Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20633259
PubMed Central
PMC2912890
DOI
10.1186/1471-2105-11-378
PII: 1471-2105-11-378
Knihovny.cz E-zdroje
- MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný MeSH
- Glycine max genetika MeSH
- hrách setý genetika MeSH
- mapování chromozomů MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA * MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: The investigation of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of higher plant nuclear DNA. Since genome-wide characterization of repetitive elements is complicated by their high abundance and diversity, novel approaches based on massively-parallel sequencing are being adapted to facilitate the analysis. It has recently been demonstrated that the low-pass genome sequencing provided by a single 454 sequencing reaction is sufficient to capture information about all major repeat families, thus providing the opportunity for efficient repeat investigation in a wide range of species. However, the development of appropriate data mining tools is required in order to fully utilize this sequencing data for repeat characterization. RESULTS: We adapted a graph-based approach for similarity-based partitioning of whole genome 454 sequence reads in order to build clusters made of the reads derived from individual repeat families. The information about cluster sizes was utilized for assessing the proportion and composition of repeats in the genomes of two model species, Pisum sativum and Glycine max, differing in genome size and 454 sequencing coverage. Moreover, statistical analysis and visual inspection of the topology of the cluster graphs using a newly developed program tool, SeqGrapheR, were shown to be helpful in distinguishing basic types of repeats and investigating sequence variability within repeat families. CONCLUSIONS: Repetitive regions of plant genomes can be efficiently characterized by the presented graph-based analysis and the graph representation of repeats can be further used to assess the variability and evolutionary divergence of repeat families, discover and characterize novel elements, and aid in subsequent assembly of their consensus sequences.
Zobrazit více v PubMed
Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25:195–203. doi: 10.1016/j.nbt.2008.12.009. PubMed DOI
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–1145. doi: 10.1038/nbt1486. PubMed DOI
Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods. 2008;5:16–18. doi: 10.1038/nmeth1156. PubMed DOI
Murray MG, Peters DL, Thompson WF. Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J Mol Evol. 1981;17:31–42. doi: 10.1007/BF01792422. DOI
Flavell RB, Bennett MD, Smith JB, Smith DB. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974;12:257–269. doi: 10.1007/BF00485947. PubMed DOI
Macas J, Neumann P, Navratilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. doi: 10.1186/1471-2164-8-427. PubMed DOI PMC
Swaminathan K, Varala K, Hudson ME. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics. 2007;8:132. doi: 10.1186/1471-2164-8-132. PubMed DOI PMC
Wicker T, Narechania A, Sabot F, Stein J, Vu GTH, Graner A, Ware D, Stein N. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics. 2008;9:518. doi: 10.1186/1471-2164-9-518. PubMed DOI PMC
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19:651–652. doi: 10.1093/bioinformatics/btg034. PubMed DOI
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2009.
Csardi G, Nepusz T. The igraph Software Package for Complex Network Research. InterJournal. 2006. p. 1695. Complex Systems.
The R project for statistical computing. http://www.r-project.org PubMed
Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70:066111. doi: 10.1103/PhysRevE.70.066111. PubMed DOI
Girvan M, Newman MEJ. Community structure in social and biological networks. P Natl Acad Sci USA. 2002;99:7821–7826. doi: 10.1073/pnas.122653799. PubMed DOI PMC
Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69:026113. doi: 10.1103/PhysRevE.69.026113. PubMed DOI
Newman MEJ. Modularity and community structure in networks. P Natl Acad Sci USA. 2006;103:8577–8582. doi: 10.1073/pnas.0601602103. PubMed DOI PMC
Reingold EM, Fruchterman TMJ. Graph drawing by force-directed placement. Software Pract Exper. pp. 1129–1164.
Lawrence M, Wickham H, Cook D, Hofmann H, Swayne D. Extending the GGobi pipeline from R. Computation Stat. 2009;24:195–205. doi: 10.1007/s00180-008-0115-y. DOI
Swayne DF, Lang DT, Buja A, Cook D. GGobi: evolving from XGobi into an extensible framework for interactive data visualization. Comput Stat Data An. 2003;43:423–444. doi: 10.1016/S0167-9473(02)00286-4. DOI
RepeatMasker Open-3.0. http://www.repeatmasker.org
Smykal P, Kalendar R, Ford R, Macas J, Griga M. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity. 2009;103:157–167. doi: 10.1038/hdy.2009.45. PubMed DOI
Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000;16:418–420. doi: 10.1016/S0168-9525(00)02093-X. PubMed DOI
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2010;38:D46–51. doi: 10.1093/nar/gkp1024. PubMed DOI PMC
Mason O, Verwoerd M. Graph theory and networks in Biology. IET Syst Biol. 2007;1:89–119. doi: 10.1049/iet-syb:20060038. PubMed DOI
Kingsford C, Schatz M, Pop M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics. 2010;11:21. doi: 10.1186/1471-2105-11-21. PubMed DOI PMC
Medvedev P, Brudno M. Maximum Likelihood Genome Assembly. J Comput Biol. 2009;16:1101–1116. doi: 10.1089/cmb.2009.0047. PubMed DOI PMC
Zerbino D, Birney E. Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
DeBarry JD, Liu R, Bennetzen JL. Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm. BMC Bioinformatics. 2008;9:235. doi: 10.1186/1471-2105-9-235. PubMed DOI PMC
Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek) BMC Plant Biol. 2009;9:137. doi: 10.1186/1471-2229-9-137. PubMed DOI PMC
Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996;5:233–241. doi: 10.1007/BF02900361. PubMed DOI
Frishman Y, Tal A. Multi-Level Graph Layout on the GPU. IEEE T Vis Comput Gr. 2007;13:1310–1319. doi: 10.1109/TVCG.2007.70580. PubMed DOI
Godiyal A, Hoberock J, Garland M, Hart J. Graph Drawing. Vol. 5417. Heidelberg: Springer Berlin; 2009. Rapid Multipole Graph Drawing on the GPU; pp. 90–101. full_text.
Cluster resources. http://www.clusterresources.com
BioPerl. http://www.bioperl.org
Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis
Sexy ways: approaches to studying plant sex chromosomes
Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos
Rapid gene content turnover on the germline-restricted chromosome in songbirds
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Complete Mitochondrial Genome of Three Species of the Genus Microtus (Arvicolinae, Rodentia)
Origin, Diversity, and Evolution of Telomere Sequences in Plants