The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants

. 2020 ; 11 () : 41. [epub] 20200210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32117380

INTRODUCTION: Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION: We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.

Zobrazit více v PubMed

Ainouche M. L., Baumel A., Salmon A. (2004). Spartina anglica Schreb.: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol. J. Linn. Soc 82, 474–475. 10.1111/j.1095-8312.2004.00334.x DOI

Alix K., Gerard P. R., Schwarzacher T., Heslop-Harrison J. S. (2017). Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann. Bot. 120, 619–619. 10.1093/aob/mcx096 PubMed DOI PMC

Alvarez I., Wendel J. W. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434. 10.1016/S1055-7903(03)00208-2 PubMed DOI

Baum B. R., Bailey L. G., Belyayev A., Raskina O., Nevo E. (2004). The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes - a test on cultivated wheat and wheat progenitors. Genome 47, 590–599. 10.1139/g03-146 PubMed DOI

Baum B. R., Edwards T., Johnson D. A. (2008). Loss of 5S rDNA units in the evolution of agropyron, pseudoroegneria, and douglasdeweya. Genome 51, 589–598. 10.1139/G08-045 PubMed DOI

Baum B. R., Edwards T., Mamuti M., Johnson D. A. (2012). Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from the nuclear 5S rDNA sequences (Poaceae: Triticeae). Genome 55, 177–193. 10.1139/g2012-006 PubMed DOI

Belyayev A., Pastova L., Fehrer J., Josefiova J., Chrtek J., Mraz P. (2018). Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Syst. Evol. 304, 387–396. 10.1007/s00606-017-1483-y DOI

Besendorfer V., Krajacić-Sokol I., Jelenić S., Puizina J., Mlinarec J., Sviben T., et al. (2005). Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution. Theor. Appl. Genet. 110, 730–741. 10.1007/s00122-004-1899-y PubMed DOI

Borowska-Zuchowska N., Hasterok R. (2017). Epigenetics of the preferential silencing of Brachypodium stacei-originated 35S rDNA loci in the allotetraploid grass Brachypodium hybridum. Sci. Rep. 7, 5260. 10.1038/s41598-017-05413-x PubMed DOI PMC

Bourke P. M., Voorrips R. E., Visser R. G. F., Maliepaard C. (2018). Tools for genetic studies in experimental populations of polyploids. Front. Plant Sci. 9, 513. 10.3389/fpls.2018.00513 PubMed DOI PMC

Boutte J., Aliaga B., Lima O., de Carvalho J. F., Ainouche A., Macas J., et al. (2016). Haplotype detection from Next-generation sequencing in high-ploidy-level species: 45S rDNA gene copies in the hexaploid Spartina maritima. Genes Genomes Genet. 6, 29–40. G3-. 10.1534/g3.115.023242 PubMed DOI PMC

Bughio F., Maggert K. A. (2019). The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosome Res. 27, 19–30. 10.1007/s10577-018-9591-2 PubMed DOI PMC

Catalán P., Müller J., Hasterok R., Jenkins G., Mur L. A., Langdon T., et al. (2012). Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109, 385–405. 10.1093/aob/mcr294 PubMed DOI PMC

Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42, 685–705. 10.1007/BF02338802 PubMed DOI

Cronn R., Small R. L., Haselkorn T., Wendel J. F. (2003). Cryptic repeated genomic recombination during speciation in Gossypium gossypioides. Evolution 57 (11), 2475–2489. 10.1111/j.0014-3820.2003.tb01493.x PubMed DOI

Dodsworth S., Chase M. W., Kelly L. J., Leitch I. J., Macas J., Novak P., et al. (2015). Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 64, 112–126. 10.1093/sysbio/syu080 PubMed DOI PMC

Dodsworth S., Chase M. W., Sarkinen T., Knapp S., Leitch A. (2016). Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Biol. J. Linn. Soc 117, 96–105. 10.1111/bij.12612 DOI

Dover G. A. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299, 111–117. 10.1038/299111a0 PubMed DOI

Elder J. F., Turner B. J. (1995). Concerted evolution of repetitive DNA-sequences in eukaryotes. Q. Rev. Biol. 70, 297–320. 10.1086/419073 PubMed DOI

Fredotovic Z., Samanic I., Weiss-Schneeweiss H., Kamenjarin J., Jang T. S., Puizina J. (2014). Triparental origin of triploid onion, Allium x cornutum (Clementi ex Visiani, 1842), as evidenced by molecular, phylogenetic and cytogenetic analyses. BMC Plant Biol. 14, 14. 10.1186/1471-2229-14-24 PubMed DOI PMC

Fulnecek J., Lim K. Y., Leitch A. R., Kovarik A., Matyasek R. (2002). Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88, 19–25. 10.1038/sj.hdy.6800001 PubMed DOI

Fulnecek J., Matyasek R., Kovarik A. (2006). Plant 5S rDNA has multiple alternative nucleosome positions. Genome 49, 840–850. 10.1139/g06-039 PubMed DOI

Garcia S., Garnatje T., Kovarik A. (2012. a). Plant rDNA database: ribosomal DNA loci data including other karyological and cytogenetic information in plants. Chromosoma 121, 389–394. 10.1007/s00412-012-0368-7 PubMed DOI

Garcia S., Crhak Khaitova L., Kovarik A. (2012. b). Expression of 5S rRNA genes linked to 35S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol. 12, 95. 10.1186/1471-2229-12-95 PubMed DOI PMC

Garcia S., Kovarik A., Leitch A. R., Garnatje T. (2017). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. 10.1111/tpj.13442 PubMed DOI

Glover N. M., Redestig H., Dessimoz C. (2016). Homoeologs: what are they and how do we infer them? Trends Plant Sci. 21, 609–621. 10.1016/j.tplants.2016.02.005 PubMed DOI PMC

Grover C. E., Arick M. A., Thrash A., Conover J. L., Sanders W. S., Peterson D. G., et al. (2019). Insights into the evolution of the New world diploid cottons (Gossypium, subgenus Houzingenia) based on genome sequencing. Genome Biol. Evol. 11, 53–71. 10.1093/gbe/evy256 PubMed DOI PMC

Hemleben V., Zentgraf U. (1994). “Structural organisation and regulation of transcription by RNA polymerase I of plant nuclear ribosomal genes,” in Results and problems in cell differentiation 20: plant promoters and transcription factors, vol. 3-24 . Ed. Lapitan N. (Berlin/Heidelberg: Springer-Verlag; ). 10.1007/978-3-540-48037-2_1 PubMed DOI

Huska D., Leitch I. J., de Carvalho J. F., Leitch A. R., Salmon A., Ainouche M., et al. (2016). Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biol. Invasions 18, 2137–2151. 10.1007/s10530-015-0956-6 DOI

Jang T. S., McCann J., Parker J. S., Takayama K., Hong S. P., Schneeweiss G. M., et al. (2016). rDNA loci evolution in the genus Glechoma (Lamiaceae). PloS One 11, e0167177. 10.1371/journal.pone.0167177 PubMed DOI PMC

Joachimiak A. J., Hasterok R., Sliwinska E., Musial K., Grabowska-Joachimiak A. (2018). FISH-aimed karyotype analysis in Aconitum subgen. Aconitum reveals excessive rDNA sites in tetraploid taxa. Protoplasma 255, 1363–1372. 10.1007/s00709-018-1238-9 PubMed DOI PMC

Kalendar R., Tanskanen J., Chang W., Antonius K., Sela H., Peleg O., et al. (2008). Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. U.S.A. 105, 5833–5838. 10.1073/pnas.0709698105 PubMed DOI PMC

Kaplan Z., Jarolimova V., Fehrer J. (2013). Revision of chromosome numbers of Potamogetonaceae: a new basis for taxonomic and evolutionary implications. Preslia 85, 421–482. 10.1007/s12228-012-9299-0 DOI

Kellogg E. A., Appels R. (1995). Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140 (1), 325–343. PubMed PMC

Kovarik A., Matyasek R., Leitch A., Gazdova B., Fulnecek J., Bezdek M. (1997). Variability in CpNpG methylation in higher plant genomes. Gene 204, 25–33. 10.1016/S0378-1119(97)00503-9 PubMed DOI

Lim K. Y., Kovarik A., Matyasek R., Chase M. W., Clarkson J. J., Grandbastien M. A., et al. (2007). Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 175, 756–763. 10.1111/j.1469-8137.2007.02121.x PubMed DOI

Lunerova J., Renny-Byfield S., Matyasek R., Leitch A., Kovarik A. (2017). Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst. Evol. 303, 1043–1060. 10.1007/s00606-017-1442-7 DOI

Mahelka V., Kopecky D., Pastova L. (2011). On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol. Biol. 11, 127. 10.1186/1471-2148-11-127 PubMed DOI PMC

Mahelka V., Kopecky D., Baum B. R. (2013). Contrasting Patterns of Evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol. Biol. Evol. 30, 2065–2086. 10.1093/molbev/mst106 PubMed DOI

Mandakova T., Marhold K., Lysak M. A. (2014). The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol. 201, 982–992. 10.1111/nph.12567 PubMed DOI

Matyasek R., Lim K. Y., Kovarik A., Leitch A. R. (2003). Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91 (3), 268–275. 10.1038/sj.hdy.6800333 PubMed DOI

Matyasek R., Renny-Byfield S., Fulnecek J., Macas J., Grandbastien M. A., Nichols R., et al. (2012). Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 13, 722. 10.1186/1471-2164-13-722 PubMed DOI PMC

Mlinarec J., Skuhala A., Jurković A., Malenica N., McCann J., Weiss-Schneeweiss H., et al. (2019). The repetitive DNA composition in the natural pesticide producer Tanacetum cinerariifolium: interindividual variation of subtelomeric tandem repeats. Front. Plant Sci. 10, 613. 10.3389/fpls.2019.00613 PubMed DOI PMC

Muir G., Fleming C. C., Schlotterer C. (2001). Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol. Biol. Evol. 18, 112–119. 10.1093/oxfordjournals.molbev.a003785 PubMed DOI

Němečková A., Christelová P., Čížková J., Nyine M., Van den Houwe I., Svačina R., et al. (2018). Molecular and cytogenetic study of east African highland banana. Front. Plant Sci. 9, 1371. 10.3389/fpls.2018.01371 PubMed DOI PMC

Nieto Feliner G., Rosselló J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44, 911–919. 10.1016/j.ympev.2007.01.013 PubMed DOI

Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in Plant Genome Diversity. Ed. Wendel J. F. (Wien: Springer-Verlag; ), 171–194. 10.1007/978-3-7091-1130-7_12 DOI

Nieto Feliner N., Alvarez I., Fuertes-Aguilar J., Heuertz M., Marques I., Moharrek F., et al. (2017). Is homoploid hybrid speciation that rare? An empiricist's view. Heredity 118, 513–516. 10.1038/hdy.2017.7 PubMed DOI PMC

Novak P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinf. 11, 378. 10.1186/1471-2105-11-378 PubMed DOI PMC

Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. 10.1093/bioinformatics/btt054 PubMed DOI

Novak P., Robledillo L. A., Koblizkova A., Vrbova I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucl. Acids Res. 45, E111. 10.1093/nar/gkx257 PubMed DOI PMC

Parks M. M., Kurylo C. M., Batchelder J. E., Vincent C. T., Blanchard S. C. (2019). Implications of sequence variation on the evolution of rRNA. Chromosome Res. 27, 89–93. 10.1007/s10577-018-09602-w PubMed DOI PMC

Pedrosa-Harand A., de Almeida C. C. S., Mosiolek M., Blair M., Schweizer D., Guerra M. (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 112, 924–933. 10.1007/s00122-005-0196-8 PubMed DOI

Peska V., Mandakova T., Ihradska V., Fajkus J. (2019). Comparative dissection of three giant genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 20, 25. 10.3390/ijms20030733 PubMed DOI PMC

Poczai P., Hyvonen J. (2010). Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37, 1897–1912. 10.1007/s11033-009-9630-3 PubMed DOI

Renny-Byfield S., Kovarik A., Chester M., Nichols R. A., Macas J., Novak P., et al. (2012). Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PloS One 7, 722. 10.1371/journal.pone.0036963 PubMed DOI PMC

Ribeiro T., Marques A., Novak P., Schubert V., Vanzela A. L., Macas J., et al. (2017). Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 126, 325–335. 10.1007/s00412-016-0616-3 PubMed DOI

Röser M., Winterfeld G., Grebenstein B., Hemleben V. (2001). Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol. Phylogenet. Evol. 2, 198–217. 10.1006/mpev.2001.1003 PubMed DOI

Roa F., Guerra M. (2012). Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol. Biol. 12, 225. 10.1186/1471-2148-12-225 PubMed DOI PMC

Roa F., Guerra M. (2015). Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 146, 243–249. 10.1159/000440930 PubMed DOI

Sastri D. C., Hilu K., Appels R., Lagudah E. S., Playford J., Baum B. R. (1992). An overview of evolution in plant 5S-DNA. Plant Syst. Evol. 183, 169–181. 10.1007/BF00940801 DOI

Schlotterer C., Tautz D. (1994). Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr. Biol. 4, 777–783. 10.1016/S0960-9822(00)00175-5 PubMed DOI

Schubert I., Wobus U. (1985). In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92, 143–148. 10.1007/BF00328466 DOI

Souza G., Marques A., Ribeiro T., Dantas L. G., Speranza P., Guerra M., et al. (2019). Allopolyploidy and extensive rDNA site variation underlie rapid karyotype evolution in Nothoscordum section Nothoscordum (Amaryllidaceae). Bot. J. Linn. Soc 190, 215–228. 10.1093/botlinnean/boz008 DOI

Symonova R., Ocalewicz K., Kirtiklis L., Delmastro G. B., Pelikanova S., Garcia S., et al. (2017). Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 18, 391. 10.1186/s12864-017-3774-7 PubMed DOI PMC

Tang S., Li Z., Jia X., Larkin P. J. (2000). Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor. Appl. Genet. 100, 344–352. 10.1007/s001220050045 DOI

Valarik M., Simkova H., Hribova E., Safar J., Dolezelova M., Dolezel J. (2002). Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.). Chromosome Res. 10, 89–100. 10.1023/A:1014945730035 PubMed DOI

Van De Peer Y., Mizrachi E., Marchal K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424. 10.1038/nrg.2017.26 PubMed DOI

Vitales D., Garcia S., Dodsworth S. (2019). “Recostructing phylogenetic relatioships based on repeat sequence similarities,” in BioRxiv (USA: Cold Spring Harbour Laboratory publishers; ). 10.1101/624064 PubMed DOI

Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V. (1999). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16, 311–320. 10.1093/oxfordjournals.molbev.a026112 PubMed DOI

Volkov R. A., Komarova N. Y., Hemleben V. (2007). Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst. Biodivers. (NHM London) 5, 261–276. 10.1017/S1477200007002447 DOI

Wang W. C., Ma L., Becher H., Garcia S., Kovarikova A., Leitch I. J., et al. (2016). Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125, 683–699. 10.1007/s00412-015-0556-3 PubMed DOI PMC

Wang W., Wan T., Becher H., Kuderova A., Leitch I. J., Garcia S., et al. (2019). Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Ann. Bot. 123, 767–781. 10.1093/aob/mcy172 PubMed DOI PMC

Weiss-Schneeweiss H., Tremetsberger K., Schneeweiss G. M., Parker J. S., Stuessy T. F. (2008). Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann. Bot. 101, 909–918. 10.1093/aob/mcn023 PubMed DOI PMC

Weiss-Schneeweiss H., Leitch A. R., McCann J., Jang T. S., Macas J. (2015). “Employing next-generation sequencing to explore the repeat landscape of the plant genome,” in Next generation sequencing in plant systematics. Eds. Hörandl E., Appelhans M. S. (Germany: Königstein; ), 155–179. 10.14630/000006 DOI

Wendel J. F., Schnabel A., Seelanan T. (1995. a). Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. U.S.A. 92, 280–284. 10.1073/pnas.92.1.280 PubMed DOI PMC

Wendel J. F., Schnabel A., Seelanan T. (1995. b). An unusual ribosomal DNA-sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phylogenet. Evol. 4, 298–313. 10.1006/mpev.1995.1027 PubMed DOI

Wendel J. F., Lisch D., Hu G. J., Mason A. S. (2018). The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49, 1–7. 10.1016/j.gde.2018.01.004 PubMed DOI

Wendel J. F. (1989). New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 86, 4132–4136. 10.1073/pnas.86.11.4132 PubMed DOI PMC

Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. Am. J. Bot. 102, 1753–1756. 10.3732/ajb.1500320 PubMed DOI

West C., James S. A., Davey R. P., Dicks J., Roberts I. N. (2014). Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species. Syst. Biol. 63, 543–554. 10.1093/sysbio/syu019 PubMed DOI PMC

Yoo M. J., Liu X. X., Pires J. C., Soltis P. S., Soltis D. E. (2014). Nonadditive gene expression in polyploids. Annu. Rev. Genet. 48, 485–517. 10.1146/annurev-genet-120213-092159 PubMed DOI

Zhu X. Y., Cai D. T., Ding Y. (2008). Molecular and cytological characterization of 5S rDNA in Oryza species: genomic organization and phylogenetic implications. Genome 51, 332–340. 10.1139/G08-016 PubMed DOI

Zonneveld B. J. (2010). New record holders for maximum genome size in eudicots and monocots. J. Bot. article ID 527357. (Hindawi publishing corporation). 10.1155/2010/527357 DOI

Zozomova-Lihova J., Mandakova T., Kovarikova A., Muhlhausen A., Mummenhoff K., Lysak M. A., et al. (2014). When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine x schulzii trigenomic allopolyploid. New Phytol. 203, 1096–1108. 10.1111/nph.12873 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Does time matter? Intraspecific diversity of ribosomal RNA genes in lineages of the allopolyploid model grass Brachypodium hybridum with different evolutionary ages

. 2024 Oct 18 ; 24 (1) : 981. [epub] 20241018

First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping

. 2024 Sep 13 ; 24 (1) : 859. [epub] 20240913

Ancient hybridization and repetitive element proliferation in the evolutionary history of the monocot genus Amomum (Zingiberaceae)

. 2024 ; 15 () : 1324358. [epub] 20240419

The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics

. 2024 Mar 01 ; 41 (3) : .

Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?

. 2023 Sep ; 131 (3) : 179-188. [epub] 20230704

Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol

Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods

. 2023 Jan 04 ; 12 (2) : . [epub] 20230104

Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution

. 2022 Aug 29 ; 190 (1) : 403-420.

Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution

. 2021 ; 12 () : 797348. [epub] 20211221

Ancient Origin of Two 5S rDNA Families Dominating in the Genus Rosa and Their Behavior in the Canina-Type Meiosis

. 2021 ; 12 () : 643548. [epub] 20210308

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...