Integrative Taxonomy Approach Reveals Cryptic Diversity within the Phoretic Pseudoscorpion Genus Lamprochernes (Pseudoscorpiones: Chernetidae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0076
Slovak Research and Development Agency
VEGA grant 1/0704/20
The Ministry of Education, Science, Research and Sport of the Slovak Republic
GAUK 36908
Charles University Grant Agency in the Czech Republic
UNCE 204069
Charles University Research Centre program
the FP7 "Capacities" Program (application No. AT-TAF-4126)
the SYNTHESYS Project http://www.synthesys.info/
PubMed
36835691
PubMed Central
PMC9964657
DOI
10.3390/insects14020122
PII: insects14020122
Knihovny.cz E-zdroje
- Klíčová slova
- DNA barcoding, cytogenetics, morphological stasis, morphometrics, phoresy, species delimitation,
- Publikační typ
- časopisecké články MeSH
Pseudoscorpions represent an ancient, but homogeneous group of arachnids. The genus Lamprochernes comprises several morphologically similar species with wide and overlapping distributions. We implemented an integrative approach combining molecular barcoding (cox1), with cytogenetic and morphological analyses in order to assess species boundaries in European Lamprochernes populations. The results suggest ancient origins of Lamprochernes species accompanied by morphological stasis within the genus. Our integrative approach delimited three nominal Lamprochernes species and one cryptic lineage Lamprochernes abditus sp. nov. Despite its Oligocene origin, L. abditus sp. nov. can be distinguished from its closest relative only by molecular and cytogenetic differences, or alternatively, by a complex multivariate morphometric analysis involving other Lamprochernes species. The population structure and common haplotype sharing across geographically distant populations in most Lamprochernes species suggest that a phoretic manner of dispersal is efficient in this group.
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Praha Czech Republic
Institute of Botany Slovak Academy of Sciences Dúbravská Cesta 9 845 23 Bratislava Slovakia
Zobrazit více v PubMed
Bickford D., Lohman D.J., Sodhi N.S., Ng P.K.L., Meier R., Winker K., Ingram K.K., Das I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007;22:148–155. doi: 10.1016/j.tree.2006.11.004. PubMed DOI
Alastruey-Izquierdo A., Alcazar-Fuoli L., Cuenca-Estrella M. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia. 2014;178:427–433. doi: 10.1007/s11046-014-9775-z. PubMed DOI
Howard S.J. Multi-resistant aspergillosis due to cryptic species. Mycopathologia. 2014;178:435–439. doi: 10.1007/s11046-014-9774-0. PubMed DOI
Smith L., Cristofaro M., Bon M.-C., De Biase A., Petanović R., Vidović B. The importance of cryptic species and subspecific populations in classic biological control of weeds: A North American perspective. BioControl. 2018;63:417–425. doi: 10.1007/s10526-017-9859-z. DOI
Neves J.M., Almeida J.P., Sturaro M.J., Fabre N.N., Pereira R.J., Mott T. Deep genetic divergence and paraphyly in cryptic species of Mugil fishes (Actinopterygii: Mugilidae) Syst. Biodivers. 2020;18:116–128. doi: 10.1080/14772000.2020.1729892. DOI
Davidson-Watts I., Walls S., Jones G. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biol. Conservat. 2006;133:118–127. doi: 10.1016/j.biocon.2006.05.027. DOI
Delić T., Trontelj P., Rendoš M., Fišer C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 2017;7:3391. doi: 10.1038/s41598-017-02938-z. PubMed DOI PMC
Brochu C.A., Sumrall C.D. Modern cryptic species and crocodylian diversity in the fossil record. Zool. J. Linn. Soc. 2020;189:700–711. doi: 10.1093/zoolinnean/zlaa039. DOI
Fišer C., Robinson C.T., Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 2018;27:613–635. doi: 10.1111/mec.14486. PubMed DOI
Struck T.H., Feder J.L., Bendiksby M., Birkeland S., Cerca J., Gusarov V.I., Kistenich S., Larsson K.-H., Liow L.H., Nowak M.D. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 2018;33:153–163. doi: 10.1016/j.tree.2017.11.007. PubMed DOI
de León G.P.-P., Nadler S.A. What we don’t recognize can hurt us: A plea for awareness about cryptic species. J. Parasitol. 2010;96:453–464. doi: 10.1645/GE-2260.1. PubMed DOI
Heethoff M. Cryptic species–conceptual or terminological chaos? A response to Struck et al. Trends Ecol. Evol. 2018;33:310. doi: 10.1016/j.tree.2018.02.006. PubMed DOI
Swift H.F., Daglio L.G., Dawson M. Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae) Mol. Phylogenet. Evol. 2016;99:103–115. doi: 10.1016/j.ympev.2016.02.013. PubMed DOI
DeSalle R., Goldstein P. Review and interpretation of trends in DNA barcoding. Front. Ecol. Evol. 2019;7:302. doi: 10.3389/fevo.2019.00302. DOI
Crespo L., Domènech M., Malumbres-Olarte J., Cardoso P., Moya-Laraño J., Macías-Hernández N., Opatova V., Arnedo M. A DNA barcode-assisted annotated checklist of the spider (Arachnida, Araneae) communities associated to white oak woodlands in Spanish National Parks. Biodivers. Data J. 2018;6:e29443. doi: 10.3897/BDJ.6.e29443. PubMed DOI PMC
Gill B.A., Musili P.M., Kurukura S., Hassan A.A., Goheen J.R., Kress W.J., Kuzmina M., Pringle R.M., Kartzinel T.R. Plant DNA-barcode library and community phylogeny for a semi-arid East African savanna. Mol. Ecol. Resour. 2019;19:838–846. doi: 10.1111/1755-0998.13001. PubMed DOI
Maggia M.-E., Decaëns T., Lapied E., Dupont L., Roy V., Schimann H., Orivel J., Murienne J., Baraloto C., Cottenie K. At each site its diversity: DNA barcoding reveals remarkable earthworm diversity in neotropical rainforests of French Guiana. Appl. Soil Ecol. 2021;164:103932. doi: 10.1016/j.apsoil.2021.103932. DOI
Weigand H., Beermann A.J., Čiampor F., Costa F.O., Csabai Z., Duarte S., Geiger M.F., Grabowski M., Rimet F., Rulik B. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 2019;678:499–524. doi: 10.1016/j.scitotenv.2019.04.247. PubMed DOI
Marthinsen G., Rui S., Timdal E. OLICH: A reference library of DNA barcodes for Nordic lichens. Biodivers. Data J. 2019;7:e36252. doi: 10.3897/BDJ.7.e36252. PubMed DOI PMC
Janzen F.H., Crampton W.G., Lovejoy N.R. A new taxonomist-curated reference library of DNA barcodes for Neotropical electric fish (Teleostei: Gymnotiformes) Zool. J. Linn. Soc. 2022;XX:1–25. doi: 10.1093/zoolinnean/zlac039. DOI
Grandcolas P. Biodiversity in France. In: Pullaiah P., editor. Global Biodiversity: Selected Countries in Europe. 1st ed. Volume 2. Apple Academic Press; New York, NY, USA: 2018. pp. 25–32.
Bevanger K. Biodiversity in Norway. In: Pullaiah P., editor. Global Biodiversity: Selected Countries in Europe. 1st ed. Volume 2. Apple Academic Press; New York, NY, USA: 2018. pp. 223–260.
Prakash R.O., Rumsey F. Biodiversity in United Kingdom. In: Pullaiah P., editor. Global Biodiversity: Selected Countries in Europe. 1st ed. Vol. 2. Apple Academic Press; New York, NY, USA: 2018. pp. 379–405.
Ulrych L., Guttová A., Urban P., Hindáková A., Kučera J., Kučera V., Šibík J., Mútňanová M. Biodiversity in Slovakia. In: Pullaiah P., editor. Global Biodiversity: Selected Countries in Europe. 1st ed. Vol. 2. Apple Academic Press; New York, NY, USA: 2018. pp. 325–375.
Lopez-Vaamonde C., Kirichenko N., Cama A., Doorenweerd C., Godfray H.C.J., Guiguet A., Gomboc S., Huemer P., Landry J.-F., Laštůvka A., et al. Evaluating DNA Barcoding for Species Identification and Discovery in European Gracillariid Moths. Front. Ecol. Evol. 2021;9:626752. doi: 10.3389/fevo.2021.626752. DOI
Raupach M.J., Rulik B., Spelda J. Surprisingly high genetic divergence of the mitochondrial DNA barcode fragment (COI) within Central European woodlice species (Crustacea, Isopoda, Oniscidea) ZooKeys. 2022;1082:103–125. doi: 10.3897/zookeys.1082.69851. PubMed DOI PMC
Chimeno C., Hausmann A., Schmidt S., Raupach M.J., Doczkal D., Baranov V., Hübner J., Höcherl A., Albrecht R., Jaschhof M. Peering into the Darkness: DNA Barcoding Reveals Surprisingly High Diversity of Unknown Species of Diptera (Insecta) in Germany. Insects. 2022;13:82. doi: 10.3390/insects13010082. PubMed DOI PMC
Astrin J.J., Höfer H., Spelda J., Holstein J., Bayer S., Hendrich L., Huber B.A., Kielhorn K.-H., Krammer H.-J., Lemke M. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS ONE. 2016;11:e0162624. doi: 10.1371/journal.pone.0162624. PubMed DOI PMC
Muster C., Spelda J., Rulik B., Thormann J., von der Mark L., Astrin J.J. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol. Evol. 2021;11:13815–13829. doi: 10.1002/ece3.8088. PubMed DOI PMC
Troudet J., Grandcolas P., Blin A., Vignes-Lebbe R., Legendre F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 2017;7:9132. doi: 10.1038/s41598-017-09084-6. PubMed DOI PMC
Řezáč M., Arnedo M.A., Opatova V., Musilová J., Řezáčová V., Král J. Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae: Dysderidae): Sibling species with sympatric distributions. Invertebr. Syst. 2018;32:10–54. doi: 10.1071/IS16071. DOI
Edwards D.L., Knowles L.L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B. 2014;281:20132765. doi: 10.1098/rspb.2013.2765. PubMed DOI PMC
Sukumaran J., Knowles L.L. Multispecies coalescent delimits structure, not species. Proc. Natl. Acad. Sci. USA. 2017;114:1607–1612. doi: 10.1073/pnas.1607921114. PubMed DOI PMC
WPC World Pseudoscorpiones Catalog Natural History Museum Bern. [(accessed on 5 May 2022)]. Available online: http://wac.nmbe.ch/
Weygoldt P. The Biology of Pseudoscorpions. Harvard University Press; Cambridge, MA, USA: 1969. pp. 1–145.
Legg G., Jones R.E. Pseudoscorpions (Arthropoda, Arachnida). Keys and notes for the identification of the species. In: Kermack D.M., Barnes R.S.K., editors. Synopses of the British Fauna (New Series) The Linnean Society of London and the Estuarine and Brackish-Water Sciences Association; Leiden, The Netherlands: New York, NY, USA: København, Denmark: Köln, Germany: 1988. pp. 1–159. no. 40.
Benavides L.R., Cosgrove J.G., Harvey M.S., Giribet G. Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. Mol. Phylogenet. Evol. 2019;139:106509. doi: 10.1016/j.ympev.2019.05.023. PubMed DOI
Wilcox T.P., Hugg L., Zeh J.A., Zeh D.W. Mitochondrial DNA sequencing reveals extreme genetic differentiation in a cryptic species complex of neotropical pseudoscorpions. Mol. Phylogenet. Evol. 1997;7:208–216. doi: 10.1006/mpev.1996.0388. PubMed DOI
Murienne J.r.m., Harvey M.S., Giribet G. First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata) Mol. Phylogenet. Evol. 2008;49:170–184. doi: 10.1016/j.ympev.2008.06.002. PubMed DOI
Pfeiler E., Bitler B.G., Castrezana S., Matzkin L.M., Markow T.A. Genetic diversification and demographic history of the cactophilic pseudoscorpion Dinocheirus arizonensis from the Sonoran Desert. Mol. Phylogenet. Evol. 2009;52:133–141. doi: 10.1016/j.ympev.2008.12.020. PubMed DOI PMC
Moulds T.A., Murphy N., Adams M., Reardon T., Harvey M.S., Jennings J., Austin A.D. Phylogeography of cave pseudoscorpions in southern Australia. J. Biogeogr. 2007;34:951–962. doi: 10.1111/j.1365-2699.2006.01675.x. DOI
Zeh J., Zeh D., Bonilla M. Phylogeography of the harlequin beetle-riding pseudoscorpion and the rise of the Isthmus of Panamá. Mol. Ecol. 2003;12:2759–2769. doi: 10.1046/j.1365-294X.2003.01914.x. PubMed DOI
Opatova V., Šťáhlavský F. Phoretic or not? Phylogeography of the pseudoscorpion Chernes hahnii (Pseudoscorpiones: Chernetidae) J. Arachnol. 2018;46:104–113. doi: 10.1636/17-042.1. DOI
Harms D., Roberts J.D., Harvey M.S. Climate variability impacts on diversification processes in a biodiversity hotspot: A phylogeography of ancient pseudoscorpions in south-western Australia. Zool. J. Linn. Soc. 2019;186:934–949. doi: 10.1093/zoolinnean/zlz010. DOI
Johnson J., Loria S.F., Joseph M.M., Harms D. Biogeographical and Diversification Analyses of Indian Pseudoscorpions Reveal the Western Ghats as Museums of Ancient Biodiversity. Mol. Phylogenet. Evol. 2022;175:107495. doi: 10.1016/j.ympev.2022.107495. PubMed DOI
Muster C., Schmarda T., Blick T. Vicariance in a cryptic species pair of European pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae) Zool. Anz. 2004;242:299–311. doi: 10.1078/0044-5231-00106. DOI
Christophoryová J., Krajčovičová K., Henderickx H., Španiel S. A multivariate study of differentiating characters between three European species of the genus Lasiochernes Beier, 1932 (Pseudoscorpiones, Chernetidae) ZooKeys. 2016;629:51–81. doi: 10.3897/zookeys.629.8445. PubMed DOI PMC
Šťáhlavský F., Král J. Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones) Hereditas. 2004;140:49–60. doi: 10.1111/j.1601-5223.2004.01783.x. PubMed DOI
Šťáhlavský F., Henderickx H., Král J. Karyotype study on pseudoscorpions of the genus Lasiochernes Beier (Pseudoscorpiones, Chernetidae) Folia Biol. 2005;53:69–74. doi: 10.3409/1734916054663375. PubMed DOI
Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones) Eur. J. Entomol. 2006;103:277–289. doi: 10.14411/eje.2006.036. DOI
Šťáhlavský F., Král J., Harvey M.S., Haddad C. The first cytogenetic characterization of atemnids: Pseudoscorpions with the highest chromosome numbers (Arachnida: Pseudoscorpiones) Cytogenet. Genome Res. 2012;137:22–30. doi: 10.1159/000339516. PubMed DOI
Šťáhlavský F., Christophoryová J., Henderickx H. A karyological study of four European species of Roncus (Pseudoscorpiones: Neobisiidae) Eur. J. Entomol. 2013;110:393–399. doi: 10.14411/eje.2013.052. DOI
Kotrbová J., Opatova V., Gardini G., Šťáhlavský F. Karyotype diversity of pseudoscorpions of the genus Chthonius (Pseudoscorpiones, Chthoniidae) in the Alps. Comp. Cytogenet. 2016;10:325–345. PubMed PMC
Zaragoza J.A., Šťáhlavský F. A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa. 2008;1693:27–40. doi: 10.11646/zootaxa.1693.1.2. DOI
Harvey M.S., Ratnaweerae P.B., Udagamae P.V., Wijesinghee M.R. A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes. J. Nat. Hist. 2012;46:2519–2535. doi: 10.1080/00222933.2012.707251. DOI
Christophoryová J., Gilgado J.D., Bobbitt I., Krajčovičová K. Lamprochernes savignyi (Simon, 1881) (Arachnida, Pseudoscorpiones) recorded in Central Europe for the first time. Check List. 2021;17:497–501. doi: 10.15560/17.2.497. DOI
Beier M. Phoresie und phagophilie bei pseudoscorpionen. Oesterr. zool. Zeitschr. 1948;1:441–497.
Jones P.E. Phoresy and commensalism in British pseudoscropions. Proc. Trans. Br. Ent. Nat. Hist. Soc. 1978;11:90–96.
Kaňuchová A., Christophoryová J., Krajčovičová K. Pseudoscorpions (Arachnida) collected from the heaps with decomposing material in Slovakia. Fragm. Faunist. 2015;58:111–122. doi: 10.3161/00159301FF2015.58.2.111. DOI
Christophoryová J., Jajcayová D., Krajčovičová K. Pseudoscorpions (Arachnida: Pseudoscorpiones) living in tree microhabitats in Slovakia. Klapalekiana. 2017;53:283–297.
Christophoryová J., Kaňuchová A., Krajčovičová K. Faunistic survey of pseudoscorpions (Arachnida: Pseudoscorpiones) collected from compost heaps in Slovakia. Klapalekiana. 2017;53:11–19.
Harvey M.S. Redescription and new synonyms of the cosmopolitan species Lamprochernes savignyi (Simon) (Chernetidae: Pseudoscorpionida) Bull. Br. arachnol. Soc. 1987;7:111–116.
Drogla R., Lippold K. Zur Kenntnis der Pseudoskorpion-Fauna von Ostdeutschland (Arachnida, Pseudoscorpiones) Arachnol. Mitt. 2004;27:1–54. doi: 10.5431/aramit2701. DOI
Beier M. Pseudoscorpionidea II: Subord. C. Cheliferinea. Tierreich. 1932;58:i–xxi, 1–294.
Navás L. Algunos Quernetos (Arácnidos) de la provincia de Zaragoza. Bol. Soc. Ent. Est. 1918;1:83–90.
Beier M. Zur Kenntnis der Lamprochernetinae (Pseudoscorp.) Zool. Anz. 1932;97:258–267.
Beier M. Zoologische Forschungsreise nach den Jonischen Inseln und dem Peloponnes. Sitz.-Ber. Akad. Wiss. 1929;128:425–456.
Beier M. Ordnung Pseudoscorpionidea (Afterskorpione) In: Aguilar J., Beier M., Franz H., Raw F., editors. Bestimmungsbücher zur Bodenfauna Europas. 1st ed. Akademie-Verlag; Berlin, Germany: 1963. pp. 1–313.
Christophoryová J., Šťáhlavský F., Fedor P. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa. 2011;2876:35–48. doi: 10.11646/zootaxa.2876.1.4. DOI
Mahnert V. Die Pseudoskorpione Österreichs (Arachnida, Pseudoscorpiones) Denisia. 2004;12:459–471.
Shorthouse D.P. SimpleMappr, an online tool to produce publication-quality point maps. [(accessed on 5 May 2022)]. Available online: http://www.simplemappr.net/
Ersts P. Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. [(accessed on 5 May 2022)]. Available online: http://biodiversityinformatics.amnh.org/open_source/gdmg.
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 1994;3:294–299. PubMed
Drummond A., Ashton B., Buxton S., Cheung M., Cooper A., Duran C., Field M., Heled J., Kearse M., Markowitz S., et al. Geneious v5.6. [(accessed on 5 May 2022)]. Available online: http://www.geneious.com/
Abascal F., Zardoya R., Telford M.J. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:W7–13. doi: 10.1093/nar/gkq291. PubMed DOI PMC
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., Heled J., Jones G., Kühnert D., De Maio N., et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC
Rambaut A., Drummond A.J. TRACER v.1.5, 1.4. [(accessed on 5 May 2022)]. Available online: http://tree.bio.ed.ac.uk/software/tracer/
Rambaut A. FigTree v. 1.3.1. [(accessed on 5 May 2022)]. Available online: http://tree.bio.ed.ac.uk/software/figtree/
Templeton A.R., Crandall K.A., Sing C.F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–633. doi: 10.1093/genetics/132.2.619. PubMed DOI PMC
Clement M., Posada D., Crandall K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1660. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Zhang J., Kapli P., Pavlidis P., Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. doi: 10.1093/bioinformatics/btt499. PubMed DOI PMC
Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P., Hazell S., Kamoun S., Sumlin W.D., Vogler A.P. Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Syst. Biol. 2006;55:595–609. doi: 10.1080/10635150600852011. PubMed DOI
Ezard T., Fujisawa T., Barraclough T.G. splits: SPecies’ LImits by Threshold Statistics. Rpackage version 1.0-11/r29. [(accessed on 5 May 2022)]. Available online: http://r-forge.r-project.org/projects/splits/
Puillandre N., Brouillet S., Achaz G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021;21:609–620. doi: 10.1111/1755-0998.13281. PubMed DOI
Kimura M. A simple method for estimating evolutionary rate of base susbtitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Flouri T., Jiao X., Rannala B., Yang Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 2018;35:2585–2593. doi: 10.1093/molbev/msy147. PubMed DOI PMC
Yang Z., Rannala B. Bayesian species delimitation using multilocus sequence data. PNAS. 2010;107:9264–9269. doi: 10.1073/pnas.0913022107. PubMed DOI PMC
Rannala B., Yang Z. Improved Reversible Jump Algorithms for Bayesian Species Delimitation. Genetics. 2013;194:245–253. doi: 10.1534/genetics.112.149039. PubMed DOI PMC
Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. PubMed
Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Brower A.V.Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. PNAS. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC
Judson M.L. Cheliferoid pseudoscorpions (Arachnida, Chelonethi) from the Lower Cretaceous of France. Geodiversitas. 2009;31:61–71. doi: 10.5252/g2009n1a6. DOI
Šťáhlavský F., Zeh J.A., Zeh D.W., Král J. Karyotypes of the neotropical pseudoscorpions Semeiochernes armiger and Cordylochernes scorpioides (Pseudoscorpiones: Chernetidae) J. Arachnol. 2009;37:287–291. doi: 10.1636/P08-86.1. DOI
Sakamoto Y., Zacaro A. LEVAN, an ImageJ plugin for morphological cytogenetic analysis of mitotic and meiotic chromosomes. Initial version. [(accessed on 5 May 2022)]; Available online: http://rsbweb.nih.gov/ij/
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Green D.M., Sessions S.K. Nomenclature for chromosomes. In: Green D.M., Sessions S.K., editors. Amphibian Cytogenetics and Evolution. 1st ed. Academic Press Inc.; London, UK: 1991. pp. 431–432.
Šťáhlavský F., Štundlová J., Lowe G., Stockmann M., Kovařík F. Application of cytogenetic markers in the taxonomy of flat rock scorpions (Scorpiones: Hormuridae), with the description of Hadogenes weygoldti sp. n. Zool. Anz. 2018;273:173–182. doi: 10.1016/j.jcz.2018.01.007. DOI
Sadílek D., Nguyen P., Koç H., Kovařík F., Yağmur E.A., Šťáhlavský F. Molecular cytogenetics of Androctonus scorpions: An oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biol. J. Linn. Soc. 2015;115:69–76. doi: 10.1111/bij.12488. DOI
Chamberlin J.C. The Arachnid Order Chelonethida. Stanford University Press; Stanford, CA, USA: 1931. pp. 1–284.
Harvey M.S. The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida) Invertebr. Syst. 1992;6:1373–1435. doi: 10.1071/IT9921373. DOI
Judson M.L. A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae) Zootaxa. 2007;1627:53–68. doi: 10.11646/zootaxa.1627.1.4. DOI
Marhold K. Multivariate morphometrics and its application to monography at specific and infraspecific levels. In: Stuessy T.F., Lack H.W., editors. Monographic plant systematics: Fundamental assessment of plant biodiversity. A.R.G. Gantner Verlag K.G.; Ruggell, Liechtenstein: 2011. pp. 73–99.
Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900;50:157–175. doi: 10.1080/14786440009463897. DOI
Zar J.H. In: Biostatistical analysis. 4th ed. Upper Saddle River N.J., editor. Prentice Hall; Englewood Cliffts, NJ, USA: 1999. pp. 1–663.
Klecka W.R. Discriminant analysis, Series: Quantitative Applications in the Social Sciences. 1st ed. Sage Publications, Inc.; Beverly Hills, CA, USA: 1980. pp. 1–76.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Šlenker M., Koutecký P., Marhold K. MorphoTools2: An R package for the multivariate morphometric analysis. Bioinformatics. 2022;38:2954–2955. doi: 10.1093/bioinformatics/btac173. PubMed DOI
Beier M. Türkiye Psevdoscorpion’lari hakkinda. Türkische Pseudoscorpione. Rev. Fac. Scien. Univ. Istanbul B. 1949;14:1–20.
Mahnert V. Die Pseudoskorpione (Arachnida) Kenyas V. Chernetidae. Rev. Suisse Zool. 1982;89:691–712. doi: 10.5962/bhl.part.82469. DOI
Callaini G. Pseudoscorpioni dell’isola di Montecristo (Arachnida). Notulae Chernetologicae IX. Redia. 1983;66:147–165.
Petrov B.P. The false scorpions (Arachnida: Pseudoscorpiones) of the Eastern Rhodopes (Bulgaria and Greece) In: Beron P., Popov A., editors. Biodiversity of Bulgaria. 2. Biodiversity of Eastern Rhodopes (Bulgaria and Greece) Pensoft & National Museum of Natural History; Sofia, Bulgaria: 2004. pp. 153–166.
Sezek F., Özkan M. A new record for the Turkish pseudoscorpion fauna; Lamprochernes savignyi (Simon, 1881) (Arachnida, Pseudoscorpionida) Turk. J. Zool. 2006;30:255–259.
Mahnert V. Pseudoscorpions (Arthropoda, Arachnida). Order Pseudoscorpiones. In: van Harten A., editor. Arthropod fauna of the UAE. Dar Al Ummah Printing; Adu Dhabi, United Arab Emirates: 2009. pp. 26–42. no. 2.
Chamberlin J.C. New and little-known false scorpions (Arachnida, Chelonethida) from Monterey County, California. Bull. Am. Mus. Nat. Hist. 1952;99:259–312.
Hoff C.C. The pseudoscorpions of Illinois. Bull. Ill. Nat. Hist. Surv. 1949;24:407–498. doi: 10.21900/j.inhs.v24.198. DOI
Ohira H., Kaneko S., Faulks L., Tsutsumi T. Unexpected species diversity within Japanese Mundochthonius pseudoscorpions (Pseudoscorpiones: Chthoniidae) and the necessity for improved species diagnosis revealed by molecular and morphological examination. Invertebr. Syst. 2018;32:259–277. doi: 10.1071/IS17036. DOI
Ohira H., Sato K., Tsutsumi T., Kaneko S., Choi H.-J. DNA barcoding suggested the existence of cryptic species and high biodiversity of South Korean pseudoscorpions (Arachnida, Pseudoscorpiones) J. Asia Pac. Biodivers. 2018;11:399–407. doi: 10.1016/j.japb.2018.04.005. DOI
Tyagi K., Kumar V., Kundu S., Pakrashi A., Prasad P., Caleb J.T., Chandra K. Identification of Indian spiders through DNA barcoding: Cryptic species and species complex. Sci. Rep. 2019;9:14033. doi: 10.1038/s41598-019-50510-8. PubMed DOI PMC
Mohammed-Geba K., Obuid-Allah A.H., El-Shimy N.A., Mahbob M.A.E.-M., Ali R.S., Said S.M. DNA barcoding for scorpion species from New Valley Governorate in Egypt reveals different degrees of cryptic speciation and species misnaming. Conservation. 2021;1:228–240. doi: 10.3390/conservation1030018. DOI
Esselstyn J.A., Evans B.J., Sedlock J.L., Anwarali Khan F.A., Heaney L.R. Single-locus species delimitation: A test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats. Proc. Biol. Sci. 2012;279:3678–3686. doi: 10.1098/rspb.2012.0705. PubMed DOI PMC
Kekkonen M., Hebert P.D. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Resour. 2014;14:706–715. doi: 10.1111/1755-0998.12233. PubMed DOI PMC
Lukhtanov V. Species delimitation and analysis of cryptic species diversity in the XXI century. Entomol. Rev. 2019;99:463–472. doi: 10.1134/S0013873819040055. DOI
Milam J., Johnson D.E., Andersen J.C., Fassler A.B., Narango D.L., Elkinton J.S. Validating morphometrics with DNA barcoding to reliably separate three cryptic species of Bombus Cresson (Hymenoptera: Apidae) Insects. 2020;11:669. doi: 10.3390/insects11100669. PubMed DOI PMC
Romero-Ortiz C., Flórez D.E., Sarmiento C.E. Assessment of morphometric characters to delimit species of Apolpium Chamberlin, 1930 (Pseudoscorpiones, Olpiidae) J. Nat. Hist. 2020;54:1025–1043. doi: 10.1080/00222933.2020.1781273. DOI
Morgan-Richards M. A new species of tree weta from the North Island of New Zealand (Hemideina: Stenopelmatidae: Orthoptera) N. Z. Entomol. 1995;18:15–23. doi: 10.1080/00779962.1995.9721996. DOI
Lukhtanov V.A., Dantchenko A.V., Vishnevskaya M.S., Saifitdinova A.F. Detecting cryptic species in sympatry and allopatry: Analysis of hidden diversity in Polyommatus (Agrodiaetus) butterflies (Lepidoptera: Lycaenidae) Biol. J. Linn. Soc. 2015;116:468–485. doi: 10.1111/bij.12596. DOI
Suwannamit S., Baimai V., Otsuka Y., Saeung A., Thongsahuan S., Tuetun B., Apiwathnasorn C., Jariyapan N., Somboon P., Takaoka H. Cytogenetic and molecular evidence for an additional new species within the taxon Anopheles barbirostris (Diptera: Culicidae) in Thailand. Parasitol. Res. 2009;104:905–918. doi: 10.1007/s00436-008-1272-1. PubMed DOI
Ojanguren-Affilastro A.A., Adilardi R.S., Cajade R., Ramirez M.J., Ceccarelli F.S., Mola L.M. Multiple approaches to understanding the taxonomic status of an enigmatic new scorpion species of the genus Tityus (Buthidae) from the biogeographic island of Paraje Tres Cerros (Argentina) PLoS ONE. 2017;12:e0181337. doi: 10.1371/journal.pone.0181337. PubMed DOI PMC
Řezáč M., Král J., Pekár S. The spider genus Dysdera (Araneae, Dysderidae) in Central Europe: Revision and natural history. J. Arachnol. 2007;35:432–462. doi: 10.1636/H06-38.1. DOI
Štundlová J., Šmíd J., Nguyen P., Šťáhlavský F. Cryptic diversity and dynamic chromosome evolution in Alpine scorpions (Euscorpiidae: Euscorpius) Mol. Phylogenet. Evol. 2019;134:152–163. doi: 10.1016/j.ympev.2019.02.002. PubMed DOI
Červená M., Šťáhlavský F., Papáč V., Kováč Ľ., Christophoryová J. Morphological and cytogenetic characteristics of Neobisium (Blothrus) slovacum Gulička, 1977 (Pseudoscorpiones, Neobisiidae), the northernmost troglobitic species of the subgenus Blothrus in Europe. ZooKeys. 2019;817:113–130. doi: 10.3897/zookeys.817.27189. PubMed DOI PMC
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Ontano A.Z., Gainett G., Aharon S., Ballesteros J.A., Benavides L.R., Corbett K.F., Gavish-Regev E., Harvey M.S., Monsma S., Santibáñez-López C.E. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 2021;38:2446–2467. doi: 10.1093/molbev/msab038. PubMed DOI PMC
Harms D. The origins of diversity in ancient landscapes: Deep phylogeographic structuring in a pseudoscorpion (Pseudotyrannochthoniidae: Pseudotyrannochthonius) reflects Plio-Pleistocene climate fluctuations. Zool. Anz. 2018;273:112–123. doi: 10.1016/j.jcz.2018.01.001. DOI
Arabi J., Judson M.L., Deharveng L., Lourenço W.R., Cruaud C., Hassanin A. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): Detecting new mitogenomic rearrangements. J. Mol. Evol. 2012;74:81–95. doi: 10.1007/s00239-012-9490-7. PubMed DOI
Colborn J., Crabtree R.E., Shaklee J.B., Pfeiler E., Bowen B.W. The evolutionary enigma of bonefishes (Albula spp.): Cryptic species and ancient separations in a globally distributed shorefish. Evolution. 2001;55:807–820. doi: 10.1554/0014-3820(2001)055[0807:TEEOBA]2.0.CO;2. PubMed DOI
Szudarek-Trepto N., Kazmierski A., Dabert J. Long-term stasis in acariform mites provides evidence for morphologically stable evolution: Molecular vs. morphological differentiation in Linopodes (Acariformes; Prostigmata) Mol. Phylogenet. Evol. 2021;163:107237. doi: 10.1016/j.ympev.2021.107237. PubMed DOI
Cerca J., Meyer C., Stateczny D., Siemon D., Wegbrod J., Purschke G., Dimitrov D., Struck T.H. Deceleration of morphological evolution in a cryptic species complex and its link to paleontological stasis. Evolution. 2020;74:116–131. doi: 10.1111/evo.13884. PubMed DOI
Bond J.E., Hedin M.C., Ramirez M.G., Opell B.D. Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Mol. Ecol. 2001;10:899–910. doi: 10.1046/j.1365-294X.2001.01233.x. PubMed DOI
Adams S.A., Tsutsui N.D. The evolution of species recognition labels in insects. Philos. Trans. R. Soc. B. 2020;375:20190476. doi: 10.1098/rstb.2019.0476. PubMed DOI PMC
Stemme T., Pfeffer S.E. Anatomy of the nervous system in Chelifer cancroides (Arachnida: Pseudoscorpiones) with a distinct sensory pathway associated with the pedipalps. Insects. 2021;13:25. doi: 10.3390/insects13010025. PubMed DOI PMC
Zeh D.W., Zeh J.A. When Morphology Misleads—Interpopulation Uniformity in Sexual Selection Masks Genetic-Divergence in Harlequin Beetle-Riding Pseudoscorpion Populations. Evolution. 1994;48:1168–1182. doi: 10.2307/2410376. PubMed DOI
Poinar G.O., Ćurčić B.P., Cokendolpher J.C. Arthropod phoresy involving pseudoscorpions in the past and present. Acta Arachnol. 1998;47:79–96. doi: 10.2476/asjaa.47.79. DOI
Borges R.M. Phoresy Involving Insects as Riders or Rides: Life History, Embarkation, and Disembarkation. Ann. Entomol. Soc. Am. 2022;115:219–231. doi: 10.1093/aesa/saab051. DOI
Harvey M.S., Lopes P.C., Goldsmith G.R., Halajian A., Hillyer M.J., Huey J.A. A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones: Cheliferidae) in southern Africa. Invertebr. Syst. 2015;29:444–456. doi: 10.1071/IS15027. DOI
Krajčovičová K., Matyukhin A.V., Christophoryová J. First comprehensive research on pseudoscorpions (Arachnida: Pseudoscorpiones) collected from bird nests in Russia. Turk. J. Zool. 2018;42:480–487. doi: 10.3906/zoo-1801-47. DOI