Ancient Origin of Two 5S rDNA Families Dominating in the Genus Rosa and Their Behavior in the Canina-Type Meiosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33763100
PubMed Central
PMC7984461
DOI
10.3389/fpls.2021.643548
Knihovny.cz E-zdroje
- Klíčová slova
- 5S rDNA, Rosa, Rosaceae, cytogenetics, evolution, genomics, repeatome,
- Publikační typ
- časopisecké články MeSH
The genus Rosa comprises more than 100 woody species characterized by intensive hybridization, introgression, and an overall complex evolutionary history. Besides many diploid species (2n = 2x = 14) polyploids ranging from 3x to 10x are frequently found. Here we analyzed 5S ribosomal DNA in 19 species covering two subgenera and the major sections within subg. Rosa. In addition to diploids and polyploids with regular meiosis, we focused on 5x dogroses (Rosa sect. Caninae), which exhibit an asymmetric meiosis differentiating between bivalent- and univalent-forming chromosomes. Using genomic resources, we reconstructed 5S rDNA units to reveal their phylogenetic relationships. Additionally, we designed locus-specific probes derived from intergenic spacers (IGSs) and determined the position and number of 5S rDNA families on chromosomes. Two major 5S rDNA families (termed 5S_A and 5S_B, respectively) were found at variable ratios in both diploid and polyploid species including members of the early diverging subgenera, Rosa persica and Rosa minutifolia. Within subg. Rosa species of sect. Rosa amplified the 5S_A variant only, while taxa of other sections contained both variants at variable ratios. The 5S_B family was often co-localized with 35S rDNA at the nucleolar organizer regions (NOR) chromosomes, whereas the co-localization of the 5S_A family with NOR was only exceptionally observed. The allo-pentaploid dogroses showed a distinct distribution of 5S rDNA families between bivalent- and univalent-forming chromosomes. In conclusion, two divergent 5S rDNA families dominate rose genomes. Both gene families apparently arose in the early history of the genus, already 30 myrs ago, and apparently survived numerous speciation events thereafter. These observations are consistent with a relatively slow genome turnover in the Rosa genus.
Department of Botany Senckenberg Museum of Natural History Görlitz Görlitz Germany
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Amosova A. V., Zoshchuk S. A., Rodionov A. V., Ghukasyan L., Samatadze T. E., Punina E. O., et al. (2019). Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the Aveneae/Poeae tribe complex (Poaceae). BMC Genet. 20:92. 10.1186/s12863-019-0792-2 PubMed DOI PMC
Benson C. W., Mao Q., Huff D. R. (2020). Global DNA methylation predicts epigenetic reprogramming and transgenerational plasticity in Poa annua L. Crop Sci. 2020 1–12. 10.1002/csc2.20337 DOI
Blackburn K. B., Harrison J. W. H. (1921). The status of the British rose forms as determined by their cytological behaviour. Ann. Bot. 35 159–188. 10.1093/oxfordjournals.aob.a089753 DOI
Bruneau A., Starr J. R., Joly S. (2007). Phylogenetic relationships in the genus Rosa: New evidence from chloroplast DNA sequences and an appraisal of current knowledge. Syst. Bot. 32 366–378. 10.1600/036364407781179653 DOI
Christ H. (1873). Die Rosen der Schweiz. Basel: Verlag H. Georg.
Crépin F. (1889). Sketch of a new classification of roses. J. R. Hortic. Soc. 11 217–228.
Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42 685–705. 10.1007/BF02338802 PubMed DOI
Debray K., Marie-Magdelaine J., Ruttink T., Clotault J., Foucher F., Malecot V. (2019). Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae). BMC Evol. Biol. 19:152. 10.1186/s12862-019-1479-z PubMed DOI PMC
Dover G. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299 111–117. 10.1038/299111a0 PubMed DOI
Edelman D. W. (1975). The Eocene Germer Basin Flora of South-Central Idaho. Ph. D. thesis, Moscow: University of Idaho.
Eickbush T. H., Eickbush D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175 477–485. 10.1534/genetics.107.071399 PubMed DOI PMC
Fernandez-Romero M. D., Torres A. M., Millan T., Cubero J. I., Cabrera A. (2001). Physical mapping of ribosomal DNA on several species of the subgenus Rosa. Theor. Appl. Genet. 103 835–838. 10.1007/s001220100709 DOI
Fougere-Danezan M., Joly S., Bruneau A., Gao X. F., Zhang L. B. (2015). Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann. Bot. 115 275–291. 10.1093/aob/mcu245 PubMed DOI PMC
Fulnecek J., Lim K. Y., Leitch A. R., Kovařik A., Matyasek R. (2002). Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88 19–25. 10.1038/sj.hdy.6800001 PubMed DOI
Garcia S., Borowska-Zuchowska N., Wendel J. F., Ainouche M., Kuderova A., Kovařik A. (2020). The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids and cryptic introgressants. Front. Plant Sci. 11:41. 10.3389/fpls.2020.00041 PubMed DOI PMC
Garcia S., Kovařik A., Leitch A. R., Garnatje T. (2016). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89 1020–1030. 10.1111/tpj.13442 PubMed DOI
Gouy M., Guindon S., Gascuel O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27 221–224. 10.1093/molbev/msp259 PubMed DOI
Hemleben V., Ganal M., Gersnter J., Schiebel K., Torres R. A. (1988). “Organization and length heterogeneity of plant ribosomal RNA genes,” in The architecture of Eukaryotic Gene, ed. Kahl G. (Weinheim: VHC; ), 371–384.
Herklotz V., Ritz C. M. (2017). Multiple and asymmetrical origin of polyploid dog rose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes. Ann. Bot. 120 209–220. 10.1093/aob/mcw217 PubMed DOI PMC
Herklotz V., Kovařik A., Lunerova J., Lippitsch S., Groth M., Ritz C. M. (2018). The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis. Plant J. 94 77–90. 10.1111/tpj.13843 PubMed DOI
Joly S., Bruneau A. (2006). Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: An example from Rosa in north America. Syst. Biol. 55 623–636. 10.1080/10635150600863109 PubMed DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kirov I. V., Van Laere K., Van Roy N., Khrustaleva L. I. (2016). Towards a FISH-based karyotype of Rosa L. (Rosaceae). Comp. Cytogenet. 10 543–554. 10.3897/CompCytogen.v10i4.9536 PubMed DOI PMC
Koopman W. J. M., Wissemann V., De Cock K., Van Huylenbroeck J., De Riek J., Sabatlno G. J. H., et al. (2008). AFLP markers as a tool to reconstruct complex relationships: A case study in Rosa (Rosaceae). Am. J. Bot. 95 353–366. 10.3732/ajb.95.3.353 PubMed DOI
Kovařik A., Werlemark G., Leitch A. R., Souckova-Skalicka K., Lim Y. K., Khaitova L., et al. (2008). The asymmetric meiosis in pentaploid dogroses (Rosa sect. Caninae) is associated with a skewed distribution of rRNA gene families in the gametes. Heredity 101 359–367. 10.1038/Hdy.2008.63 PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/Nmeth.1923 PubMed DOI PMC
Lim K. Y., Werlemark G., Matyasek R., Bringloe J. B., Sieber V., El Mokadem H., et al. (2005). Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity 94 501–506. 10.1038/sj.hdy.6800648 PubMed DOI
Liu C. Y., Wang G. L., Wang H., Xia T., Zhang S. Z., Wang Q. G., et al. (2015). Phylogenetic relationships in the genus Rosa revisited based on rpl16, trnL-F, and atpB-rbcL sequences. HortScience 50 1618–1624. 10.21273/Hortsci.50.11.1618 DOI
Long E. O., Dawid I. B. (1980). Repeated genes in eukaryotes. Annu. Rev. Biochem. 49 727–764. 10.1146/annurev.bi.49.070180.003455 PubMed DOI
Lunerova J., Herklotz V., Laudien M., Vozarova R., Groth M., Kovařik A., et al. (2020). Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa. Ann. Bot. 125 1025–1038. 10.1093/aob/mcaa028 PubMed DOI PMC
Ma Y., Crane C. F., Byrne D. H. (1997). Karyotypic relationships among some Rosa species. Caryologia 50 317–326. 10.1080/00087114.1997.10797405 DOI
Matsumoto S., Kouchi M., Yabuki J., Kusunoki M., Ueda Y., Fukui H. (1998). Phylogenetic analyses of the genus Rosa using the matK sequence: molecular evidence for the narrow genetic background of modern roses. Sci. Hortic. 77 73–82. 10.1016/S0304-4238(98)00169-1 DOI
Millan T., Osuna F., Cobos S., Torres A. M., Cubero J. I. (1996). Using RAPDs to study phylogenetic relationships in Rosa. Theor. Appl. Genet. 92 273–277. 10.1007/Bf00223385 PubMed DOI
Nagylaki T. (1990). Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes. Genetics 126 261–276. PubMed PMC
Nakamura N., Hirakawa H., Sato S., Otagaki S., Matsumoto S., Tabata S., et al. (2018). Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res. 25 113–121. 10.1093/dnares/dsx042 PubMed DOI PMC
Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in Plant Genome Diversity, ed. Wendel J. F. (Wien: Springer-Verlag; ), 171–194.
Novak P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 11:378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Nybom H., Esselink G. D., Werlemark G., Vosman B. (2004). Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. sect. Caninae DC. Heredity 92 139–150. 10.1038/sj.hdy.6800332 PubMed DOI
Nybom H., Esselink G. D., Werlemark G., Leus L., Vosman B. (2006). Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect. Caninae. J. Evol. Biol. 19 635–648. 10.1111/j.1420-9101.2005.01010.x PubMed DOI
Ohta T. (1984). Some models of gene conversion for treating the evolution of multigene families. Genetics 106 517–528. PubMed PMC
Pachl Š. (2011). Variablita botanických druhů rodu Rosa L., a možnosti jejich využití v krajinářské tvorbê. Ph. D.thesis, Nitra, SK: Slovak University of Agriculture.
Pastova L., Belyayev A., Mahelka V. (2019). Molecular cytogenetic characterisation of Elytrigia xmucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae). BMC Plant. Biol. 19:230. 10.1186/s12870-019-1806-y PubMed DOI PMC
Pedrosa-Harand A., de Almeida C. C. S., Mosiolek M., Blair M., Schweizer D., Guerra M. (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 112 924–933. 10.1007/s00122-005-0196-8 PubMed DOI
Peters H., Peters H. (2013). Tausendjähriger Rosenstock from Hildesheim (the thousand-year-oldrosebush). Available online at: www.webcitation.org/6PIIQmfN8?url=http://www.worldrose.org/heritage/HeritageNumber10.pdf
Raymond O., Gouzy J., Just J., Badouin H., Verdenaud M., Lemainque A., et al. (2018). The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50:772. 10.1038/s41588-018-0110-3 PubMed DOI PMC
Ritz C. M., Schmuths H., Wissemann V. (2005). Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. J. Hered. 96 4–14. 10.1093/jhered/esi011 PubMed DOI
Roa F., Guerra M. (2012). Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol. Biol. 12:225. 10.1186/1471-2148-12-225 PubMed DOI PMC
Roberts A. V., Gladis T., Brumme H. (2009). DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep. 28 61–71. 10.1007/s00299-008-0615-9 PubMed DOI
Rogers S. O., Bendich A. J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant-tissues. Plant Mol. Biol. 5 69–76. 10.1007/Bf00020088 PubMed DOI
Saint-Oyant L. H., Ruttink T., Hamama L., Kirov I., Lakhwani D., Zhou N. N., et al. (2018). A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 4 473–484. 10.1038/s41477-018-0166-1 PubMed DOI PMC
Schwarzacher T., Heslop-Harrison P. (2000). Practical in situ hybridization. Oxford: BIOS Scientific Publishers.
Simon L., Rabanal F. A., Dubos T., Oliver C., Lauber D., Poulet A., et al. (2018). Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucl. Acids Res. 46 3019–3033. 10.1093/nar/gky163 PubMed DOI PMC
Täckholm G. (1920). On the cytology of the genus Rosa. Svensk Bot. Tidskrift 1920 300–311.
Tamura K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9 678–687. PubMed
Tamura K., Tao Q., Kumar S. (2018). Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35 1770–1782. 10.1093/molbev/msy044 PubMed DOI PMC
Tynkevich Y. O., Volkov R. A. (2014a). Novel structural class of 5S rDNA of Rosa wichurana Crep. Rep. Natl. Acad. Sci. Ukraine 5 143–148. 10.15407/dopovidi2014.05.143 DOI
Tynkevich Y. O., Volkov R. A. (2014b). Structural organization of 5Sribosomal DNA in Rosa rugosa. Cytol. Genet. 48 1–6. 10.3103/S0095452714010095 PubMed DOI
Volkov R. A., Panchuk I. I., Borisjuk N. V., Hosiawa-Baranska M., Maluszynska J., Hemleben V. (2017). Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol. 17:6. 10.1186/s12870-017-0978-6 PubMed DOI PMC
Volkov R. A., Zanke C., Panchuk I. I., Hemleben V. (2001). Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor. Appl. Genet. 103 1273–1282. 10.1007/s001220100670 DOI
Wang G. L. (2007). A study on the history of Chinese roses from ancient works and images. Acta Hortic. 751 347–356. 10.17660/ActaHortic.2007.751.44 DOI
Weiss-Schneeweiss H., Tremetsberger K., Schneeweiss G. M., Parker J. S., Stuessy T. F. (2008). Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann. Bot. 101 909–918. 10.1093/aob/mcn023 PubMed DOI PMC
Wissemann V. (1999). Genetic constitution of Rosa sect. Caninae (R. canina, R. jundzillii) and sect. Gallicanae (R. gallica). Angew. Bot. 73 191–196.
Wissemann V. (2003). “Conventional taxonomy (wild roses),” in Encyclopedia of Rose Science, eds Roberts A. V., Debener T., Gudin S. (Oxford: Elsevier Academic Press; ).
Wissemann V., Ritz C. M. (2005). The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot. J. Linn. Soc. 147 275–290. 10.1111/j.1095-8339.2005.00368.x DOI
Xiang Y. Z., Huang C. H., Hu Y., Wen J., Li S. H., Yi T. S., et al. (2017). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 34 1026–1026. 10.1093/molbev/msx093 PubMed DOI PMC
Yokoya K., Roberts A. V., Mottley J., Lewis R., Brandham P. E. (2000). Nuclear DNA amounts in roses. Ann. Bot. 85 557–561. 10.1006/ambo.1999 DOI
Zetter R., Hofmann C., Draxler I., Durango, de Cabrera J., Vergel M., et al. (1999). A rich Middle Eocene Microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego Province, Argentina. Abh. Geol. Bundesanst. 56 439–460.
Zhang J., Esselink G. D., Che D., Fougere-Danezan M., Arens P., Smulders M. J. M. (2013). The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. J. Hortic. Sci. Biotechnol. 88 85–92. 10.1080/14620316.2013.11512940 DOI
Zhu Z. M., Gao X. F., Fougere-Danezan M. (2015). Phylogeny of Rosa sections Chinenses and Synstylae (Rosaceae) based on chloroplast and nuclear markers. Mol. Phylogenet. Evol. 87 50–64. 10.1016/j.ympev.2015.03.014 PubMed DOI
Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol
Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae)