The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics

. 2024 Mar 01 ; 41 (3) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38306580

Grantová podpora
PID2020-119163GB-I00 Agencia Estatal de Investigación
Bundesministerium für Bildung und Forschung
German Research Foundation
Graduate Academy of the TU Dresden
22-16826S Czech Science Foundation

Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.

Zobrazit více v PubMed

Abascal-Palacios  G, Jochem  L, Pla-Prats  C, Beuron  F, Vannini  A. Structural basis of Ty3 retrotransposon integration at RNA polymerase III-transcribed genes. Nat Commun. 2021:12(1):6992. 10.1038/s41467-021-27338-w. PubMed DOI PMC

Almeida  MV, Vernaz  G, Putman  ALK, Miska  EA. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet. 2022:38(6):529–553. 10.1016/j.tig.2022.02.009. PubMed DOI

Altinkut  A, Raskina  O, Nevo  E, Belyayev  A. En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution. Cell Mol Biol Lett. 2006:11(2):214–229. 10.2478/s11658-006-0017-3. PubMed DOI PMC

Arkhipova  IR. Neutral theory, transposable elements, and eukaryotic genome evolution. Mol Biol Evol. 2018:35(6):1332–1337. 10.1093/molbev/msy083. PubMed DOI PMC

Baeza  C, Schrader  O, Budahn  H. Characterization of geographically isolated accessions in five Alstroemeria L. species (Chile) using FISH of tandemly repeated DNA sequences and RAPD analysis. Plant Syst Evol. 2007:269(1–2):1–14. 10.1007/s00606-007-0591-5. DOI

Balint-Kurti  PJ, Clendennen  SK, Doleželová  M, Valárik  M, Doležel  J, Beetham  PR, May  GD. Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol Gen Genet. 2000:263(6):908–915. 10.1007/s004380000265. PubMed DOI

Bendich  AJ, Rogers  SO. Ribosomal intergenic spacers are filled with transposon remnants. Genome Biol Evol. 2023:15(7):evad114. 10.1093/gbe/evad114. PubMed DOI PMC

Bhattacharyya  MK, Smith  AM, Ellis  THN, Hedley  C, Martin  C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell. 1990:60(1):115–122. 10.1016/0092-8674(90)90721-P. PubMed DOI

Bigot  Y, Lutcher  F, Hamelin  MH, Périquet  G. The 28S ribosomal RNA-encoding gene of Hymenoptera: inserted sequences in the retrotransposon-rich regions. Gene. 1992:121(2):347–352. 10.1016/0378-1119(92)90142-C. PubMed DOI

Bloom  SE, Goodpasture  C. An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum Genet. 1976:34(2):199–206. 10.1007/BF00278889. PubMed DOI

Blum  H, Beier  H, Gross  HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987:8(2):93–99. 10.1002/elps.1150080203. DOI

Blumenstiel  JP. Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. Genes (Basel).  2019:10(5):336. 10.3390/genes10050336. PubMed DOI PMC

Brewer  TE, Albertsen  M, Edwards  A, Kirkegaard  RH, Rocha  EP, Fierer  N. Unlinked rRNA genes are widespread among bacteria and archaea. ISME J. 2020:14(2):597–608. 10.1038/s41396-019-0552-3. PubMed DOI PMC

Brown  DD, Wensink  PC, Jordan  E. A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol. 1972:63(1):57–73. 10.1016/0022-2836(72)90521-9. PubMed DOI

Bueno  D, Palacios-Gimenez  OM, Cabral-de-Mello  DC. Chromosomal mapping of repetitive DNAs in the grasshopper Abracris flavolineata reveal possible ancestry of the B chromosome and H3 histone spreading. PLoS One. 2013:8(6):e66532. 10.1371/journal.pone.0066532. PubMed DOI PMC

Burke  WD, Calalang  CC, Eickbush  TH. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol Cell Biol. 1987:7(6):2221–2230. 10.1128/mcb.7.6.2221-2230.1987. PubMed DOI PMC

Burke  WD, Eickbush  DG, Xiong  Y, Jakubczak  J, Eickbush  TH. Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol. 1993:10(1):163–185. 10.1093/oxfordjournals.molbev.a039990. PubMed DOI

Burke  WD, Malik  HS, Lathe  WC  III, Eickbush  TH. Are retrotransposons long-term hitchhikers?  Nature. 1998:392(6672):141–142. 10.1038/32330. PubMed DOI

Carleton  KL, Conte  MA, Malinsky  M, Nandamuri  SP, Sandkam  BA, Meier  JI, Mwaiko  S, Seehausen  O, Kocher  TD. Movement of transposable elements contributes to cichlid diversity. Mol Ecol. 2020:29(24):4956–4969. 10.1111/mec.15685. PubMed DOI

Chester  M, Sykorova  E, Fajkus  J, Leitch  AR. Single integration and spread of a Copia-like sequence nested in rDNA intergenic spacers of Allium cernuum (Alliaceae). Cytogenet Genome Res. 2010:129(1–3):35–46. 10.1159/000312959. PubMed DOI

Chuong  EB, Elde  NC, Feschotte  C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017:18(2):71–86. 10.1038/nrg.2016.139. PubMed DOI PMC

Cioffi  MB, Martins  C, Bertollo  LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010:10:271. 10.1186/1471-2148-10-271. PubMed DOI PMC

Coen  E, Strachan  T, Dover  G. Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol. 1982:158(1):17–35. 10.1016/0022-2836(82)90448-X. PubMed DOI

Cohen  S, Houben  A, Segal  D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008:53(6):1027–1034. 10.1111/j.1365-313X.2007.03394.x. PubMed DOI

Cohen  S, Yacobi  K, Segal  D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003:13(6a):1133–1145. 10.1101/gr.907603. PubMed DOI PMC

Condon  C, French  S, Squires  C, Squires  CL. Depletion of functional ribosomal RNA operons in Escherichia coli causes increased expression of the remaining intact copies. EMBO J. 1993:12(11):4305–4315. 10.1002/j.1460-2075.1993.tb06115.x. PubMed DOI PMC

Cosby  RL, Chang  NC, Feschotte  C. Host–transposon interactions: conflict, cooperation, and cooption. Genes Dev. 2019:33(17–18):1098–1116. 10.1101/gad.327312.119. PubMed DOI PMC

Dalíková  M, Provazníková  I, Provazník  J, Grof-Tisza  P, Pepi  A, Nguyen  P. The role of repetitive sequences in repatterning of major ribosomal DNA clusters in Lepidoptera. Gen Biol Evol. 2023:15(6):evad090. 10.1093/gbe/evad090. PubMed DOI PMC

da Silva  M, Barbosa  P, Artoni  RF, Feldberg  E. Evolutionary dynamics of 5S rDNA and recurrent association of transposable elements in electric fish of the family Gymnotidae (Gymnotiformes): the case of Gymnotus mamiraua. Cytogenet Genome Res. 2016:149(4):297–303. 10.1159/000449431. PubMed DOI

Devos  KM, Brown  JKM, Bennetzen  JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002:12(7):1075–1079. 10.1101/gr.132102. PubMed DOI PMC

Drouin  G, De Sa  MM. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol. 1995:12(3):481–493. 10.1093/oxfordjournals.molbev.a040223. PubMed DOI

Eagle  SHC, Crease  TJ. Copy number variation of ribosomal DNA and Pokey transposons in natural populations of Daphnia. Mob DNA. 2012:3(1):4. 10.1186/1759-8753-3-4. PubMed DOI PMC

Eaves  LA, Gardner  AJ, Fry  RC. Tools for the assessment of epigenetic regulation. In: Fry  RC, editor. Environmental epigenetics in toxicology and public health. Amsterdam: Elsevier; 2020. p. 33–64.

Eickbush  DG, Burke  WD, Eickbush  TH. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS One. 2013:8(9):e66441. 10.1371/journal.pone.0066441. PubMed DOI PMC

Eickbush  DG, Eickbush  TH. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics. 1995:139(2):671–684. 10.1093/genetics/139.2.671. PubMed DOI PMC

Eickbush  DG, Eickbush  TH. Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol. 2003:23(11):3825–3836. 10.1128/MCB.23.11.3825-3836.2003. PubMed DOI PMC

Eickbush  DG, Eickbush  TH. R2 and R2/R1 hybrid non-autonomous retrotransposons derived by internal deletions of full-length elements. Mob DNA. 2012:3(1):10. 10.1186/1759-8753-3-10. PubMed DOI PMC

Eickbush  DG, Ye  J, Zhang  X, Burke  WD, Eickbush  TH. Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol. 2008:28(20):6452–6461. 10.1128/MCB.01015-08. PubMed DOI PMC

Elliott  TA, Stage  DE, Crease  TJ, Eickbush  TH. In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome. Mob DNA. 2013:4(1):20. 10.1186/1759-8753-4-20. PubMed DOI PMC

Ellison  CE, Bachtrog  D. Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements. Elife. 2015:4:e05899. 10.7554/eLife.05899. PubMed DOI PMC

Fan  W, Eklund  E, Sherman  RM, Liu  H, Pitts  S, Ford  B, Rajeshkumar  NV, Laiho  M. Widespread genetic heterogeneity of human ribosomal RNA genes. RNA. 2022:28(4):478–492. 10.1261/rna.078925.121. PubMed DOI PMC

Fawcett  JA, Innan  H. The role of gene conversion between transposable elements in rewiring regulatory networks. Genome Biol Evol. 2019:11(7):1723–1729. 10.1093/gbe/evz124. PubMed DOI PMC

Fefelova  EA, Pleshakova  IM, Mikhaleva  EA, Pirogov  SA, Poltorachenko  VA, Abramov  YA, Romashin  DD, Shatskikh  AS, Blokh  RS, Gvozdev  VA, et al.  Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res. 2022:50(2):867–884. 10.1093/nar/gkab1276. PubMed DOI PMC

Ferretti  ABSM, Ruiz-Ruano  FJ, Milani  D, Loreto  V, Martí  DA, Ramos  E, Martins  C, Cabral-de-Mello  DC. How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. Chromosoma. 2019:128(2):165–175. 10.1007/s00412-019-00706-8. PubMed DOI

Finnegan  DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989:5(4):103–107. 10.1016/0168-9525(89)90039-5. PubMed DOI

Flavell  AJ, Ish-Horowicz  D. Extrachromosomal circular copies of the eukaryotic transposable element Copia in cultured Drosophila cells. Nature. 1981:292(5824):591–595. 10.1038/292591a0. PubMed DOI

Flavell  RB, Bennett  MD, Smith  JB, Smith  DB. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974:12(4):257–269. 10.1007/BF00485947. PubMed DOI

Fujisawa  M, Yamagata  H, Kamiya  K, Nakamura  M, Saji  S, Kanamori  H, Wu  J, Matsumoto  T, Sasaki  T. Sequence comparison of distal and proximal ribosomal DNA arrays in rice (Oryza sativa L.) chromosome 9S and analysis of their flanking regions. Theor Appl Genet. 2006:113(3):419–428. 10.1007/s00122-006-0307-1. PubMed DOI

Fujiwara  H, Ogura  T, Takada  N, Miyajima  N, Ishikawa  H, Maekawa  H. Introns and their flanking sequences of Bombyx mori rDNA. Nucleic Acids Res. 1984:12(17):6861–6869. 10.1093/nar/12.17.6861. PubMed DOI PMC

Ganley  ARD, Kobayashi  T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res. 2014:14(1):49–59. 10.1111/1567-1364.12133. PubMed DOI

Gao  D, Li  Y, Kim  KD, Abernathy  B, Jackson  SA. Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biol. 2016:17(1):7. 10.1186/s13059-015-0867-y. PubMed DOI PMC

Gao  X, Hou  Y, Ebina  H, Levin  H, Voytas  DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008:18(3):359–369. 10.1101/gr.7146408. PubMed DOI PMC

Garcia  S, Crhák Khaitová  L, Kovařík  A. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol. 2012:12:95. 10.1186/1471-2229-12-95. PubMed DOI PMC

Garcia  S, Kovařík  A, Leitch  A, Garnatje  T. Cytogenetic features of rRNA genes across land plants: analysis of the plant rDNA database. Plant J. 2017:89(5):1020–1030. 10.1111/tpj.13442. PubMed DOI

Garcia  S, Lim  KY, Chester  M, Garnatje  T, Pellicer  J, Vallès  J, Leitch  AR, Kovařík  A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma. 2009:118(1):85–97. 10.1007/s00412-008-0179-z. PubMed DOI

Garcia  S, Panero  JL, Siroky  J, Kovarik  A. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol. 2010:10:176. 10.1186/1471-2229-10-176. PubMed DOI PMC

Garcia  S, Pascual-Díaz  JP, Krumpolcová  A, Kovařík  A. Analysis of 5S rDNA genomic organization through the RepeatExplorer2 pipeline: a simplified protocol. In: Heitkam  T, Garcia  S, editors. Plant cytogenetics and cytogenomics. Methods in molecular biology. 1st ed. Vol. 2672. New York (NY): Humana; 2023. p. 501–512. 10.1007/978-1-0716-3226-0_30. PubMed DOI

Garcia  S, Wendel  JF, Borowska-Zuchowska  N, Aïnouche  M, Kuderova  A, Kovarik  A. The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants. Front Plant Sci. 2020:11:41. 10.3389/fpls.2020.00041. PubMed DOI PMC

Gibbons  JG, Branco  AT, Godinho  SA, Yu  S, Lemos  B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci U S A. 2015:112(8):2485–2490. 10.1073/pnas.1416878112. PubMed DOI PMC

Gibbons  JG, Branco  AT, Yu  S, Lemos  B. Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun. 2014:5:4850. 10.1038/ncomms5850. PubMed DOI

Glass  SK, Moszczynska  A, Crease  TJ. The effect of transposon Pokey insertions on sequence variation in the 28S rRNA gene of Daphnia pulex. Genome. 2008:51(12):988–1000. 10.1139/G08-092. PubMed DOI

Glugoski  L, Giuliano-Caetano  L, Moreira-Filho  O, Vicari  MR, Nogaroto  V. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene. 2018:650:49–54. 10.1016/j.gene.2018.01.099. PubMed DOI

Goffová  I, Fajkus  J. The rDNA loci—intersections of replication, transcription, and repair pathways. Int J Mol Sci. 2021:22(3):1302. 10.3390/ijms22031302. PubMed DOI PMC

Gogolevsky  KP, Vassetzky  NS, Kramerov  DA. 5S rRNA-derived and tRNA-derived SINEs in fruit bats. Genomics. 2009:93(5):494–500. 10.1016/j.ygeno.2009.02.001. PubMed DOI

Gonzalez  IL, Tugendreich  S, Hieter  P, Sylvester  JE. Fixation times of retroposons in the ribosomal DNA spacer of human and other primates. Genomics. 1993:18(1):29–36. 10.1006/geno.1993.1423. PubMed DOI

Gorbunova  V, Seluanov  A, Mita  P, McKerrow  W, Fenyö  D, Boeke  JD, Linker  SB, Gage  FH, Kreiling  JA, Petrashen  AP, et al.  The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021:596(7870):43–53. 10.1038/s41586-021-03542-y. PubMed DOI PMC

Hall  AN, Morton  E, Queitsch  C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet. 2022:38(6):587–597. 10.1016/j.tig.2022.02.005. PubMed DOI PMC

Handa  H, Kanamori  H, Tanaka  T, Murata  K, Kobayashi  F, Robinson  SJ, Koh  CS, Pozniak  CJ, Sharpe  AG, Paux  E, et al.  Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. Plant J. 2018:96(6):1148–1159. 10.1111/tpj.14094. PubMed DOI

Harasawa  R, Pitcher  DG, Ramírez  AS, Bradbury  JM. A putative transposase gene in the 16S–23S rRNA intergenic spacer region of Mycoplasma imitans. Microbiology (Reading). 2004:150(Pt 4):1023–1029. 10.1099/mic.0.26629-0. PubMed DOI

Hassan  M, Das  S, Adhya  S. Mini-exon derived RNA gene of Leishmania donovani: structure, organization and expression. J Biosci. 1992:17(1):55–66. 10.1007/BF02716774. DOI

Havlová  K, Dvořáčková  M, Peiro  R, Abia  D, Mozgová  I, Vansáčová  L, Gutierrez  C, Fajkus  J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol Biol. 2016:92(4–5):457–471. 10.1007/s11103-016-0524-1. PubMed DOI

Heitkam  T, Garcia  S. Plant cytogenetics and cytogenomics: methods in molecular biology. 1st ed. Vol. 2672. New York (NY): Humana; 2023. p. 1–568. 10.1007/978-1-0716-3226-0. PubMed DOI

Heitkam  T, Schmidt  T. BNR—a LINE family from Beta vulgaris—contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes. Plant J. 2009:59(6):872–882. 10.1111/j.1365-313X.2009.03923.x. PubMed DOI

Heitkam  T, Weber  B, Walter  I, Liedtke  S, Ost  C, Schmidt  T. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. Plant J. 2020:103(1):32–52. 10.1111/tpj.14705. PubMed DOI

Hemleben  V, Grierson  D, Borisjuk  N, Volkov  RA, Kovarik  A. Personal perspectives on plant ribosomal RNA genes research: from precursor-rRNA to molecular evolution. Front Plant Sci. 2021:12:797348. 10.3389/fpls.2021.797348. PubMed DOI PMC

Hemleben  V, Zentgraf  U. Structural organization and regulation of transcription by RNA polymerase I of plant nuclear ribosomal RNA genes. Results Probl Cell Differ. 1994:20:3–24. 10.1007/978-3-540-48037-2_1. PubMed DOI

Hřibová  E, Neumann  P, Matsumoto  T, Roux  N, Macas  J, Doležel  J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 2010:10:204. 10.1186/1471-2229-10-204. PubMed DOI PMC

Ingle  J, Timmis  JN, Sinclair  J. The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiol. 1975:55(3):496–501. 10.1104/pp.55.3.496. PubMed DOI PMC

Jakubczak  JL, Xiong  Y, Eickbush  TH. Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J Mol Biol. 1990:212(1):37–52. 10.1016/0022-2836(90)90303-4. PubMed DOI

Jakubczak  JL, Zenni  MK, Woodruff  RC, Eickbush  TH. Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics. 1992:131(1):129–142. 10.1093/genetics/131.1.129. PubMed DOI PMC

Jamrich  M, Miller  OL. The rare transcripts of interrupted rRNA genes in Drosophila melanogaster are processed or degraded during synthesis. EMBO J. 1984:3(7):1541–1545. 10.1002/j.1460-2075.1984.tb02008.x. PubMed DOI PMC

Jiang  N, Bao  Z, Zhang  X, Eddy  SR, Wessler  SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature. 2004:431(7008):569–573. 10.1038/nature02953. PubMed DOI

Jo  S-H, Koo  D-H, Kim  JF, Hur  C-G, Lee  S, Yang  TJ, Kwon  SY, Choi  D. Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biol. 2009:9(1):1–14. 10.1186/1471-2229-9-42. PubMed DOI PMC

Kalendar  R, Raskina  O, Belyayev  A, Schulman  AH. Long tandem arrays of Cassandra retroelements and their role in genome dynamics in plants. Int J Mol Sci. 2020:21(8):2931. 10.3390/ijms21082931. PubMed DOI PMC

Kalendar  R, Tanskanen  J, Chang  W, Antonius  K, Sela  H, Peleg  O, Schulman  AH. Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A. 2008:105(15):5833–5838. 10.1073/pnas.0709698105. PubMed DOI PMC

Kamstra  SA, Kuipers  AGJ, De Jeu  MJ, Ramanna  MS, Jacobsen  E. Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA. Genome. 1997:40(5):652–658. 10.1139/g97-086. PubMed DOI

Kapitonov  VV, Jurka  J. A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol. 2003:20(5):694–702. 10.1093/molbev/msg075. PubMed DOI

Kasselimi  E, Pefani  DE, Taraviras  S, Lygerou  Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci. 2022:47(4):328–341. 10.1016/j.tibs.2021.12.007. PubMed DOI

Kazazian  HH. Mobile DNA transposition in somatic cells. BMC Biol. 2011:9(1):1–4. 10.1186/1741-7007-9-62. PubMed DOI PMC

Kejnovsky  E, Hobza  R, Kubat  Z, Widmer  A, Marais  GAB, Vyskot  B. High intrachromosomal similarity of retrotransposon long terminal repeats: evidence for homogenization by gene conversion on plant sex chromosomes?  Gene. 2007:390(1–2):92–97. 10.1016/j.gene.2006.10.007. PubMed DOI

Kempken  F. Hideaway, a repeated element from Ascobolus immersus, is rDNA-associated and may resemble a retrotransposon. Curr Genet. 2001:40(3):179–185. 10.1007/s002940100253. PubMed DOI

Kerrebrock  AW, Srivastava  R, Gerbi  SA. Isolation and characterization of ribosomal DNA variants from Sciara coprophila. J Mol Biol. 1989:210(1):1–13. 10.1016/0022-2836(89)90286-6. PubMed DOI

Kimura  M. Evolutionary rate at the molecular level. Nature. 1968:217(5129):624–626. 10.1038/217624a0. PubMed DOI

Kobayashi  T. Strategies to maintain the stability of the ribosomal RNA gene repeats—collaboration of recombination, cohesion, and condensation. Genes Genet Syst. 2006:81(3):155–161. 10.1266/ggs.81.155. PubMed DOI

Kojima  KK, Fujiwara  H. Cross-genome screening of novel sequence specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. Mol Biol Evol. 2004:21(2):207–217. 10.1093/molbev/msg235. PubMed DOI

Kojima  KK, Fujiwara  H. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol. 2005:22(11):2157–2165. 10.1093/molbev/msi210. PubMed DOI

Kojima  KK. Helenus and Ajax, Two groups of non-autonomous LTR retrotransposons, represent a new type of small rna gene-derived mobile elements. Biology. 2024:13(2):119. 10.3390/biology13020119 PubMed DOI PMC

Kuroki-Kami  A, Nichuguti  N, Yatabe  H, Mizuno  S, Kawamura  S, Fujiwara  H. Targeted gene knockin in zebrafish using the 28S rDNA-specific non-LTR-retrotransposon R2Ol. Mob DNA. 2019:10(1):23. 10.1186/s13100-019-0167-2. PubMed DOI PMC

Lan  T, Albert  VA. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid. BMC Plant Biol. 2011:11(1):126. 10.1186/1471-2229-11-126. PubMed DOI PMC

Lanciano  S, Carpentier  MC, Llauro  C, Jobet  E, Robakowska-Hyzorek  D, Lasserre  E, Ghesquière  A, Panaud  O, Mirouze  M. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet. 2017:13(2):e1006630. 10.1371/journal.pgen.1006630. PubMed DOI PMC

Lathe  WC, Burke  WD, Eickbush  DG, Eickbush  TH. Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. Mol Biol Evol. 1995:12(6):1094–1105. 10.1093/oxfordjournals.molbev.a040283. PubMed DOI

Lavrinienko  A, Jernfors  T, Koskimäki  JJ, Pirttilä  AM, Watts  PC. Does intraspecific variation in rDNA copy number affect analysis of microbial communities?  Trends Microbiol. 2021:29(1):19–27. 10.1016/j.tim.2020.05.019. PubMed DOI

Lecanidou  R, Eickbush  TH, Kafatos  FC. Ribosomal DNA genes of Bombyx mori: a minor fraction of the repeating units contain insertions. Nucleic Acids Res. 1984:12(11):4703–4713. 10.1093/nar/12.11.4703. PubMed DOI PMC

LeRiche  K, Eagle  SHC, Crease  TJ. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse. PLoS ONE. 2014:9(12):e114773. 10.1371/journal.pone.0114773. PubMed DOI PMC

Lim  K, Furuta  Y, Kobayashi  I. Large variations in bacterial ribosomal RNA genes. Mol Biol Evol. 2012:29(10):2937–2948. 10.1093/molbev/mss101. PubMed DOI PMC

Liu  H, Pan  G, Dang  X, Li  T, Zhou  Z. Characterization of active ribosomal RNA harboring MITEs insertion in microsporidian Nosema bombycis genome. Parasitol Res. 2013:112(3):1011–1020. 10.1007/s00436-012-3223-0. PubMed DOI

Locati  MD, Pagano  JFB, Girard  G, Ensink  WA, van Olst  M, van Leeuwen  S, Nehrdich  U, Spaink  HP, Rauwerda  H, Jonker  MJ, et al.  Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA. 2017:23(8):1188–1199. 10.1261/rna.061515.117. PubMed DOI PMC

Long  EO, Dawid  IB. Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell. 1979:18(4):1185–1196. 10.1016/0092-8674(79)90231-9. PubMed DOI

Longo  MS, Brown  JD, Zhang  C, O’Neill  MJ, O’Neill  RJ. Identification of a recently active mammalian SINE derived from ribosomal RNA. Genome Biol Evol. 2015:7(3):775–788. 10.1093/gbe/evv015. PubMed DOI PMC

Lopez  FB, Fort  A, Tadini  L, Probst  AV, McHale  M, Friel  J, Ryder  P, Pontvianne  F, Pesaresi  P, Sulpice  R, et al.  Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. Plant Cell. 2021:33(4):1135–1150. 10.1093/plcell/koab020. PubMed DOI PMC

Luo  Y, Fefelova  E, Ninova  M, Chen  YCA, Aravin  AA. Repression of interrupted and intact rDNA by the sumo pathway in Drosophila melanogaster. Elife. 2020:9:e52416. 10.7554/eLife.52416. PubMed DOI PMC

Maeda  M, Shimada  T, Ishihama  A. Strength and regulation of seven rRNA promoters in Escherichia coli. PLoS One. 2015:10(12):e0144697. 10.1371/journal.pone.0144697. PubMed DOI PMC

Mahelka  V, Krak  K, Kopecký  D, Fehrer  J, Šafář  J, Bartoš  J, Hobza  R, Blavet  N, Blattner  FR. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. Proc Natl Acad Sci U S A. 2017:114(7):1726–1731. 10.1073/pnas.1613375114. PubMed DOI PMC

Maiwald  S, Mann  L, Garcia  S, Heitkam  T. Evolving together: Cassandra retrotransposons gradually mirror promoter mutations of the 5S rRNA genes. Mol Biol Evol. 2024:41(2):msae010. 10.1093/molbev/msae010. PubMed DOI PMC

Maiwald  S, Weber  B, Seibt  KM, Schmidt  T, Heitkam  T. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. Ann Bot. 2021:127(1):91–109. 10.1093/aob/mcaa176. PubMed DOI PMC

Malik  HS, Eickbush  TH. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol. 1999:73(6):5186–5190. 10.1128/JVI.73.6.5186-5190.1999. PubMed DOI PMC

Malone  JH. Balancing copy number in ribosomal DNA. Proc Natl Acad Sci U S A. 2015:112(9):2635–2636. 10.1073/pnas.1500054112. PubMed DOI PMC

Mann  L, Seibt  KM, Weber  B, Heitkam  T. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data. BMC Bioinformatics. 2022:23(1):1–15. 10.1186/s12859-021-04545-2. PubMed DOI PMC

Mansisidor  A, Molinar  T, Srivastava  P, Dartis  DD, Pino Delgado  A, Blitzblau  HG, Klein  H, Hochwagen  A. Genomic copy-number loss is rescued by self-limiting production of DNA circles. Mol Cell. 2018:72(3):583–593.e4. 10.1016/j.molcel.2018.08.036. PubMed DOI PMC

Marx  V. Method of the year: long-read sequencing. Nat Methods. 2023:20(1):6–11. 10.1038/s41592-022-01730-w. PubMed DOI

Matveev  V, Okada  N. Retroposons of salmonoid fishes (Actinopterygii: Salmonoidei) and their evolution. Gene. 2009:434(1-2):16–28. 10.1016/j.gene.2008.04.022. PubMed DOI

McClintock  B. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeitschrift für Zellforschung und Mikroskopische Anatomie. 1934:21(2):294–326. 10.1007/BF00374060. DOI

McClintock  B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 1950:36(6):344–355. 10.1073/pnas.36.6.344. PubMed DOI PMC

McClintock  B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951:16:13–47. 10.1101/SQB.1951.016.01.004. PubMed DOI

McKinlay  A, Fultz  D, Wang  F, Pikaard  CS. Targeted enrichment of rRNA gene tandem arrays for ultra-long sequencing by selective restriction endonuclease digestion. Front Plant Sci. 2021:12:762. 10.3389/fpls.2021.656049. PubMed DOI PMC

Merkulov  P, Egorova  E, Kirov  I. Composition and structure of Arabidopsis thaliana extrachromosomal circular DNAs revealed by nanopore sequencing. Plants (Basel). 2023:12(11):2178. 10.3390/plants12112178. PubMed DOI PMC

Merlo  MA, Cross  I, Rodríguez-Rúa  A, Manchado  M, Rebordinos  L. First approach to studying the genetics of the meagre (Argyrosomus regius; Asso, 1801) using three multigene families. Aquacult Res. 2013:44(6):974–984. 10.1111/j.1365-2109.2012.03103.x. DOI

Mizuochi  H, Marasek  A, Okazaki  K. Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica. 2007:155(1–2):235–248. 10.1007/s10681-006-9325-y. DOI

Morgan  EA. Insertions of Tn10 into an E. coli ribosomal RNA operon are incompletely polar. Cell. 1980:21(1):257–265. 10.1016/0092-8674(80)90133-6. PubMed DOI

Moss  T, Stefanovsky  V, Langlois  F, Gagnon-Kugler  T. A new paradigm for the regulation of the mammalian ribosomal RNA genes. Biochem Soc Trans. 2006:34(6):1079–1081. 10.1042/BST0341079. PubMed DOI

Muscarella  DE, Vogt  VM. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell. 1989:56(3):443–454. 10.1016/0092-8674(89)90247-x. PubMed DOI

Naish  M, Alonge  M, Wlodzimierz  P, Tock  AJ, Abramson  BW, Schmücker  A, Mandáková  T, Jamge  B, Lambing  C, Kuo  P, et al.  The genetic and epigenetic landscape of the Arabidopsis centromeres. Science. 2021:374(6569):eabi7489. 10.1126/science.abi7489. PubMed DOI PMC

Nakajima  RT, Cabral-de-Mello  DC, Valente  GT, Venere  PC, Martins  C. Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol. 2012:12:198. 10.1186/1471-2148-12-198. PubMed DOI PMC

Nei  M, Hughes  AL. Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji  K, Aizawa  M, Sasazuki  T, editors. 11th Histocompatibility workshop and conference. Oxford: Oxford University Press; 1992. p. 27–38.

Nei  M, Rooney  AP. Concerted and birth-and-death evolution of multigene families. Ann Rev Genet. 2005:39(1):121–152. 10.1146/annurev.genet.39.073003.112240. PubMed DOI PMC

Nelson  JO, Slicko  A, Yamashita  YM. The retrotransposon R2 maintains Drosophila ribosomal DNA repeats. Proc Natl Acad Sci U S A. 2023:120(23):e2221613120. 10.1073/pnas.2221613120. PubMed DOI PMC

Neuhaus  H, Müller  F, Etter  A, Tobler  H. Type I-like Intervening sequences are found in the rDNA of the nematode Ascaris lumbricoides. Nucleic Acids Res. 1987:15(19):7689–7707. 10.1093/nar/15.19.7689. PubMed DOI PMC

Neumann  P, Navrátilová  A, Koblížková  A, Kejnovsk  E, Hřibová  E, Hobza  R, Widmer  A, Doležel  J, Macas  J. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011:2(1):4. 10.1186/1759-8753-2-4. PubMed DOI PMC

Nieto-Feliner  G, Rosato  M, Alegre  G, San Segundo  P, Rosselló  JA, Garnatje  T, Garcia  S. Dissimilar molecular and morphological patterns in an introgressed peripheral population of a sand dune species (Armeria pungens, Plumbaginaceae). Plant Biol. 2019:21(6):1072–1082. 10.1111/plb.13035. PubMed DOI

Nieto-Feliner  G, Rosselló  JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol. 2007:44(2):911–919. 10.1016/j.ympev.2007.01.013. PubMed DOI

Nisen  P, Shapiro  L. E. coli ribosomal RNA contains sequences homologous to insertion sequences IS1 and IS2. Nature. 1979:282(5741):872–874. 10.1038/282872a0. PubMed DOI

Nishihara  H, Smit  AFA, Okada  N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 2006:16(7):864–874. 10.1101/gr.5255506. PubMed DOI PMC

Novák  P, Guignard  MS, Neumann  P, Kelly  LJ, Mlinarec  J, Koblížková  A, Dodsworth  S, Kovařík  A, Pellicer  J, Wang  W, et al.  Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants. 2020:6(11):1325–1329. 10.1038/s41477-020-00785-x. PubMed DOI

Novák  P, Neumann  P, Macas  J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010:11:378. 10.1186/1471-2105-11-378. PubMed DOI PMC

Novikova  O. Chromodomains and LTR retrotransposons in plants. Commun Integr Biol. 2009:2(2):158–162. 10.4161/cib.7702. PubMed DOI PMC

O’Connor  C, Adams  JU. Essentials of cell biology. Cambridge (MA): NPG Education; 2010.

Orgel  LE, Crick  FHC. Selfish DNA: the ultimate parasite. Nature. 1980:284(5757):604–607. 10.1038/284604a0. PubMed DOI

Oyun  NY, Zagoskina  AS, Mukha  DV. Inheritance of 5′-truncated copies of R2 retrotransposon in a series of generations of German cockroach, Blattella germanica. Russ J Genet. 2018:54(12):1438–1444. 10.1134/S1022795418120116. DOI

Paço  A, Freitas  R, Vieira-da-Silva  A. Conversion of DNA sequences: from a transposable element to a tandem repeat or to a gene. Genes (Basel).  2019:10(12):1014. 10.3390/genes10121014. PubMed DOI PMC

Pedrosa-Harand  A, de Almeida  CCS, Mosiolek  M, Blair  MW, Schweizer  D, Guerra  M. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet. 2006:112(5):924–933. 10.1007/s00122-005-0196-8. PubMed DOI

Peng  H, Mirouze  M, Bucher  E. Extrachromosomal circular DNA: a neglected nucleic acid molecule in plants. Curr Opin Plant Biol. 2022:69:102263. 10.1016/j.pbi.2022.102263. PubMed DOI

Penton  EH, Crease  TJ. Evolution of the transposable element Pokey in the ribosomal DNA of species in the subgenus Daphnia (Crustacea: Cladocera). Mol Biol Evol. 2004:21(9):1727–1739. 10.1093/molbev/msh189. PubMed DOI

Penton  EH, Sullender  BW, Crease  TJ. Pokey, a new DNA transposon in Daphnia (Cladocera: Crustacea). J Mol Evol. 2002:55(6):664–673. 10.1007/s00239-002-2362-9. PubMed DOI

Pérez-González  CE, Burke  WD, Eickbush  TH. R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster. Genetics. 2003:165(2):675–685. 10.1093/genetics/165.2.675. PubMed DOI PMC

Pérez-González  CE, Eickbush  TH. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans. Genetics. 2001:158(4):1557–1567. 10.1093/genetics/158.4.1557. PubMed DOI PMC

Pinhal  D, Yoshimura  TS, Araki  CS, Martins  C. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol. 2011:11:151. 10.1186/1471-2148-11-151. PubMed DOI PMC

Piskurek  O, Nishihara  H, Okada  N. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene. 2009:441(1-2):111–118. 10.1016/j.gene.2008.11.030. PubMed DOI

Platt  RN, Vandewege  MW, Ray  DA. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res. 2018:26(1–2):25–43. 10.1007/s10577-017-9570-z. PubMed DOI PMC

Pont  G, Degroote  F, Picard  G. Some extrachromosomal circular DNAs from Drosophila embryos are homologous to tandemly repeated genes. J Mol Biol. 1987:195(2):447–451. 10.1016/0022-2836(87)90665-6. PubMed DOI

Prokopowich  CD, Gregory  TR, Crease  TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003:46(1):48–50. 10.1139/g02-103. PubMed DOI

Raskina  O, Barber  JC, Nevo  E, Belyayev  A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008:120(3–4):351–357. 10.1159/000121084. PubMed DOI

Redd  PS, Payero  L, Gilbert  DM, Page  CA, King  R, McAssey  EV, Bodie  D, Diaz  S, Hancock  CN. Transposase expression, element abundance, element size, and DNA repair determine the mobility and heritability of PIF/Pong/Harbinger transposable elements. Front Cell Dev Biol. 2023:11:1184046. 10.3389/fcell.2023.1184046. PubMed DOI PMC

Renkawitz-Pohl  R, Matsumoto  L, Gerbi  SA. Structure of the ribosomal DNA repeat of Sciara coprophila. Nucleic Acids Res. 1981:9(15):3747–3764. 10.1093/nar/9.15.3747. PubMed DOI PMC

Robicheau  BM, Susko  E, Harrigan  AM, Snyder  M. Ribosomal RNA genes contribute to the formation of pseudogenes and junk DNA in the human genome. Genome Biol Evol. 2017:9(2):380–397. 10.1093/gbe/evw307. PubMed DOI PMC

Rodríguez-González  R, Gutiérrez  ML, Fuentes  I, Gálvez-Prada  F, Sochorová  J, Kovařík  A, Garcia  S. Release 4.0 of the plant rDNA database: a database on plant ribosomal DNA loci number, their position, and organization: an information source for comparative cytogenetics. In: Garcia  S, Nualart  N, editors. Plant genomic and cytogenetic databases: methods in molecular biology. Vol. 2703. New York (NY): Humana; 2023. p. 237–245. 10.1007/978-1-0716-3389-2_18. PubMed DOI

Saifitdinova  A, Galkina  S, Kulak  M, Fillon  V, Volodkina  V, Pavlova  O, Gaginskaya  E. The dispersal of ribosomal gene sequences in the karyotype of Coturnix japonica. Biopolym Cell. 2019:35(3):229–230. 10.7124/bc.0009F5. DOI

Sampath  P, Yang  T-J. Miniature inverted-repeat transposable elements (MITEs) as valuable genomic resources for the evolution and breeding of Brassica crops. Plant Breed Biotechnol. 2014:2(4):322–333. 10.9787/PBB.2014.2.4.322. DOI

Schmidt  C, Fransz  P, Rönspies  M, Dreissig  S, Fuchs  J, Heckmann  S, Houben  A, Puchta  H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun. 2020:11(1):4418. 10.1038/s41467-020-18277-z. PubMed DOI PMC

Schmidt  N, Seibt  KM, Weber  B, Schwarzacher  T, Schmidt  T, Heitkam  T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). Ann Bot. 2021:128(3):281–299. 10.1093/aob/mcab042. PubMed DOI PMC

Schmidt  T, Heitkam  T, Liedtke  S, Schubert  V, Menzel  G. Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. New Phytol. 2019:222(4):1965–1980. 10.1111/nph.15715. PubMed DOI

Schnable  PS, Ware  D, Fulton  RS, Stein  JC, Wei  F, Pasternak  S, Liang  C, Zhang  J, Fulton  L, Graves  TA, et al.  The B73 maize genome: complexity, diversity, and dynamics. Science. 2009:326(5956):1112–1115. 10.1126/science.1178534. PubMed DOI

Schrader  L, Schmitz  J. The impact of transposable elements in adaptive evolution. Mol Ecol. 2019:28(6):1537–1549. 10.1111/mec.14794. PubMed DOI

Schubert  I. Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae s. lat.)?—inferences from the specifity of silver staining. Plant Syst Evol. 1984:144(3–4):291–305. 10.1007/BF00984139. DOI

Schubert  I, Wobus  U. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma. 1985:92(2):143–148. 10.1007/BF00328466. DOI

Seibt  KM, Schmidt  T, Heitkam  T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018:34(20):3575–3577. 10.1093/bioinformatics/bty395. PubMed DOI

Seibt  KM, Schmidt  T, Heitkam  T. The conserved 3′ Angio-domain defines a superfamily of short interspersed nuclear elements (SINEs) in higher plants. Plant J. 2020:101(3):681–699. 10.1111/tpj.14567. PubMed DOI

Setiawan  AB, Teo  CH, Kikuchi  S, Sassa  H, Kato  K, Koba  T. Chromosomal locations of a non-LTR retrotransposon, Menolird18, in Cucumis melo and Cucumis sativus, and its implication on genome evolution of Cucumis species. Cytogenet Genome Res. 2020:160(9):554–564. 10.1159/000511119. PubMed DOI

Shahid  S, Slotkin  RK. The current revolution in transposable element biology enabled by long reads. Curr Opin Plant Biol. 2020:54:49–56. 10.1016/j.pbi.2019.12.012. PubMed DOI

Shibata  F, Hizume  M. Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet. 2002:105(2):167–172. 10.1007/s00122-002-0950-0. PubMed DOI

Silva-Sousa  R, López-Panadès  E, Casacuberta  E. Drosophila telomeres: an example of co-evolution with transposable elements. Genome Dyn. 2012:7:46–67. 10.1159/000337127. PubMed DOI

Sinclair  DA, Guarente  L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell. 1997:91(7):1033–1042. 10.1016/S0092-8674(00)80493-6. PubMed DOI

Smith  CJ, Castanon  O, Said  K, Volf  V, Khoshakhlagh  P, Hornick  A, Ferreira  R, Wu  CT, Güell  M, Garg  S, et al.  Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res. 2020:48(9):5183–5195. 10.1093/nar/gkaa239. PubMed DOI PMC

Sochorová  J, Garcia  S, Gálvez  F, Symonová  R, Kovařík  A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2018:127(1):141–150. 10.1007/s00412-017-0651-8. PubMed DOI PMC

Sultana  T, Zamborlini  A, Cristofari  G, Lesage  P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet. 2017:18(5):292–308. 10.1038/nrg.2017.7. PubMed DOI

Sultanov  D, Hochwagen  A. Varying strength of selection contributes to the intragenomic diversity of rRNA genes. Nat Commun. 2022:13(1):7245. 10.1038/s41467-022-34989-w. PubMed DOI PMC

Symonová  R, Majtánová  Z, Sember  A, Staaks  GBO, Bohlen  J, Freyhof  J, Rábová  M, Ráb  P. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013:13:42. 10.1186/1471-2148-13-42. PubMed DOI PMC

Symonová  R, Ocalewicz  K, Kirtiklis  L, Delmastro  GB, Pelikánová  Š, Garcia  S, Kovařík  A. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics. 2017:18(1):391. 10.1186/s12864-017-3774-7. PubMed DOI PMC

Tamayo-Ordóñez  YJ, Narváez-Zapata  JA, Tamayo-Ordóñez  MC, Sánchez-Teyer  LF. Retroelements and DNA methylation could contribute to diversity of 5S rDNA in Agave L. J Mol Evol. 2018:86(6):404–423. 10.1007/s00239-018-9856-6. PubMed DOI

TE Hub Consortium, Elliot  TA, Heitkam  T, Hubley  R, Quesneville  H, Suh  A, Wheeler  TJ. TE Hub: a community-oriented space for sharing and connecting tools, data, resources, and methods for transposable element annotation. Mob DNA. 2021:12(1):16. 10.1186/s13100-021-00244-0. PubMed DOI PMC

Tulpová  Z, Kovařík  A, Toegelová  H, Navrátilová  P, Kapustová  V, Hřibová  E, Vrána  J, Macas  J, Doležel  J, Šimková  H. Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. Plant Genome. 2022:15(1):e20191. 10.1002/tpg2.20191. PubMed DOI

van’t Hof  AE, Campagne  P, Rigden  DJ, Yung  CJ, Lingley  J, Quail  MA, Hall  N, Darby  AC, Saccheri  IJ. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016:534(7605):102–105. 10.1038/nature17951. PubMed DOI

Vassetzky  NS, Kramerov  DA. SINEBase: a database and tool for SINE analysis. Nucleic Acids Res. 2013:41(D1):83–89. 10.1093/nar/gks1263. PubMed DOI PMC

Vincent  A, Petes  TD. Isolation and characterization of a Ty element inserted into the ribosomal DNA of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1986:14(7):2939–2949. 10.1093/nar/14.7.2939. PubMed DOI PMC

Wang  J, Han  G-Z. Unearthing LTR retrotransposon gag genes co-opted in the deep evolution of eukaryotes. Mol Biol Evol. 2021:38(8):3267–3278. 10.1093/molbev/msab101. PubMed DOI PMC

Wang  J, Wang  A, Han  Z, Zhang  Z, Li  F, Li  X. Characterization of three novel SINE families with unusual features in Helicoverpa armigera. PLoS ONE. 2012:7(2):e31355. 10.1371/journal.pone.0031355. PubMed DOI PMC

Wang  W, Zhang  X, Garcia  S, Leitch  AR, Kovařík  A. Intragenomic rDNA variation-the product of concerted evolution, mutation, or something in between?  Heredity (Edinb).  2023:131(3):179–188. 10.1038/s41437-023-00634-5. PubMed DOI PMC

Watada  E, Li  S, Hori  Y, Fujiki  K, Shirahige  K, Inada  T, Kobayashi  T. Age-dependent ribosomal DNA variations in mice. Mol Cell Biol. 2020:40(22):e00368-20. 10.1128/MCB.00368-20. PubMed DOI PMC

Weber  B, Heitkam  T, Holtgräwe  D, Weisshaar  B, Minoche  AE, Dohm  JC, Himmelbauer  H, Schmidt  T. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mob DNA. 2013:4(1):8. 10.1186/1759-8753-4-8. PubMed DOI PMC

Wells  JN, Feschotte  C. A field guide to eukaryotic transposable elements. Annu Rev Genet. 2020:54(1):539–561. 10.1146/annurev-genet-040620-022145. PubMed DOI PMC

Williams  SM, Robbins  LG, Cluster  PD, Allard  RW, Strobeck  C. Superstructure of the Drosophila ribosomal gene family. Proc Natl Acad Sci U S A. 1990:87(8):3156–3160. 10.1073/pnas.87.8.3156. PubMed DOI PMC

Wollrab  C, Heitkam  T, Holtgräwe  D, Weisshaar  B, Minoche  AE, Dohm  JC, Himmelbauer  H, Schmidt  T. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. Plant J. 2012:72(4):636–651. 10.1111/j.1365-313X.2012.05107.x. PubMed DOI

Xiong  Y, Eickbush  TH. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol. 1988:8(1):114–123. 10.1128/mcb.8.1.114-123.1988. PubMed DOI PMC

Yang  N, Srivastav  SP, Rahman  R, Ma  Q, Dayama  G, Li  S, Chinen  M, Lei  EP, Rosbash  M, Lau  NC. Transposable element landscapes in aging Drosophila. PLoS Genet. 2022:18(3):e1010024. 10.1371/journal.pgen.1010024. PubMed DOI PMC

Yang  F, Su  W, Chung  OW, Tracy  L, Wang  L, Ramsden  DA, Zhang  ZZ. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature. 2023:620(7972):218–225. 10.1038/s41586-023-06327-7. PubMed DOI PMC

Yano  CF, Merlo  MA, Portela-Bens  S, Cioffi  MDB, Bertollo  LAC, Santos-Júnior  CD, Rebordinos  L. Evolutionary dynamics of multigene families in Triportheus (Characiformes, Triportheidae): a transposon mediated mechanism?  Front Mar Sci. 2020:7:6. 10.3389/fmars.2020.00006. DOI

Yin  H, Du  J, Li  L, Jin  C, Fan  L, Li  M, Wu  J, Zhang  S. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.). Genome Biol Evol. 2014:6(6):1423–1436. 10.1093/gbe/evu114. PubMed DOI PMC

Yushkova  E, Moskalev  A. Transposable elements and their role in aging. Ageing Res Rev. 2023:86:101881. 10.1016/j.arr.2023.101881. PubMed DOI

Zhang  X, Eickbush  TH. Characterization of active R2 retrotransposition in the rDNA locus of Drosophila simulans. Genetics. 2005:170(1):195–205. 10.1534/genetics.104.038703. PubMed DOI PMC

Zhang  M, Tang  Y-W, Xu  Y, Yonezawa  T, Shao  Y, Wang  Y-G, Song  Z-P, Yang  J, Zhang  W-J. Concerted and birth-and-death evolution of 26S ribosomal DNA in Camellia L. Ann Bot. 2021:127(1):63–73. 10.1093/aob/mcaa169. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...