Ancient Origin of Two 5S rDNA Families Dominating in the Genus Rosa and Their Behavior in the Canina-Type Meiosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33763100
PubMed Central
PMC7984461
DOI
10.3389/fpls.2021.643548
Knihovny.cz E-zdroje
- Klíčová slova
- 5S rDNA, Rosa, Rosaceae, cytogenetics, evolution, genomics, repeatome,
- Publikační typ
- časopisecké články MeSH
The genus Rosa comprises more than 100 woody species characterized by intensive hybridization, introgression, and an overall complex evolutionary history. Besides many diploid species (2n = 2x = 14) polyploids ranging from 3x to 10x are frequently found. Here we analyzed 5S ribosomal DNA in 19 species covering two subgenera and the major sections within subg. Rosa. In addition to diploids and polyploids with regular meiosis, we focused on 5x dogroses (Rosa sect. Caninae), which exhibit an asymmetric meiosis differentiating between bivalent- and univalent-forming chromosomes. Using genomic resources, we reconstructed 5S rDNA units to reveal their phylogenetic relationships. Additionally, we designed locus-specific probes derived from intergenic spacers (IGSs) and determined the position and number of 5S rDNA families on chromosomes. Two major 5S rDNA families (termed 5S_A and 5S_B, respectively) were found at variable ratios in both diploid and polyploid species including members of the early diverging subgenera, Rosa persica and Rosa minutifolia. Within subg. Rosa species of sect. Rosa amplified the 5S_A variant only, while taxa of other sections contained both variants at variable ratios. The 5S_B family was often co-localized with 35S rDNA at the nucleolar organizer regions (NOR) chromosomes, whereas the co-localization of the 5S_A family with NOR was only exceptionally observed. The allo-pentaploid dogroses showed a distinct distribution of 5S rDNA families between bivalent- and univalent-forming chromosomes. In conclusion, two divergent 5S rDNA families dominate rose genomes. Both gene families apparently arose in the early history of the genus, already 30 myrs ago, and apparently survived numerous speciation events thereafter. These observations are consistent with a relatively slow genome turnover in the Rosa genus.
Department of Botany Senckenberg Museum of Natural History Görlitz Görlitz Germany
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Amosova A. V., Zoshchuk S. A., Rodionov A. V., Ghukasyan L., Samatadze T. E., Punina E. O., et al. (2019). Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the PubMed DOI PMC
Benson C. W., Mao Q., Huff D. R. (2020). Global DNA methylation predicts epigenetic reprogramming and transgenerational plasticity in DOI
Blackburn K. B., Harrison J. W. H. (1921). The status of the British rose forms as determined by their cytological behaviour. DOI
Bruneau A., Starr J. R., Joly S. (2007). Phylogenetic relationships in the genus DOI
Christ H. (1873).
Crépin F. (1889). Sketch of a new classification of roses.
Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. PubMed DOI
Debray K., Marie-Magdelaine J., Ruttink T., Clotault J., Foucher F., Malecot V. (2019). Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus PubMed DOI PMC
Dover G. (1982). Molecular drive: a cohesive mode of species evolution. PubMed DOI
Edelman D. W. (1975).
Eickbush T. H., Eickbush D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. PubMed DOI PMC
Fernandez-Romero M. D., Torres A. M., Millan T., Cubero J. I., Cabrera A. (2001). Physical mapping of ribosomal DNA on several species of the subgenus DOI
Fougere-Danezan M., Joly S., Bruneau A., Gao X. F., Zhang L. B. (2015). Phylogeny and biogeography of wild roses with specific attention to polyploids. PubMed DOI PMC
Fulnecek J., Lim K. Y., Leitch A. R., Kovařik A., Matyasek R. (2002). Evolution and structure of 5S rDNA loci in allotetraploid PubMed DOI
Garcia S., Borowska-Zuchowska N., Wendel J. F., Ainouche M., Kuderova A., Kovařik A. (2020). The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids and cryptic introgressants. PubMed DOI PMC
Garcia S., Kovařik A., Leitch A. R., Garnatje T. (2016). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. PubMed DOI
Gouy M., Guindon S., Gascuel O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. PubMed DOI
Hemleben V., Ganal M., Gersnter J., Schiebel K., Torres R. A. (1988). “Organization and length heterogeneity of plant ribosomal RNA genes,” in
Herklotz V., Ritz C. M. (2017). Multiple and asymmetrical origin of polyploid dog rose hybrids ( PubMed DOI PMC
Herklotz V., Kovařik A., Lunerova J., Lippitsch S., Groth M., Ritz C. M. (2018). The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [ PubMed DOI
Joly S., Bruneau A. (2006). Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: An example from PubMed DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC
Kirov I. V., Van Laere K., Van Roy N., Khrustaleva L. I. (2016). Towards a FISH-based karyotype of PubMed DOI PMC
Koopman W. J. M., Wissemann V., De Cock K., Van Huylenbroeck J., De Riek J., Sabatlno G. J. H., et al. (2008). AFLP markers as a tool to reconstruct complex relationships: A case study in PubMed DOI
Kovařik A., Werlemark G., Leitch A. R., Souckova-Skalicka K., Lim Y. K., Khaitova L., et al. (2008). The asymmetric meiosis in pentaploid dogroses ( PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. PubMed DOI PMC
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC
Lim K. Y., Werlemark G., Matyasek R., Bringloe J. B., Sieber V., El Mokadem H., et al. (2005). Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of PubMed DOI
Liu C. Y., Wang G. L., Wang H., Xia T., Zhang S. Z., Wang Q. G., et al. (2015). Phylogenetic relationships in the genus DOI
Long E. O., Dawid I. B. (1980). Repeated genes in eukaryotes. PubMed DOI
Lunerova J., Herklotz V., Laudien M., Vozarova R., Groth M., Kovařik A., et al. (2020). Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus PubMed DOI PMC
Ma Y., Crane C. F., Byrne D. H. (1997). Karyotypic relationships among some DOI
Matsumoto S., Kouchi M., Yabuki J., Kusunoki M., Ueda Y., Fukui H. (1998). Phylogenetic analyses of the genus DOI
Millan T., Osuna F., Cobos S., Torres A. M., Cubero J. I. (1996). Using RAPDs to study phylogenetic relationships in PubMed DOI
Nagylaki T. (1990). Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes. PubMed PMC
Nakamura N., Hirakawa H., Sato S., Otagaki S., Matsumoto S., Tabata S., et al. (2018). Genome structure of PubMed DOI PMC
Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in
Novak P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. PubMed DOI PMC
Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. PubMed DOI
Nybom H., Esselink G. D., Werlemark G., Vosman B. (2004). Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, PubMed DOI
Nybom H., Esselink G. D., Werlemark G., Leus L., Vosman B. (2006). Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, PubMed DOI
Ohta T. (1984). Some models of gene conversion for treating the evolution of multigene families. PubMed PMC
Pachl Š. (2011).
Pastova L., Belyayev A., Mahelka V. (2019). Molecular cytogenetic characterisation of PubMed DOI PMC
Pedrosa-Harand A., de Almeida C. C. S., Mosiolek M., Blair M., Schweizer D., Guerra M. (2006). Extensive ribosomal DNA amplification during Andean common bean ( PubMed DOI
Peters H., Peters H. (2013).
Raymond O., Gouzy J., Just J., Badouin H., Verdenaud M., Lemainque A., et al. (2018). The Rosa genome provides new insights into the domestication of modern roses. PubMed DOI PMC
Ritz C. M., Schmuths H., Wissemann V. (2005). Evolution by reticulation: European dogroses originated by multiple hybridization across the genus PubMed DOI
Roa F., Guerra M. (2012). Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. PubMed DOI PMC
Roberts A. V., Gladis T., Brumme H. (2009). DNA amounts of roses ( PubMed DOI
Rogers S. O., Bendich A. J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant-tissues. PubMed DOI
Saint-Oyant L. H., Ruttink T., Hamama L., Kirov I., Lakhwani D., Zhou N. N., et al. (2018). A high-quality genome sequence of PubMed DOI PMC
Schwarzacher T., Heslop-Harrison P. (2000).
Simon L., Rabanal F. A., Dubos T., Oliver C., Lauber D., Poulet A., et al. (2018). Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in PubMed DOI PMC
Täckholm G. (1920). On the cytology of the genus
Tamura K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. PubMed
Tamura K., Tao Q., Kumar S. (2018). Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. PubMed DOI PMC
Tynkevich Y. O., Volkov R. A. (2014a). Novel structural class of 5S rDNA of DOI
Tynkevich Y. O., Volkov R. A. (2014b). Structural organization of 5Sribosomal DNA in PubMed DOI
Volkov R. A., Panchuk I. I., Borisjuk N. V., Hosiawa-Baranska M., Maluszynska J., Hemleben V. (2017). Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid PubMed DOI PMC
Volkov R. A., Zanke C., Panchuk I. I., Hemleben V. (2001). Molecular evolution of 5S rDNA of DOI
Wang G. L. (2007). A study on the history of Chinese roses from ancient works and images. DOI
Weiss-Schneeweiss H., Tremetsberger K., Schneeweiss G. M., Parker J. S., Stuessy T. F. (2008). Karyotype diversification and evolution in diploid and polyploid South American PubMed DOI PMC
Wissemann V. (1999). Genetic constitution of
Wissemann V. (2003). “Conventional taxonomy (wild roses),” in
Wissemann V., Ritz C. M. (2005). The genus DOI
Xiang Y. Z., Huang C. H., Hu Y., Wen J., Li S. H., Yi T. S., et al. (2017). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. PubMed DOI PMC
Yokoya K., Roberts A. V., Mottley J., Lewis R., Brandham P. E. (2000). Nuclear DNA amounts in roses. DOI
Zetter R., Hofmann C., Draxler I., Durango, de Cabrera J., Vergel M., et al. (1999). A rich Middle Eocene Microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego Province, Argentina.
Zhang J., Esselink G. D., Che D., Fougere-Danezan M., Arens P., Smulders M. J. M. (2013). The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. DOI
Zhu Z. M., Gao X. F., Fougere-Danezan M. (2015). Phylogeny of PubMed DOI
Bimodal centromeres in pentaploid dogroses shed light on their unique meiosis
Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol
Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae)