Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29675136
PubMed Central
PMC5904373
DOI
10.3897/compcytogen.v12i1.21744
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rDNA, FISH, Karyotype, meiosis, sex chromosomes,
- Publikační typ
- časopisecké články MeSH
The knowledge of cytogenetics in the harvestmen family Phalangiidae has been based on taxa from the Northern Hemisphere. We performed cytogenetic analysis on Guruia africana (Karsch, 1878) (2n=24) and four species of the genus Rhampsinitus Simon, 1879 (2n=24, 26, 34) from South Africa. Fluorescence in situ hybridization with an 18S rDNA probe was used to analyze the number and the distribution of this cluster in the family Phalangiidae for the first time. The results support the cytogenetic characteristics typical for the majority of harvestmen taxa, i.e. the predominance of small biarmed chromosomes and the absence of morphologically well-differentiated sex chromosomes as an ancestral state. We identified the number of 18S rDNA sites ranging from two in R. qachasneki Kauri, 1962 to seven in one population of R. leighi Pocock, 1903. Moreover, we found differences in the number and localization of 18S rDNA sites in R. leighi between populations from two localities and between sexes of R. capensis (Loman, 1898). The heterozygous states of the 18S rDNA sites in these species may indicate the presence of XX/XY and ZZ/ZW sex chromosomes, and the possible existence of these systems in harvestmen is discussed. The variability of the 18S rDNA sites indicates intensive chromosomal changes during the differentiation of the karyotypes, which is in contrast to the usual uniformity in chromosomal morphology known from harvestmen so far.
Department of Arachnology National Museum P O Box 266 Bloemfontein 9300 South Africa
Department of Zoology Faculty of Science Charles University Viničná 7 CZ 12844 Praha Czech Republic
Zobrazit více v PubMed
Cabral de Mello DC, Moura RC, Martins C. (2011) Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenetic and Genome Research 134: 127–135. https://doi.org/10.1159/000326803 PubMed DOI
Cabrero J, Camacho JPM. (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Research 16: 595–607. https://doi.org/10.1007/s10577-008-1214-x PubMed DOI
Dunlop JA, Anderson LI, Kerp H, Hass H. (2004) A harvestman (Arachnida, Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences. 94: 341–354. https://doi.org/10.1017/S0263593300000730 DOI
Foresti F, Almeida Toledo LF, Toledo SA. (1981) Polymorphic nature of nucleolus organizer regions in fishes. Cytogenetics and Cell Genetics 31: 137–144. https://doi.org/10.1159/000131639 PubMed DOI
Forman M, Nguyen P, Hula V, Král J. (2013) Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae). Cytogenetic and Genome Research 141: 43–49. https://doi.org/10.1159/000351041 PubMed DOI
Fuková I, Nguyen P, Marec F. (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48: 1083–1092. https://doi.org/10.1139/G05-063 PubMed DOI
Giribet G, Kury AB. (2007) Phylogeny and Biogeography. In: Pinto-da-Rocha R, Machado G, Giribet G. (Eds) Harvestmen: The Biology of Opiliones. Harvard University Press, Cambridge, MA, USA, 62–87.
Giribet G, Vogt L, González AP, Sharma P, Kury AB. (2010) A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26: 408–437. https://doi.org/10.1111/j.1096-0031.2009.00296.x PubMed DOI
Goldman AS, Lichten M. (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144: 43–55. http://www.genetics.org/content/144/1/43.short PubMed PMC
Gorlov IP, Tsurusaki N. (2000a) Staggered clines in a hybrid zone between two chromosome races of the harvestman Gagrellopsis nodulifera (Arachnida: Opiliones). Evolution 54: 176–190. https://doi.org/10.1111/j.0014-3820.2000.tb00018.x PubMed DOI
Gorlov IP, Tsurusaki N. (2000b) Morphology and meiotic/mitotic behavior of B chromosomes in a Japanese harvestman, Metagagrella tenuipes (Arachnida: Opiliones): No evidence for B accumulation mechanisms. Zoological Science 17: 349–355. https://doi.org/10.2108/jsz.17.349 PubMed DOI
Grzywacz B, Maryanska-Nadachowska A, Chobanov DP, Karamysheva T, Warchalowska-Sliwa E. (2011) Comparative analysis of the location of rDNA in the Palaearctic bushcricket genus Isophya (Orthoptera: Tettigoniidae: Phaneropterinae). European Journal of Entomology 108: 509–517. https://doi.org/10.14411/eje.2011.066 DOI
Kotrbová J, Opatova V, Gardini G, Šťáhlavský F. (2016) Karyotype diversity of pseudoscorpions of the genus Chthonius (Pseudoscorpiones, Chthoniidae) in the Alps. Comparative Cytogenetics 10: 325–345. https://doi.org/10.3897/CompCytogen.v10i3.8906 PubMed DOI PMC
Král J, Kořínková T, Krkavcová L, Musilová J, Forman M, Herrera IMA, Haddad CR, Vítková M, Henriques S, Vargas JGP, Hedin M. (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109: 377–408. https://doi.org/10.1111/bij.12056 DOI
Král J, Musilová J, Šťáhlavský F, Řezáč M, Akan Z, Edwards RL, Coyle FA, Almerje CR. (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders. Chromosome Research 14: 859–880. https://doi.org/10.1007/s10577-006-1095-9 PubMed DOI
Kury AB. (2013) Order Opiliones Sundevall, 1833. In: Zhang Z-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa 3703: 27–33. https://doi.org/10.11646/zootaxa.3703.1.7 PubMed DOI
Kury AB. (2017) Classification of Opiliones Museu Nacional/UFRJ website. Online at: http://www.museunacional.ufrj.br/mndi/Aracnologia/opiliones.html
Levan A, Fredga K, Sandberg AA. (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x DOI
Lotz LN. (2009) Harvestmen (Arachnida: Opiliones) in southern Africa - an annotated catalogue with notes on distribution. Navorsinge van die Nasionale Museum, Bloemfontein 25: 1–45.
Mattos VF, Carvalho LS, Cella DM, Schneider MC. (2014) Location of 45S ribosomal genes in mitotic and meiotic chromosomes of buthid scorpions. Zoological Science 31: 603–607. https://doi.org/10.2108/zs140005 PubMed DOI
Miller DA, Dew V, Tantravahi R, Miller O. (1976) Suppression of human nucleolar organizer activity in mouse human somatic hybrid cells. Experimental Cell Research 101: 235–243. https://doi.org/10.1016/0014-4827(76)90373-6 PubMed DOI
Murienne J, Karaman I, Giribet G. (2010) Explosive evolution of an ancient group of Cyphophthalmi (Arachnida: Opiliones) in the Balkan Peninsula. Journal of Biogeography 37: 90–102. https://doi.org/10.1111/j.1365-2699.2009.02180.x DOI
Nguyen P, Sahara K, Yoshido A, Marec F. (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138: 343–354. https://doi.org/10.1007/s10709-009-9424-5 PubMed DOI
Oliver JH. (1977) Cytogenetics of mites and ticks. Annual Reviews of Entomology 22: 407–429. https://doi.org/10.1146/annurev.en.22.010177.002203 PubMed DOI
Opatova V, Bond JE, Arnedo MA. (2016) Uncovering the role of the Western Mediterranean tectonics in shaping the diversity and distribution of the trap-door spider genus Ummidia (Araneae, Ctenizidae). Journal of Biogeography 43: 1955–1966. https://doi.org/10.1111/jbi.12838 DOI
Panzera Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, Pérez R, Silva AE, Guerra M, Panzera F. (2012) High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenetic and Genome Research 138: 56–67. https://doi.org/10.1159/000341888 PubMed DOI
Paula-Neto E, Araujo D, Carvalho LS, Cella DM, Schneider MC. (2013) Chromosomal characteristics of a Brazilian whip spider (Amblypygi) and evolutionary relationships with other arachnid orders. Genetics and Molecular Research 12: 3726–3734. https://doi.org/10.4238/2013.September.19.3 PubMed DOI
Pinto-da-Rocha R, Giribet G. (2007) Taxonomy. In: Pinto-da-Rocha R, Machado G, Giribet G. (Eds) Harvestmen: The Biology of Opiliones. Harvard University Press, Cambridge, MA, USA, 88–246.
Reed KM, Phillips RB. (1997) Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Research 5: 221–227. https://doi.org/10.1023/A:1018411417816 PubMed DOI
Rodríguez-Gil SG, Mola LM. (2010) Chromosome complement and meiosis of Holmbergiana weyenberghii (Opiliones: Sclerosomatidae: Gagrellinae) from Argentina. Revista de la Sociedad Entomológica Argentina 69: 164–170. https://www.biotaxa.org/RSEA/article/view/28588
Řezáč M, Král J, Musilová J, Pekár S. (2006) Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae). Hereditas 143: 123–129. https://doi.org/10.1111/j.2006.0018-0661.01949.x PubMed DOI
Sadílek D, Nguyen P, Koç H, Kovařík F, Yağmur EA, Šťáhlavský F. (2015) Molecular cytogenetics of Androctonus scorpions: an oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biological Journal of the Linnean Society 115: 69–75. https://doi.org/10.1159/000445863 DOI
Sakamoto Y, Zacaro AA. (2009) LEVAN, an ImageJ plugin for morphological cytogenetic analysis of mitotic and meiotic chromosomes. Initial version. http://rsbweb.nih.gov/ij/
Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM. (2008) Conventional and ultrastructural analyses of the chromosomes of Discocyrtus pectinifemur (Opiliones, Laniatores, Gonyleptidae). Journal of Zoological Systematics and Evolutionary Research 47: 203–207. https://doi.org/10.1111/j.1439-0469.2008.00490.x. DOI
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. (2015) Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evolutionary Biology 15: 251. https://doi.org/10.1186/s12862-015-0532-9 PubMed DOI PMC
Sokolow I. (1930) Untersuchungen über die Spermatogenese bei den Arachniden. IV. Über die spermatogenese der Phalangiden (Opiliones). Zeitschrift für Zellforschung und Mikroskopische Anatomie 10: 164–194. https://doi.org/10.1007/BF02450640 DOI
Staręga W. (1984) Revision der Phalangiidae (Opiliones), III. Die afrikanischen Gattungen der Phalangiinae, nebst Katalog aller afrikanischen Arten der Familie. Annales Zoologici (Polska Akademia Nauk) 38: 1–79. http://rcin.org.pl/Content/58500/WA058_10835_P255-T38_Annal-Zool-Nr-1.pdf
Svojanovská H, Nguyen P, Hiřman M, Tuf IH, Wahab RA, Haddad CR, Šťáhlavský F. (2016) Karyotype evolution in harvestmen of the suborder Cyphophthalmi (Opiliones). Cytogenetic and Genome Research 148: 227–236. https://doi.org/10.1159/000445863 PubMed DOI
Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, Rábová M, Ráb P. (2013) Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evolutionary Biology 13: 42. https://doi.org/10.1186/1471-2148-13-42 PubMed DOI PMC
Šťáhlavský F, Král J. (2004) Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones). Hereditas 140: 49–60. https://doi.org/10.1111/j.1601–5223.2004.01783.x PubMed DOI
Traut W. (1976) Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma 58: 275–284. https://doi.org/10.1007/BF00292094 PubMed DOI
Troiano G. (1990) Karyotype and male meiosis of four species of Roncus L. Koch, 1873 (Pseudoscorpionida, Neobisiidae). Bolletino di Zoologia 57: 1–9. https://doi.org/10.1080/11250009009355666 DOI
Troiano G. (1997) Further studies on karyology of the pseudoscorpions of the gen. Roncus: the karyotype of Roncus gestroi and Roncus belluatii. Caryologia 50: 271–279. https://doi.org/10.1080/00087114.1997.10797401 DOI
Tsurusaki N. (1989) Geographic variation of chromosomes in Sabacon makinoi Suzuki (Arachnida, Opiliones, Sabaconidae). Bulletin of the Biogeographical Society of Japan 44: 111–116.
Tsurusaki N. (1993) Geographic variation of the number of B-chromosomes in Metagagrella tenuipes (Opiliones, Phalangiidae, Gagrellinae). Memoirs of the Queensland Museum 33: 659–665.
Tsurusaki N. (2007) Cytogenetics. In: Pinto-da-Rocha R, Machado G, Giribet G. (Eds) Harvestmen: The Biology of Opiliones. Harvard University Press, Cambridge, MA, USA, 266–279.
Tsurusaki N, Cokendolpher J. (1990) Chromosomes of sixteen species of harvestmen (Arachnida, Opiliones, Caddidae and Phalangididae). Journal of Arachnology 18: 151–166. http://www.jstor.org/stable/3705833
Tsurusaki N, Murakami M, Shimokawa K. (1991) Geographic variation of chromosomes in the Japanese harvestman, Gagrellopsis nodulifera with special reference to hybrid zone in western Honshu. Zoological Science 8: 265–275.
Tsurusaki N, Svojanovská H, Schöenhofer A, Šťáhlavský F. (2017) The harvestmen cytogenetic database. Version 4.0. Online at: http://www.arthropodacytogenetics.bio.br/harvestmendatabase/index.html
White MJD. (1973) Animal cytology and evolution, 3rd edn., Cambridge University Press.
Zaragoza JA, Šťáhlavský F. (2008) A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa 1693: 27–40.
Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa