Karyotype diversity of pseudoscorpions of the genus Chthonius (Pseudoscorpiones, Chthoniidae) in the Alps
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27830045
PubMed Central
PMC5088348
DOI
10.3897/compcytogen.v10i3.8906
Knihovny.cz E-zdroje
- Klíčová slova
- Karyotype evolution, X0 sex chromosome system, achiasmatic meiosis, chromosome fusion, sex chromosomes,
- Publikační typ
- časopisecké články MeSH
Pseudoscorpions are found in almost all terrestrial habitats. However, their uniform appearance presents a challenge for morphology-based taxonomy, which may underestimate the diversity of this order. We performed cytogenetic analyses on 11 pseudoscorpion species of the genus Chthonius C. L. Koch, 1843 from the Alps, including three subgenera: Chthonius (Chthonius) C. L. Koch, 1843, Chthonius (Ephippiochthonius) Beier, 1930 and Chthonius (Globochthonius) Beier, 1931 inhabiting this region. The results show that the male diploid number of chromosomes ranges from 21-35. The sex chromosome system X0 has been detected in all male specimens. The X sex chromosome is always metacentric and represents the largest chromosome in the nucleus. Achiasmatic meiosis, already known from the family Chthoniidae, was further confirmed in males of Chthonius. C-banding corroborated the localization of constitutive heterochromatin in the centromere region, which corresponds to heteropycnotic knobs on the standard chromosome preparations. Morphological types and size differentiation of chromosomes in the karyotype suggest that the main chromosomal rearrangements in the evolution of Chthonius are centric or tandem fusions resulting in a decrease in the number of chromosomes. Pericentric inversions, inducing the change of acrocentric chromosomes into biarmed chromosomes, could also be expected. Variability in chromosome morphology and number was detected in several species: Chthonius (Chthonius) ischnocheles (Hermann, 1804), Chthonius (Chthonius) raridentatus, Chthonius (Chthonius) rhodochelatus Hadži, 1930, and Chthonius (Chthonius) tenuis L. Koch, 1873. We discuss the intraspecific variability within these species and the potential existence of cryptic species.
Zobrazit více v PubMed
Almeida MC, Campaner C, Cella DC. (2009) Cytogenetics of four Omophoita species (Coleoptera, Chrysomelidae, Alticinae): A comparative analysis using mitotic and meiotic cells submitted to the standard staining and C-banding technique. Micron 40: 586–596. doi: 10.1016/j.micron.2009.02.011 PubMed DOI
Beier M. (1963) Ordnung Pseudoscorpionidea (Afterskorpione). Bestimmungsbücher zur Bodenfauna Europas, vol. 1. Akademie-Verlag, Berlin, 313 pp.
Benavente R, Wettstein R. (1980) Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and long diffuse stage. Chromosoma 77: 69–82. doi: 10.1007/BF00292042 PubMed DOI
Capanna E, Riscassi E. (1978) Robertsonian karyotype variability in natural Mus musculus populations in the Lombardy area of the Po valley. Bolletino di Zoologia 45: 63–71. doi: 10.1080/11250007809440111 DOI
Christophoryová J, Šťáhlavský F, Fedor P. (2011) An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa 2876: 35–48. doi: 10.11646/%25x DOI
Christophoryová J, Šťáhlavský F, Krumpál M, Fedor P. (2012) Pseudoscorpions of the Czech Republic and Slovakia: An annotated and revised checklist (Arachnida: Pseudoscorpiones). North-Western Journal of Zoology 8: 1–21.
Dincǎ V, Lukhtanov VA, Talavera G, Vila R. (2011) Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nature Communications 2: 324. doi: 10.1038/ncomms1329 PubMed DOI
Dolejš P, Kořínková T, Musilová J, Opatová V, Kubcová L, Buchar J, Král J. (2010) Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). European Journal of Entomology 108: 1–16. doi: 10.14411/eje.2011.001 DOI
Duffy L, Sewell MA, Murray BG. (2008) Chromosome number and chromosome variation in embryos of Evechinus chloroticus (Echinoidea: Echinometridae): Is there conservation of chromosome number in the Phylum Echinodermata? New findings and a brief review. Invertebrate Reproduction & Development 50: 219–23. doi: 10.1080/07924259.2007.9652249 DOI
Faria R, Navarro A. (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends in Ecology and Evolution 25: 660–669. doi: 10.1016/j.tree.2010.07.008 PubMed DOI
Gardini G. (1991) Tre nuove specie di Roncus L. Koch, 1873 della Liguria occidentale. Memorie della Società Entomologica Italiana 70: 313–334.
Gardini G. (2000) Catalogo degli pseudoscorpioni d’italia. Fragmenta Entomologica, Roma: 32(Supplemento): 1–181.
Gardini G. (2013) A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. Zootaxa 3655: 1–151. doi: 10.11646/zootaxa.3655.1.1 PubMed DOI
Gardini G. (2014) The species of the Chtonius heterodactylus group from the eastern Alps and the Carpathians. Zootaxa 3887: 101–137. doi: 10.11646/zootaxa.3887.2.1 PubMed DOI
Harrison SE, Guzik MT, Austin AD. (2014) Molecular phylogenetic analysis of western australian troglobitic chthoniid pseudoscorpions (Pseudoscorpiones: Chthoniidae) points to multiple independent subterranean clades. Invertebrate Systematics 28: 386–400. doi: 10.1071/ISv28n4_PR DOI
Harvey MS. (2013) Pseudoscorpions of the World, version 3.0. Western Australian Museum, Perth: http://www.museum.wa.gov.au/catalogues/pseudoscorpions [accessed 16 March 2016]
Kawakami T, Butlin RK, Cooper SJ. (2011) Chromosomal Speciation Revisited: Modes of Diversification in Australian Morabine Grasshopers (Vandiemella viatica Species Group). Insects 2: 49–61. doi: 10.3390/insects3010270 PubMed DOI PMC
King M. (1993) Species evolution. Cambridge Univ. Press, Cambridge, UK, 336 pp.
Král J, Musilová J, Šťáhlavský F, Řezáč M, Akan Z, Edwards RL, Coyle FA, Almerje CR. (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14: 859–880. doi: 10.1007/s10577-006-1095-9 PubMed DOI
Král J, Kořínková T, Krkavcová L, Musilová J, Forman M, Ávila Herrera IM, Haddad CR, Vítková M, Henriques S, Palacios Vargas JG, Hedin M. (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109: 377–408. doi: 10.1111/bij.12056 DOI
Levan A, Fredga K, Sandberg AA. (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52: 201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x DOI
Lukhtanov VA, Dantchenko AV, Vishnevskaya MS, Saifitdinova AF. (2015) Detecting cryptic species in sympatry and allopatry: analysis of hidden diversity in Polyommatus (Agrodiaetus) butterflies (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society 116: 468–485. doi: 10.1111/bij.12596 DOI
Moulds TA, Murphy N, Adams M, Reardon T, Harvey MS, Jennings J, Austin AD. (2007) Phylogeography of cave pseudoscorpions in southern Australia. Journal of Biogeography 34: 951–962. doi: 10.1111/j.1365–2699.2006.01675.x DOI
Nie W, Wang J, Su W, Wang D, Tanamtong A, Perelman PL, Graphodatsky AS, Yang F. (2012) Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting. Heredity 108: 17–27. doi: 10.1038/hdy.2011.107 PubMed DOI PMC
Oliver JH. (1977) Cytogenetics of mites and ticks. Annual Review of Entomology 22: 407–429. doi: 10.1146/annurev.en.22.010177.002203 PubMed DOI
Pfeiler E, Bitler BG, Castrezana S, Matzkin LM, Markow TA. (2009) Genetic diversification and demographic history of the cactophilic pseudoscorpion Dinocheirus arizonensis from the Sonoran Desert. Molecular Phylogenetics and Evolution 52: 133–141. doi: 10.1016/j.ympev.2008.12.020 PubMed DOI PMC
Rodríguez-Gil SG, Merani MS, Scioscia CL, Mola LM. (2007) Cytogenetics in three species of Polybetes Simon 1897 from Argentina (Araneae, Sparassidae) I. Karyotype and chromosome banding pattern. Journal of Arachnology 35: 227–237. doi: 10.1636/S05-69.1 DOI
Řezáč M, Král J, Pekár S. (2007) The spider genus Dysdera (Araneae, Dysderidae) in central Europe: Revision and natural history. Journal of Arachnology 35: 432–462. doi: 10.1636/H06-38.1 DOI
Sadílek D, Šťáhlavský F, Vilímová J, Zima J. (2013) Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae): a survey across Europe. Comparative Cytogenetics 7: 253–269. doi: 10.3897/CompCytogen.v7i4.6012 PubMed DOI PMC
Sakamoto Y, Zacaro AA. (2009) LEVAN, an ImageJ plugin for morphological cytogenetic analysis of mitotic and meiotic chromosomes. Initial version. http://rsbweb.nih.gov/ij/
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. (2015) Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evolutionary Biology 15: . doi: 10.1186/s12862-015-0532-9 PubMed DOI PMC
Severns PM, Liston A. (2008) Intraspecific Chromosome Number Variation: a Neglected Threat to the Conservation of Rare Plants. Conservation Biology 22: 1641–1647. doi: 10.1111/j.1523-1739.2008.01058.x PubMed DOI
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G. (2014) Phylogenomic Interrogation of Arachnida Reveals Systemic Conflicts in Phylogenetic Signal. Molecular Biology and Evolution 31: 29639–2984. doi: 10.1093/molbev/msu235 PubMed DOI
Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM. (2009) Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosome Research 17: 883–898. doi: 10.1007/s10577-009-9076-4 PubMed DOI
Sumner AT. (1972) A simple technique for demostrating centromeric heterochromatin. Experimental Cell Research 75: 304–306. doi: 10.1016/0014-4827(72)90558-7 PubMed DOI
Šťáhlavský F. (2016) The pseudoscorpion cytogenetic database. www.arthropodacytogenetics.bio.br/pseudoscorpiondatabase [accessed 16. March 2016]
Šťáhlavský F, Král J. (2004) Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones). Hereditas 140: 49–60. doi: 10.1111/j.1601-5223.2004.01783.x PubMed DOI
Šťáhlavský F, Henderickx H, Král J. (2005) Karyotype Study on Pseudoscorpions of the Genus Lasiochernes Beier (Pseudoscorpiones, Chernetidae). Folia biologica (Kraków: ) 53: 69–74. doi: 10.3409/1734916054663375 PubMed DOI
Šťáhlavský F, Král J, Harvey MS, Haddad CR. (2006) A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones). European Journal of Entomology 103: 277–289. doi: 10.14411/eje.2006.036 DOI
Šťáhlavský F, Zeh JA, Zeh DW, Král J. (2009) Karyotypes of the Neotropical pseudoscorpions Semeiochernes armiger and Cordylochernes scorpioides (Pseudoscorpiones: Chernetidae). The Journal of Arachnology 37: 287–291. doi: 10.1636/P08-86.1 DOI
Šťáhlavský F, Král J, Harvey MS, Haddad CR. (2012) The First Cytogenetic Characterization of Atemnids: Pseudoscorpions with the Highest Chromosome Numbers (Arachnida: Pseudoscorpiones). Cytogenetic and Genome Research 137: 22–30. doi: 10.1159/000339516 PubMed DOI
Šťáhlavský F, Christophoryová J, Henderickx H. (2013) A karyological study of four European species of Roncus (Pseudoscorpiones: Neobisiidae). European Journal of Entomology 110: 393–399. http://www.eje.cz/pdfs/110/3/393
Traut W. (1976) Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma 58: 275–284. doi: 10.1007/BF00292094 PubMed DOI
Troiano G. (1990) Karyotype and male meiosis of four species of Roncus L. Koch, 1873 (Pseudoscorpionida, Neobisiidae). Bollettino di Zoologia 57: 1–9. doi: 10.1080/11250009009355666 DOI
Troiano G. (1997) Further studies on the karyology of the Pseudoscorpions of the genus Roncus: the karyotype of Roncus gestroi and Roncus belluatii. Caryologia 50: 271–279. doi: 10.1080/00087114.1997.10797401 DOI
Tsurusaki N. (1985) Geographic variation of chromosomes and external morphology in the montanum-subgroup of the Leiobunum curvipalpe-group (Arachnida, Opiliones, Phalangiidae) with special reference to its presumable process of raciation. Zoological Science 2: 767–783.
Van Heerden J, Taylor PJ, Van Heerden C. (2013) Genetic Differentiation in Horus Chamberlin (Arachnida: Pseudoscorpiones: Olpiidae) as Indicated by Mitochondrial DNA Analysis. African Zoology 48: 351–358. doi: 10.3377/004.048.0223 DOI
Wilcox TP, Hugg L, Zeh JA, Zeh DW. (1997) Mitochondrial DNA Sequencing Reveals Extreme Genetic Differentiation in a Cryptic Species Complex of Neotropical Pseudoscorpions. Molecular Phylogenetics and Evolution 7: 208–216. doi: 10.1006/mpev.1996.0388 PubMed DOI
Zaragoza JA, Šťáhlavský F. (2008) A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa 1693: 27–40. doi: 10.11646/%25x DOI
Zima J, Fedyk S, Fredga K, Hausser J, Mushta A, Searle JB, Volobouev VT, Wójcik JM. (1996) The list of the chromosome races of the common shrew (Sorex araneus). Hereditas 125: 97–107. doi: 10.1111/j.1601-5223.1996.00097.x DOI