Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29192338
PubMed Central
PMC5818627
DOI
10.1007/s00412-017-0651-8
PII: 10.1007/s00412-017-0651-8
Knihovny.cz E-zdroje
- Klíčová slova
- 45S rDNA, 5S rDNA, Animal, Cytogenetics, Database, Ribosomal RNA,
- MeSH
- chromozomy MeSH
- databáze genetické MeSH
- internet MeSH
- internetový prohlížeč MeSH
- karyotyp MeSH
- lokus kvantitativního znaku * MeSH
- molekulární evoluce * MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com . The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1-74 for 5S and 1-54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (> 75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.
Faculty of Science University of Hradec Kralove Hradecka 1285 CZ 50003 Hradec Kralove Czech Republic
Institut Botànic de Barcelona Passeig del Migdia s n 08038 Barcelona Catalonia Spain
Institute of Biophysics Academy of Sciences of the Czech Republic CZ 61265 Brno Czech Republic
Zobrazit více v PubMed
Averbeck KT, Eickbush TH. Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics. 2005;171(4):1837–1846. doi: 10.1534/genetics.105.047670. PubMed DOI PMC
Barth A, Souza VA, Sole M, Costa MA. Molecular cytogenetics of nucleolar organizer regions in Phyllomedusa and Phasmahyla species (Hylidae, Phyllomedusinae): a cytotaxonomic contribution. Geneti Mol Res. 2013;12(3):2400–2408. doi: 10.4238/2013.July.15.3. PubMed DOI
Baumlein H, Wobus U. Chromosomal localization of ribosomal 5S RNA genes in Chironomus thumni by in situ hybridization of iodinated 5S RNA. Chromosoma. 1976;57(2):199–204. doi: 10.1007/BF00292918. PubMed DOI
Britton-Davidian J, Cazaux B, Catalan J. Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: micro-evolutionary insights. Heredity. 2012;108(1):68–74. doi: 10.1038/hdy.2011.105. PubMed DOI PMC
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet. 2011;12(1):88. doi: 10.1186/1471-2156-12-88. PubMed DOI PMC
Cabrero J, Perfectti F, Gomez R, Camacho JPM, Lopez-Leon MD (2003) Population variation in the A chromosome distribution of satellite DNA and ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosom Res 11:375–381, 4, DOI: 10.1023/A:1024127525756 PubMed
Carvalho NDM, Pinheiro VSS, Carmo EJ, Goll LG, Schneider CH, Gross MC. The organization of repetitive DNA in the genomes of Amazonian lizard species in the family Teiidae. Cytogenet Genome Res. 2015;147(2-3):161–168. doi: 10.1159/000443714. PubMed DOI
Castro J, Rodriguez S, Pardo BG, Sanchez L, Martinez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.) Heredity (3):291–286, 302. 10.1046/j.1365-2540.2001.00834.x PubMed
Cazaux B, Catalan J, Veyrunes F, Douzery EJP, Britton-Davidian J. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae) BMC Evol Biol. 2011;11(124):1. PubMed PMC
Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010;10(1):271. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC
Cohen S, Agmon N, Sobol O, Segal D. Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mob DNA. 2010;8:11. doi: 10.1186/1759-8753-1-11. PubMed DOI PMC
da Silva M, Matoso DA, Vicari MR, de Almeida MC, Margarido VP, Artoni RF. Physical mapping of 5S rDNA in two species of knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes) Cytogenet Genome Res. 2011;134(4):303–307. doi: 10.1159/000328998. PubMed DOI
de Barros LC, Galetti PM, Feldberg E. Mapping 45S and 5S ribosomal genes in chromosomes of Anostomidae fish species (Ostariophysi, Characiformes) from different Amazonian water types. Hydrobiologia. 2017;789(1):77–89. doi: 10.1007/s10750-015-2583-8. DOI
Dover GA. Molecular drive: a cohesive mode of species evolution. Nature. 1982;299(5879):111–117. doi: 10.1038/299111a0. PubMed DOI
Drouin G, de Sá MM. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol. 1995;12(3):481–493. PubMed
Drouin G, Sevigny JM, McLaren IA, Hofman JD, Doolittle WF. Variable arrangement of 5S ribosomal genes within the ribosomal DNA repeats of arthropods. Mol Biol Evol. 1992;9(5):826–835. PubMed
Dubcovsky J, Dvorak J. Ribosomal RNA multigene loci—nomads of the Triticeae genomes. Genetics. 1995;140(4):1367–1377. PubMed PMC
Fagundes V, Christoff AU, Amaro-Ghilard RC, Scheibler DR, Yonenaga-Yassuda Y. Multiple interstitial ribosomal sites (NORs) in the Brazilian squirrel Sciurus aestuans ingrami (Rodentia, Sciuridae) with 2n = 40. An overview of Sciurus cytogenetics. Genet Mol Biol. 2003;26(3):253–257. doi: 10.1590/S1415-47572003000300007. DOI
Ferreira IA, Bertollo LAC, Martins C. Comparative chromosome mapping of 5S rDNA and 5SHindIII repetitive sequences in Erythrinidae fishes (Characiformes) with emphasis on the Hoplias malabaricus ‘species complex’. Cytogenet Genome Res. 2007;118(1):78–79. doi: 10.1159/000106445. PubMed DOI
