz-Ruano FJ, Martín-Blázquez R, López-León MD, Cabrero J, Lorite P, Cabral-de Mello DC, Bakkali M. A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. Chromosoma. 2015;124:263–275. doi: 10.1007/s00412-014-0499-0. PubMed DOI
Cazaux B, Catalan J, Veyrunes F, Douzery EJ, Britton-Davidian J. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae) BMC Evolutionary Biology. 2011;11:124. doi: 10.1186/1471-2148-11-124. PubMed DOI PMC
Choe JC. Biodiversity of zoraptera and their little-known biology. In: Foottit RG, Adler PH, editors. Insect biodiversity: science and society 2. New Jersey: Wiley-Blackwell; 2018. pp. 199–217. DOI
Colgan Donald J, Ponder WF, Eggler PE. Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. Zoologica Scripta. 2000;29:29–63. doi: 10.1046/j.1463-6409.2000.00021.x. DOI
Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH) Chromosoma. 2010;119:495–503. doi: 10.1007/s00412-010-0273-x. PubMed DOI
Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG. The male reproductive system of Zorotypus caudelli Karny (Zoraptera): sperm structure and spermiogenesis. Arthropod Structure & Development. 2011;40:531–547. doi: 10.1016/j.asd.2011.07.001. PubMed DOI
Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG. The fine structure of the female reproductive system of Zorotypus caudelli Karny (Zoraptera) Arthropod Structure & Development. 2012;41:51–63. doi: 10.1016/j.asd.2011.08.003. PubMed DOI
Dos Santos JM, Diniz D, Rodrigues TAS, De Cioffi MB, Waldschmidt AM. Heterochromatin distribution and chromosomal mapping of microsatellite repeats in the genome of Frieseomelitta stingless bees (hymenoptera: Apidae: Meliponini) Florida Entomologist. 2018;101:33–39. doi: 10.1653/024.101.0107. DOI
Drinnenberg IA, De Young D, Henikoff S, Malik HS. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. doi: 10.7554/eLife.03676. PubMed DOI PMC
Frydrychová R, Grossmann P, Trubac P, Vítková M, Marec F. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome. 2004;47:163–178. doi: 10.1139/g03-100. PubMed DOI
Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Goldman ASH, Lichten M. The efficiency of meiotic recombination between dispersed sequences in saccharomyces cerevisiae depends upon their chromosomal location. Genetics. 1996;144:43–55. doi: 10.1093/genetics/144.1.43. PubMed DOI PMC
Goldman ASH, Lichten M. Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:9537–9542. doi: 10.1073/pnas.97.17.9537. PubMed DOI PMC
Haerter CAG, Blanco DR, Traldi JB, Feldberg E, Margarido VP, Lui RL. Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity. PLOS ONE. 2023;18:e0285388. doi: 10.1371/journal.pone.0285388. PubMed DOI PMC
Hennig W. Kritische bemerkungen zum phylogenetischen system der insekten. Beiträge zur Entomologie. 1953;3:1–85.
Hiramatsu C, Paukner A, Kuroshima H, Fujita K, Suomi SJ, Inoue-Murayama M. Short poly-glutamine repeat in the androgen receptor in New World monkeys. Meta Gene. 2017;14:105–113. doi: 10.1016/j.mgene.2017.08.006. PubMed DOI PMC
Husemann M, Dey L-S, Sadílek D, Ueshima N, Hawlitschek O, Song H, Weissman DB. Evolution of chromosome number in grasshoppers (Orthoptera: Caelifera: Acrididae) Organisms Diversity & Evolution. 2022;22:649–657. doi: 10.1007/s13127-022-00543-1. DOI
Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su Z-H. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Molecular Phylogenetics and Evolution. 2011;58:169–180. doi: 10.1016/j.ympev.2010.11.001. PubMed DOI
Jankásek M, Kotyková Varadínová Z, Št’áhlavský F. Blattodea Karyotype Database. European Journal of Entomology. 2021;118:192–199. doi: 10.14411/eje.2021.020. DOI
Jones KW, Singh L. Conserved repeated DNA sequences in vertebrate sex chromosomes. Human Genetics. 1981;58:46–53. doi: 10.1007/BF00284148. PubMed DOI
Jonika M, Lo J, Blackmon H. Mode and tempo of microsatellite evolution across 300 million years of insect evolution. Genes. 2020;11:945. doi: 10.3390/genes11080945. PubMed DOI PMC
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Molecular Biology of the Cell. 2020;31:1525–1537. doi: 10.1091/mbc.E20-03-0176. PubMed DOI PMC
Kočárek P, Horká I. Cryptic diversity in Zoraptera: Latinozoros barberi (Gurney, 1938) is a complex of at least three species (Zoraptera: Spiralizoridae) PLOS ONE. 2023a;18:e0280113. doi: 10.1371/journal.pone.0280113. PubMed DOI PMC
Kočárek P, Horká I. A new cryptic species of Brazilozoros Kukalova-Peck & Peck, 1993 from French Guiana (Zoraptera, Spiralizoridae) Zoosystema. 2023b;45:163–175. doi: 10.5252/zoosystema2023v45a6. DOI
Kočárek P, Horká I, Kundrata R. Molecular phylogeny and infraordinal classification of zoraptera (Insecta) Insects. 2020;11:51. doi: 10.3390/insects11010051. PubMed DOI PMC
Kuznetsova V, Grozeva S, Gokhman V. Telomere structure in insects: a review. Journal of Zoological Systematics and Evolutionary Research. 2020;58:127–158. doi: 10.1111/jzs.12332. DOI
Kuznetsova VG, Nokkala S, Shcherbakov DE. Karyotype, reproductive organs, and pattern of gametogenesis in Zorotypus hubbardi Caudell (Insecta: Zoraptera, Zorotypidae), with discussion on relationships of the order. Canadian Journal of Zoology. 2002;80:1047–1054. doi: 10.1139/z02-074. DOI
Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Li X, Mank J, Ban L. Grasshopper genome reveals long-term conservation of the X chromosome and temporal variation in X chromosome evolution (preprint) 2022. In Review. PubMed DOI PMC
Liang X, Zhang Z, Zhang L, Zhang W, Shen F, Yang Z, Hou R, He W, Wei K, Yue B. Isolation and characterization of 16 tetranucleotide microsatellite loci in the red panda (Ailurus fulgens) Molecular Ecology Notes. 2007;7:1012–1014. doi: 10.1111/j.1471-8286.2007.01759.x. DOI
Lin Y, Dion V, Wilson JH. A novel selectable system for detecting expansion of CAG.CTG repeats in mammalian cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005;572:123–131. doi: 10.1016/j.mrfmmm.2005.01.013. PubMed DOI
Luykx P. A cytogenetic survey of 25 species of lower termites from Australia. Genome. 1990;33:80–88. doi: 10.1139/g90-013. DOI
Ma C, Wang Y, Wu C, Kang L, Liu C. The compact mitochondrial genome of Zorotypus medoensis provides insights into phylogenetic position of Zoraptera. BMC Genomics. 2014;15:1156. doi: 10.1186/1471-2164-15-1156. PubMed DOI PMC
Mashimo Y, Beutel RG, Dallai R, Gottardo M, Lee C-Y, Machida R. The morphology of the eggs of three species of Zoraptera (Insecta) Arthropod Structure & Development. 2015;44:656–666. doi: 10.1016/j.asd.2015.09.005. PubMed DOI
Mashimo Y, Machida R, Dallai R, Gottardo M, Mercati D, Beutel RG. Egg structure of Zorotypus caudelli Karny (Insecta, Zoraptera, Zorotypidae) Tissue Cell. 2011;43:230–237. doi: 10.1016/j.tice.2011.04.001. PubMed DOI
Matsumura Y, Beutel RG, Rafael JA, Yao I, Câmara JT, Lima SP, Yoshizawa K. The evolution of Zoraptera. Systematic Entomology. 2020;45:349–364. doi: 10.1111/syen.12400. DOI
Matsumura Y, Maruyama M, Ntonifor NN, Beutel RG. A new species of Zoraptera, Zorotypus komatsui sp. nov. from Cameroon and a redescription of Zorotypus vinsoni Paulian, 1951 (Polyneoptera, Zoraptera) ZooKeys. 2023;1178:39–59. doi: 10.3897/zookeys.1178.108276. PubMed DOI PMC
Maxson R, Cohn R, Kedes L, Mohun T. Expression and organization of histone genes. Annual Review of Genetics. 1983;17:239–277. doi: 10.1146/annurev.ge.17.120183.001323. PubMed DOI
Medeli L, Stickel HS, Elwood J, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71:491–499. doi: 10.1016/0378-1119(88)90066-2. PubMed DOI
Meisel RP, Delclos PJ, Wexler JR. The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence. BMC Biology. 2019;17:100. doi: 10.1186/s12915-019-0721-x. PubMed DOI PMC
Melters DP, Paliulis LV, Korf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research. 2012;20:579–593. doi: 10.1007/s10577-012-9292-1. PubMed DOI
Milani D, Cabral-de Mello DC. Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes. PLOS ONE. 2014;9:e97956. doi: 10.1371/journal.pone.0097956. PubMed DOI PMC
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, Von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A. Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. Zoology. 2007;110:409–429. doi: 10.1016/j.zool.2007.08.003. PubMed DOI
Montagna M, Tong KJ, Magoga G, Strada L, Tintori A, Ho SYW, Lo N. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proceedings of the Royal Society B: Biological Sciences. 2019;286:20191854. doi: 10.1098/rspb.2019.1854. PubMed DOI PMC
Mubiru JN, Cavazos N, Hemmat P, Garcia-Forey M, Shade R, Rogers J. 2011 - Mubiru - Androgen receptor CAG repeat polymorphism in males of six non-human primate.pdf. Journal of Medical Primatology. 2012;41:67–70. PubMed PMC
Murnane JP. Telomere dysfunction and chromosome instability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2012;730:28–36. doi: 10.1016/j.mrfmmm.2011.04.008. PubMed DOI PMC
Nanda I, Feichtinger W, Schmid M, Schröder JH, Zischler H, Epplen JT. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. Journal of Molecular Evolution. 1990;30:456–462. doi: 10.1007/BF02101117. DOI
Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Research. 2004;14:1704–1710. doi: 10.1101/gr.2778904. PubMed DOI PMC
Nergadze SG, Santagostino M, Salzano A, Mondello C, Giulotto E. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biology. 2007;8:R260. doi: 10.1186/gb-2007-8-12-r260. PubMed DOI PMC
New TR. Notes on Neotropical Zoraptera, with descriptions of two new species. Systematic Entomology. 1978;3(4):361–370.
Palacios-Gimenez OM, Carvalho CR, Ferrari Soares FA, Cabral-de Mello DC. Contrasting the chromosomal organization of repetitive DNAs in two gryllidae crickets with highly divergent karyotypes. PLOS ONE. 2015a;10:e0143540. doi: 10.1371/journal.pone.0143540. PubMed DOI PMC
Palacios-Gimenez OM, Marti DA, Cabral-de Mello DC. Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers. Chromosoma. 2015b;124:353–365. doi: 10.1007/s00412-015-0505-1. PubMed DOI
Palacios-Gimenez OM, Cabral-de Mello DC. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: a case of the unusual X1X20 sex chromosome system in Orthoptera. Molecular Genetics and Genomics. 2015;290:623–631. doi: 10.1007/s00438-014-0947-9. PubMed DOI
Panzera F, Cuadrado Á, Mora P, Palomeque T, Lorite P, Pita S. Differential spreading of microsatellites in holocentric chromosomes of chagas disease vectors: genomic and evolutionary implications. Insects. 2023;14:772. doi: 10.3390/insects14090772. PubMed DOI PMC
Penfold CA, Brown PE, Lawrence ND, Goldman ASH. Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition. PLOS Computational Biology. 2012;8:e1002496. doi: 10.1371/journal.pcbi.1002496. PubMed DOI PMC
Pucci MB, Barbosa P, Nogaroto V, Almeida MC, Artoni RF, Scacchetti PC, Pansonato-Alves JC, Foresti F, Moreira-Filho O, Vicari MR. Chromosomal Spreading of Microsatellites and (TTAGGG)n Sequences in the Characidium zebra and C. gomesi Genomes (Characiformes: Crenuchidae) Cytogenetic and Genome Research. 2016;149:182–190. doi: 10.1159/000447959. PubMed DOI
Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenetic and Genome Research. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nature Cell Biology. 2023;25:1704–1715. doi: 10.1038/s41556-023-01266-x. PubMed DOI PMC
Roa F, Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evolutionary Biology. 2012;12:225. doi: 10.1186/1471-2148-12-225. PubMed DOI PMC
Roa F, Guerra M. Non-random distribution of 5s rdna sites and its association with 45S rDNA in plant chromosomes. Cytogenetic and Genome Research. 2015;146:243–249. doi: 10.1159/000440930. PubMed DOI
Rovatsos M, Kratochvíl L, Altmanová M, Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: when the exceptions outnumber the rule. PLOS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Ruiz-Ruano FJ, Cuadrado Á, Montiel EE, Camacho JPM, López-León MD. Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes. Chromosoma. 2015;124:221–234. doi: 10.1007/s00412-014-0492-7. PubMed DOI
Sahara K, Marec F, Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Research. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Sakamoto Y, Zacaro AA. LEVAN, an ImageJ plugin for morphological cytogenetic analysis of mitotic and meiotic chromosomes. 2009. https://imagej.net/ij/plugins/levan/levan.html https://imagej.net/ij/plugins/levan/levan.html
Santos J, Serra L, Solé E, Pascual M. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosome Research. 2010;18:213–226. doi: 10.1007/s10577-010-9112-4. PubMed DOI
Schäfer R, Böltz E, Becker A, Bartels F, Epplen JT. The expression of the evolutionarily conserved GATA/GACA repeats in mouse tissues. Chromosoma. 1986;93:496–501. doi: 10.1007/BF00386790. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Silvestri F. Descrizione di un nuovo ordine di insetti. Bollettino del Laboratorio di Zoologia Generale e Agraria della R. Scuola Superiore d’Agricoltura in Portici. 1913;7:193–209.
Silvestri F. Descrizione di due specie neotropicali di Zorotypus (Insecta, Zoraptera) Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, Portici. 1946;7:1–12.
Singh L, Wadhwa R, Naidu S, Nagaraj R, Ganesan M. Sex- and tissue-specific Bkm(GATA)-binding protein in the germ cells of heterogametic sex. Journal of Biological Chemistry. 1994;269:25321–25327. doi: 10.1016/S0021-9258(18)47250-X. PubMed DOI
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Stajner N, Jakse J, Kozjak P, Javornik B. The isolation and characterisation of microsatellites in hop (Humulus lupulus L.) Plant Science. 2005;168:213–221. doi: 10.1016/j.plantsci.2004.07.031. DOI
Št’áhlavský F, Kovařík F, Stockmann M, Opatova V. Karyotype evolution and preliminary molecular assessment of genera in the family Scorpiopidae (Arachnida: Scorpiones) Zoology. 2021;144:125882. doi: 10.1016/j.zool.2020.125882. PubMed DOI
Št’áhlavský F, Nguyen P, Sadílek D, Štundlová J, Just P, Haddad CR, Koç H, Ranawana KB, Stockmann M, Yağmur EA, Kovařík F. Evolutionary dynamics of rDNA clusters on chromosomes of buthid scorpions (Chelicerata: Arachnida) Biological Journal of the Linnean Society. 2020;131:547–565. doi: 10.1093/biolinnean/blaa118. DOI
Št’áhlavský F, Opatova V, Just P, Lotz LN, Haddad CR. Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa. Comparative Cytogenetics. 2018;12:41–59. doi: 10.3897/compcytogen.v12i1.21744. PubMed DOI PMC
Štundlová J, Hospodářská M, Lukšíková K, Voleníková A, Pavlica T, Altmanová M, Richter A, Reichard M, Dalíková M, Pelikánová Š, Marta A, Simanovsky SA, Hiřman M, Jankásek M, Dvořák T, Bohlen J, Ráb P, Englert C, Nguyen P, Sember A. Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Research. 2022;30:309–333. doi: 10.1007/s10577-022-09707-3. PubMed DOI
Subramanian S, Mishra RK, Singh L. Genome-wide analysis of Bkm sequences (GATA repeats): predominant association with sex chromosomes and potential role in higher order chromatin organization and function. Bioinformatics. 2003;19:681–685. doi: 10.1093/bioinformatics/btg067. PubMed DOI
Sylvester T, Hjelmen CE, Hanrahan SJ, Lenhart PA, Johnston JS, Blackmon H. Lineage-specific patterns of chromosome evolution are the rule not the exception in Polyneoptera insects. Proceedings of the Royal Society B: Biological Sciences. 2020;287:20201388. doi: 10.1098/rspb.2020.1388. PubMed DOI PMC
Tihelka E, Engel MS, Lozano-Fernandez J, Giacomelli M, Yin Z, Rota-Stabelli O, Huang D, Pisani D, Donoghue PCJ, Cai C. Compositional phylogenomic modelling resolves the ‘Zoraptera problem’: Zoraptera are sister to all other polyneopteran insects (preprint) 2021. DOI
Tokarskaya ON, Martirosyan IA, Badaeva TN, Malysheva DN, Korchagin VI, Darevsky IS, Danielyan FD, Ryskov AP. Instability of (GATA) n microsatellite loci in the parthenogenetic Caucasian rock lizard Darevskia unisexualis (Lacertidae) Molecular Genetics and Genomics. 2004;270:509–513. doi: 10.1007/s00438-003-0936-x. PubMed DOI
Toups MA, Vicoso B. The X chromosome of insects likely predates the origin of class Insecta. Evolution. 2023;77:qpad169. doi: 10.1093/evolut/qpad169. PubMed DOI
Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera) Chromosoma. 1976;58:275–284. doi: 10.1007/BF00292094. PubMed DOI
Vieira MLC, Santini L, Diniz AL, Munhoz CDF. Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology. 2016;39:312–328. doi: 10.1590/1678-4685-GMB-2016-0027. PubMed DOI PMC
Vítková M, Král J, Traut W, Zrzavý J, Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Research. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI
Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Jankásek M, Reichard M, Nguyen P, Sember A. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Research. 2023;31:33. doi: 10.1007/s10577-023-09742-8. PubMed DOI PMC
Vosman B, Arens P. Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome. 1997;40:25–33. doi: 10.1139/g97-004. PubMed DOI
Wang Y, Engel MS, Rafael JA, Dang K, Wu H, Wang Y, Xie Q, Bu W. A unique box in 28S rRNA is shared by the enigmatic insect order zoraptera and dictyoptera. PLOS ONE. 2013;8:e53679. doi: 10.1371/journal.pone.0053679. PubMed DOI PMC
Wang Y, Luan Y, Luo J, Men Y, Engel MS, Damgaard J, Khila A, Chen P, Figueiredo Moreira FF, Rafael JA, Xie Q. 300 Million years of coral treaders (Insecta: Heteroptera: Hermatobatidae) back to the ocean in the phylogenetic context of Arthropoda. Proceedings of the Royal Society B: Biological Sciences. 2023;290:20230855. doi: 10.1098/rspb.2023.0855. PubMed DOI PMC
Wheeler WC, Whiting M, Wheeler QD, Carpenter JM. The phylogeny of the extant hexapod orders. Cladistics. 2001;17:113–169. doi: 10.1111/j.1096-0031.2001.tb00115.x. PubMed DOI
White MJD. The chromosomes of Hemimerus bouvieri Chopard (Dermaptera) Chromosoma. 1971;34:183–189. doi: 10.1007/BF00285185. PubMed DOI
White MJD. Blattodea, mantodea, isoptera, grylloblattodea, phasmatodea, dermaptera, and embioptera, animal cytogenetics ; insecta. gebr. borntraeger, Berlin 1976.
Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer C, Bartel D, Buckley TR, Donath A, Edgerly-Rooks JS, Fujita M, Liu S, Machida R, Mashimo Y, Misof B, Niehuis O, Peters RS, Petersen M, Podsiadlowski L, Schütte K, Shimizu S, Uchifune T, Wilbrandt J, Yan E, Zhou X, Simon S. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America. 2019;116:3024–3029. doi: 10.1073/pnas.1817794116. PubMed DOI PMC
Yoshizawa K, Johnson KP. Aligned 18S for Zoraptera (Insecta): Phylogenetic position and molecular evolution. Molecular Phylogenetics and Evolution. 2005;37:572–580. doi: 10.1016/j.ympev.2005.05.008. PubMed DOI