Fontana F, Lanfredi M, Congiu L, Leis M, Chicca M, Rossi R. Chromosomal mapping of 18S-28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome. 2003;46(3):473–477. doi: 10.1139/g03-007. PubMed DOI
Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC. Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosom Res. 1998;6(6):463–471. doi: 10.1023/A:1009200428369. PubMed DOI
Garcia S, Garnatje T, Kovařík A. Plant rDNA database: ribosomal DNA loci data including other karyological and cytogenetic information in plants. Chromosoma. 2012;121(4):389–394. doi: 10.1007/s00412-012-0368-7. PubMed DOI
Garcia S, Kovarik A. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA genes (rDNA) organisation. Heredity. 2013;111(1):23–33. doi: 10.1038/hdy.2013.11. PubMed DOI PMC
Garcia S, Kovařík A, Leitch AR, Garnatje T. Cytogenetic features of rRNA genes across land plants: analysis of the plant rDNA database. Plant J. 2017;89(5):1020–1030. doi: 10.1111/tpj.13442. PubMed DOI
Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Valles J, Leitch AR, Kovařík A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma. 2009;118(1):85–97. doi: 10.1007/s00412-008-0179-z. PubMed DOI
Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci U S A. 2015;112(8):2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC
Gonzalez IL, Sylvester JE. Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics. 2001;73(3):255–263. doi: 10.1006/geno.2001.6540. PubMed DOI
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res. 2013;141(2-3):90–102. doi: 10.1159/000354832. PubMed DOI
Gregory TR (2017) Animal genome size database. http://www.genomesize.com/. Accessed 26 January 2017
Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 2010;29(13):2135–2146. doi: 10.1038/emboj.2010.17. PubMed DOI PMC
Hillis DM, Dixon MT. Ribosomal DNA—molecular evolution and phylogenetic inference. Q Rev Biol. 1991;66(4):411–453. doi: 10.1086/417338. PubMed DOI
IUCN (2014) Red list of threatened species. Version 2014.3. Summary statistics for globally threatened species. Table 1: numbers of threatened species by major groups of organisms (1996–2014), www.iucnredlist.org. Accessed 20 January 2017
Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004;14(4):528–538. doi: 10.1101/gr.1970304. PubMed DOI PMC
Keller I, Chintauan-Marquier IC, Veltsos P, Nichols RA. Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution. Genetics. 2006;174(2):863–874. doi: 10.1534/genetics.106.061341. PubMed DOI PMC
Kobayashi T. A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. BioEssays. 2008;30(3):267–272. doi: 10.1002/bies.20723. PubMed DOI
Leitch AR, Schwarzacher T, Jackson D, Leitch IJ. In situ hybridization: a practical guide. Oxford: Bios Scientific Publishers Ltd.; 1994.
Lim KY, Skalická K, Koukalová B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovařík A. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics. 2004;166(4):1935–1946. doi: 10.1534/genetics.166.4.1935. PubMed DOI PMC
Lima-de-Faria A. The chromosome field I. Prediction of the location of ribosomal citrons. Hereditas. 1976;83:1–22. doi: 10.1111/j.1601-5223.1976.tb01565.x. DOI
Lima-Filho PA, Bertollo LA, Cioffi MB, Costa GW, Molina WF. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies (Ctenogobius, Gobiidae) Cytogenet Genome Res. 2014;142(3):197–203. doi: 10.1159/000360492. PubMed DOI
Lohe AR, Roberts PA. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics. 1990;125(2):399–406. PubMed PMC
Mantovani M, Abel LD, Moreira-Filho O. Conserved 5S and variable 45S rDNA chromosomal localisation revealed by FISH in Astyanax scabripinnis (Pisces, Characidae) Genetica. 2005;123(3):211–216. doi: 10.1007/s10709-004-2281-3. PubMed DOI
Matsuda Y, Moriwaki K, Chapman VM, Hoi-Sen Y, Akbarzadeh J, Suzuki H. Chromosomal mapping of mouse 5S rRNA genes by direct R-banding fluorescence in situ hybridization. Cytogenet Cell Genet. 1994;66(4):246–249. doi: 10.1159/000133704. PubMed DOI
McKim KS, Howell AM, Rose AM. The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 1988;120(4):987–1001. PubMed PMC
McTaggart S, Dudycha JL, Omilian A, Crease TJ. Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics. 2007;175(1):311–320. doi: 10.1534/genetics.105.050229. PubMed DOI PMC
Mentewab AB, Jacobsen MJ, Flowers RA. Incomplete homogenization of 18 S ribosomal DNA coding regions in Arabidopsis thaliana. BMC Res Notes. 2011;4(1):93. doi: 10.1186/1756-0500-4-93. PubMed DOI PMC
Miller L, Brown DD. Variation in the activity of nucleolar organizers and their ribosomal gene content. Chromosoma. 1969;28(4):430–444. doi: 10.1007/BF00284259. PubMed DOI
Mlinarec J, Porupski I, Maguire I, Klobucar G. Comparative karyotype investigations in the white-clawed crayfish Austropotamobius pallipes (Lereboullet, 1858) species complex and stone crayfish A. torrentium (Schrank, 1803) (Decapoda: Astacidae). J Crust. Biol. 2016;36:87–93.
Nieto Feliner G, Rosselló JA. Concerted evolution of multigene families and homeologous recombination. In: Wendel JF, editor. Plant Genome Diversity. Wien: Springer-Verlag; 2012. pp. 171–194.
Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. PubMed DOI PMC
Postepska-Igielska A, Grummt I. NoRC silences rRNA genes, telomeres, and centromeres. Cell Cycle. 2014;13(4):493–494. doi: 10.4161/cc.27783. PubMed DOI
Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46(1):48–50. doi: 10.1139/g02-103. PubMed DOI
Puerma E, Acosta MJ, Barragán MJ, Martínez S, Marchal JA, Bullejos M, Sánchez A. The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera) Genetica. 2008;134:287–295. doi: 10.1007/s10709-007-9236-4. PubMed DOI
Ráb P, Crossman EJ, Reed KM, Rábová M (2002) Chromosomal characteristics of ribosomal DNA in two extant species of North American mudminnows <i>Umbra pygmaea</i> and <i>U. limi</i> (Euteleostei: Umbridae). Cytogenet Genome Res 98(2-3):194–198 PubMed
Rees H, Shaw DD, Wilkinson P (1978) Nuclear DNA Variation among Acridid Grasshoppers. Proc R Soc B Biol Sci 202(1149):517–525
Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol Biol 12(1):225 PubMed PMC
Roa F, Guerra M (2015) Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet Genome Res 146(3):243–249 PubMed
Robicheau BM, Susko E, Harrigan AM, Snyder M (2017) Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome. Genome Biol Evol 9(2):380–397 PubMed PMC
Roy V, Monti-Dedieu L, Chaminade N, Siljak-Yakovlev S, Aulard S, Lemeunier F, Montchamp- Moreau C (2005) Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity (Edinb) 94:388–395 PubMed
Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92(2):143–148
Schwarzacher HG, Wachtler F. The nucleolus. Anat Embryol (Berl) 1993;188:515–536. doi: 10.1007/BF00187008. PubMed DOI
Sember A, Bohlen J, Slechtová V, Altmanová M, Symonová R, Rab P (2015) Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 15:251 PubMed PMC
Singh M, Barman AS (2013) Chromosome breakages associated with 45S ribosomal DNA sequences in spotted snakehead fish Channa punctatus. Mol Biol Rep 40(1):723–729 PubMed
Symonová R, Majtanová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, Rabová M, Rab P (2013) Genome differentiation in a species pair of coregonine fishes: an extremelyrapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol 13:42 PubMed PMC
Symonová R, Ocalewicz K, Kirtiklis L, Delmastro GB, Pelikánová Š, Garcia S, Kovařík A (2017) Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genomics 18(1):391 PubMed PMC
Tanomtong A, Khunsook S, Keawmad P, Pintong K (2008) Cytogenetic Study of the Leopard, Panthera pardus (Carnivora, Felidae) by Conventional Staining, G-banding and High-resolution Staining Technique. Cytologia 73(1):81–90
Veltsos P, Keller I, Nichols RA (2009) Geographically localised bursts of ribosomal DNA mobility in the grasshopper Podisma pedestris. Heredity 103(1):54–61 PubMed
Wang W, Lu M, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125(4):683–699 PubMed PMC
Wang M, Lemos B, Eng C (2017) Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 13(9):e1006994 PubMed PMC
Wicke S, Costa A, Muñoz J, Quandt D (2011) Restless 5S: The re arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol 61(2):321–332 PubMed
Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1981) The untranslated regions of beta-globin mRNA evolve at a functional rate in higher primates. Proc Natl Acad Sci U S A 77(4):2158–2162 PubMed
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features
DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways