The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32117380
PubMed Central
PMC7025596
DOI
10.3389/fpls.2020.00041
Knihovny.cz E-zdroje
- Klíčová slova
- 5S rRNA genes, allopolyploidy, evolution, graph structure clustering, high-throughput sequencing, hybridization, repeatome,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION: We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA United States
Zobrazit více v PubMed
Ainouche M. L., Baumel A., Salmon A. (2004). Spartina anglica Schreb.: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol. J. Linn. Soc 82, 474–475. 10.1111/j.1095-8312.2004.00334.x DOI
Alix K., Gerard P. R., Schwarzacher T., Heslop-Harrison J. S. (2017). Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann. Bot. 120, 619–619. 10.1093/aob/mcx096 PubMed DOI PMC
Alvarez I., Wendel J. W. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434. 10.1016/S1055-7903(03)00208-2 PubMed DOI
Baum B. R., Bailey L. G., Belyayev A., Raskina O., Nevo E. (2004). The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes - a test on cultivated wheat and wheat progenitors. Genome 47, 590–599. 10.1139/g03-146 PubMed DOI
Baum B. R., Edwards T., Johnson D. A. (2008). Loss of 5S rDNA units in the evolution of agropyron, pseudoroegneria, and douglasdeweya. Genome 51, 589–598. 10.1139/G08-045 PubMed DOI
Baum B. R., Edwards T., Mamuti M., Johnson D. A. (2012). Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from the nuclear 5S rDNA sequences (Poaceae: Triticeae). Genome 55, 177–193. 10.1139/g2012-006 PubMed DOI
Belyayev A., Pastova L., Fehrer J., Josefiova J., Chrtek J., Mraz P. (2018). Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Syst. Evol. 304, 387–396. 10.1007/s00606-017-1483-y DOI
Besendorfer V., Krajacić-Sokol I., Jelenić S., Puizina J., Mlinarec J., Sviben T., et al. (2005). Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution. Theor. Appl. Genet. 110, 730–741. 10.1007/s00122-004-1899-y PubMed DOI
Borowska-Zuchowska N., Hasterok R. (2017). Epigenetics of the preferential silencing of Brachypodium stacei-originated 35S rDNA loci in the allotetraploid grass Brachypodium hybridum. Sci. Rep. 7, 5260. 10.1038/s41598-017-05413-x PubMed DOI PMC
Bourke P. M., Voorrips R. E., Visser R. G. F., Maliepaard C. (2018). Tools for genetic studies in experimental populations of polyploids. Front. Plant Sci. 9, 513. 10.3389/fpls.2018.00513 PubMed DOI PMC
Boutte J., Aliaga B., Lima O., de Carvalho J. F., Ainouche A., Macas J., et al. (2016). Haplotype detection from Next-generation sequencing in high-ploidy-level species: 45S rDNA gene copies in the hexaploid Spartina maritima. Genes Genomes Genet. 6, 29–40. G3-. 10.1534/g3.115.023242 PubMed DOI PMC
Bughio F., Maggert K. A. (2019). The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosome Res. 27, 19–30. 10.1007/s10577-018-9591-2 PubMed DOI PMC
Catalán P., Müller J., Hasterok R., Jenkins G., Mur L. A., Langdon T., et al. (2012). Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109, 385–405. 10.1093/aob/mcr294 PubMed DOI PMC
Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42, 685–705. 10.1007/BF02338802 PubMed DOI
Cronn R., Small R. L., Haselkorn T., Wendel J. F. (2003). Cryptic repeated genomic recombination during speciation in Gossypium gossypioides. Evolution 57 (11), 2475–2489. 10.1111/j.0014-3820.2003.tb01493.x PubMed DOI
Dodsworth S., Chase M. W., Kelly L. J., Leitch I. J., Macas J., Novak P., et al. (2015). Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 64, 112–126. 10.1093/sysbio/syu080 PubMed DOI PMC
Dodsworth S., Chase M. W., Sarkinen T., Knapp S., Leitch A. (2016). Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Biol. J. Linn. Soc 117, 96–105. 10.1111/bij.12612 DOI
Dover G. A. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299, 111–117. 10.1038/299111a0 PubMed DOI
Elder J. F., Turner B. J. (1995). Concerted evolution of repetitive DNA-sequences in eukaryotes. Q. Rev. Biol. 70, 297–320. 10.1086/419073 PubMed DOI
Fredotovic Z., Samanic I., Weiss-Schneeweiss H., Kamenjarin J., Jang T. S., Puizina J. (2014). Triparental origin of triploid onion, Allium x cornutum (Clementi ex Visiani, 1842), as evidenced by molecular, phylogenetic and cytogenetic analyses. BMC Plant Biol. 14, 14. 10.1186/1471-2229-14-24 PubMed DOI PMC
Fulnecek J., Lim K. Y., Leitch A. R., Kovarik A., Matyasek R. (2002). Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88, 19–25. 10.1038/sj.hdy.6800001 PubMed DOI
Fulnecek J., Matyasek R., Kovarik A. (2006). Plant 5S rDNA has multiple alternative nucleosome positions. Genome 49, 840–850. 10.1139/g06-039 PubMed DOI
Garcia S., Garnatje T., Kovarik A. (2012. a). Plant rDNA database: ribosomal DNA loci data including other karyological and cytogenetic information in plants. Chromosoma 121, 389–394. 10.1007/s00412-012-0368-7 PubMed DOI
Garcia S., Crhak Khaitova L., Kovarik A. (2012. b). Expression of 5S rRNA genes linked to 35S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol. 12, 95. 10.1186/1471-2229-12-95 PubMed DOI PMC
Garcia S., Kovarik A., Leitch A. R., Garnatje T. (2017). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. 10.1111/tpj.13442 PubMed DOI
Glover N. M., Redestig H., Dessimoz C. (2016). Homoeologs: what are they and how do we infer them? Trends Plant Sci. 21, 609–621. 10.1016/j.tplants.2016.02.005 PubMed DOI PMC
Grover C. E., Arick M. A., Thrash A., Conover J. L., Sanders W. S., Peterson D. G., et al. (2019). Insights into the evolution of the New world diploid cottons (Gossypium, subgenus Houzingenia) based on genome sequencing. Genome Biol. Evol. 11, 53–71. 10.1093/gbe/evy256 PubMed DOI PMC
Hemleben V., Zentgraf U. (1994). “Structural organisation and regulation of transcription by RNA polymerase I of plant nuclear ribosomal genes,” in Results and problems in cell differentiation 20: plant promoters and transcription factors, vol. 3-24 . Ed. Lapitan N. (Berlin/Heidelberg: Springer-Verlag; ). 10.1007/978-3-540-48037-2_1 PubMed DOI
Huska D., Leitch I. J., de Carvalho J. F., Leitch A. R., Salmon A., Ainouche M., et al. (2016). Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biol. Invasions 18, 2137–2151. 10.1007/s10530-015-0956-6 DOI
Jang T. S., McCann J., Parker J. S., Takayama K., Hong S. P., Schneeweiss G. M., et al. (2016). rDNA loci evolution in the genus Glechoma (Lamiaceae). PloS One 11, e0167177. 10.1371/journal.pone.0167177 PubMed DOI PMC
Joachimiak A. J., Hasterok R., Sliwinska E., Musial K., Grabowska-Joachimiak A. (2018). FISH-aimed karyotype analysis in Aconitum subgen. Aconitum reveals excessive rDNA sites in tetraploid taxa. Protoplasma 255, 1363–1372. 10.1007/s00709-018-1238-9 PubMed DOI PMC
Kalendar R., Tanskanen J., Chang W., Antonius K., Sela H., Peleg O., et al. (2008). Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. U.S.A. 105, 5833–5838. 10.1073/pnas.0709698105 PubMed DOI PMC
Kaplan Z., Jarolimova V., Fehrer J. (2013). Revision of chromosome numbers of Potamogetonaceae: a new basis for taxonomic and evolutionary implications. Preslia 85, 421–482. 10.1007/s12228-012-9299-0 DOI
Kellogg E. A., Appels R. (1995). Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140 (1), 325–343. PubMed PMC
Kovarik A., Matyasek R., Leitch A., Gazdova B., Fulnecek J., Bezdek M. (1997). Variability in CpNpG methylation in higher plant genomes. Gene 204, 25–33. 10.1016/S0378-1119(97)00503-9 PubMed DOI
Lim K. Y., Kovarik A., Matyasek R., Chase M. W., Clarkson J. J., Grandbastien M. A., et al. (2007). Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 175, 756–763. 10.1111/j.1469-8137.2007.02121.x PubMed DOI
Lunerova J., Renny-Byfield S., Matyasek R., Leitch A., Kovarik A. (2017). Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst. Evol. 303, 1043–1060. 10.1007/s00606-017-1442-7 DOI
Mahelka V., Kopecky D., Pastova L. (2011). On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol. Biol. 11, 127. 10.1186/1471-2148-11-127 PubMed DOI PMC
Mahelka V., Kopecky D., Baum B. R. (2013). Contrasting Patterns of Evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol. Biol. Evol. 30, 2065–2086. 10.1093/molbev/mst106 PubMed DOI
Mandakova T., Marhold K., Lysak M. A. (2014). The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol. 201, 982–992. 10.1111/nph.12567 PubMed DOI
Matyasek R., Lim K. Y., Kovarik A., Leitch A. R. (2003). Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91 (3), 268–275. 10.1038/sj.hdy.6800333 PubMed DOI
Matyasek R., Renny-Byfield S., Fulnecek J., Macas J., Grandbastien M. A., Nichols R., et al. (2012). Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 13, 722. 10.1186/1471-2164-13-722 PubMed DOI PMC
Mlinarec J., Skuhala A., Jurković A., Malenica N., McCann J., Weiss-Schneeweiss H., et al. (2019). The repetitive DNA composition in the natural pesticide producer Tanacetum cinerariifolium: interindividual variation of subtelomeric tandem repeats. Front. Plant Sci. 10, 613. 10.3389/fpls.2019.00613 PubMed DOI PMC
Muir G., Fleming C. C., Schlotterer C. (2001). Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol. Biol. Evol. 18, 112–119. 10.1093/oxfordjournals.molbev.a003785 PubMed DOI
Němečková A., Christelová P., Čížková J., Nyine M., Van den Houwe I., Svačina R., et al. (2018). Molecular and cytogenetic study of east African highland banana. Front. Plant Sci. 9, 1371. 10.3389/fpls.2018.01371 PubMed DOI PMC
Nieto Feliner G., Rosselló J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44, 911–919. 10.1016/j.ympev.2007.01.013 PubMed DOI
Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in Plant Genome Diversity. Ed. Wendel J. F. (Wien: Springer-Verlag; ), 171–194. 10.1007/978-3-7091-1130-7_12 DOI
Nieto Feliner N., Alvarez I., Fuertes-Aguilar J., Heuertz M., Marques I., Moharrek F., et al. (2017). Is homoploid hybrid speciation that rare? An empiricist's view. Heredity 118, 513–516. 10.1038/hdy.2017.7 PubMed DOI PMC
Novak P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinf. 11, 378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Novak P., Robledillo L. A., Koblizkova A., Vrbova I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucl. Acids Res. 45, E111. 10.1093/nar/gkx257 PubMed DOI PMC
Parks M. M., Kurylo C. M., Batchelder J. E., Vincent C. T., Blanchard S. C. (2019). Implications of sequence variation on the evolution of rRNA. Chromosome Res. 27, 89–93. 10.1007/s10577-018-09602-w PubMed DOI PMC
Pedrosa-Harand A., de Almeida C. C. S., Mosiolek M., Blair M., Schweizer D., Guerra M. (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 112, 924–933. 10.1007/s00122-005-0196-8 PubMed DOI
Peska V., Mandakova T., Ihradska V., Fajkus J. (2019). Comparative dissection of three giant genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 20, 25. 10.3390/ijms20030733 PubMed DOI PMC
Poczai P., Hyvonen J. (2010). Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37, 1897–1912. 10.1007/s11033-009-9630-3 PubMed DOI
Renny-Byfield S., Kovarik A., Chester M., Nichols R. A., Macas J., Novak P., et al. (2012). Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PloS One 7, 722. 10.1371/journal.pone.0036963 PubMed DOI PMC
Ribeiro T., Marques A., Novak P., Schubert V., Vanzela A. L., Macas J., et al. (2017). Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 126, 325–335. 10.1007/s00412-016-0616-3 PubMed DOI
Röser M., Winterfeld G., Grebenstein B., Hemleben V. (2001). Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol. Phylogenet. Evol. 2, 198–217. 10.1006/mpev.2001.1003 PubMed DOI
Roa F., Guerra M. (2012). Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol. Biol. 12, 225. 10.1186/1471-2148-12-225 PubMed DOI PMC
Roa F., Guerra M. (2015). Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 146, 243–249. 10.1159/000440930 PubMed DOI
Sastri D. C., Hilu K., Appels R., Lagudah E. S., Playford J., Baum B. R. (1992). An overview of evolution in plant 5S-DNA. Plant Syst. Evol. 183, 169–181. 10.1007/BF00940801 DOI
Schlotterer C., Tautz D. (1994). Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr. Biol. 4, 777–783. 10.1016/S0960-9822(00)00175-5 PubMed DOI
Schubert I., Wobus U. (1985). In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92, 143–148. 10.1007/BF00328466 DOI
Souza G., Marques A., Ribeiro T., Dantas L. G., Speranza P., Guerra M., et al. (2019). Allopolyploidy and extensive rDNA site variation underlie rapid karyotype evolution in Nothoscordum section Nothoscordum (Amaryllidaceae). Bot. J. Linn. Soc 190, 215–228. 10.1093/botlinnean/boz008 DOI
Symonova R., Ocalewicz K., Kirtiklis L., Delmastro G. B., Pelikanova S., Garcia S., et al. (2017). Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 18, 391. 10.1186/s12864-017-3774-7 PubMed DOI PMC
Tang S., Li Z., Jia X., Larkin P. J. (2000). Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor. Appl. Genet. 100, 344–352. 10.1007/s001220050045 DOI
Valarik M., Simkova H., Hribova E., Safar J., Dolezelova M., Dolezel J. (2002). Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.). Chromosome Res. 10, 89–100. 10.1023/A:1014945730035 PubMed DOI
Van De Peer Y., Mizrachi E., Marchal K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424. 10.1038/nrg.2017.26 PubMed DOI
Vitales D., Garcia S., Dodsworth S. (2019). “Recostructing phylogenetic relatioships based on repeat sequence similarities,” in BioRxiv (USA: Cold Spring Harbour Laboratory publishers; ). 10.1101/624064 PubMed DOI
Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V. (1999). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16, 311–320. 10.1093/oxfordjournals.molbev.a026112 PubMed DOI
Volkov R. A., Komarova N. Y., Hemleben V. (2007). Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst. Biodivers. (NHM London) 5, 261–276. 10.1017/S1477200007002447 DOI
Wang W. C., Ma L., Becher H., Garcia S., Kovarikova A., Leitch I. J., et al. (2016). Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125, 683–699. 10.1007/s00412-015-0556-3 PubMed DOI PMC
Wang W., Wan T., Becher H., Kuderova A., Leitch I. J., Garcia S., et al. (2019). Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Ann. Bot. 123, 767–781. 10.1093/aob/mcy172 PubMed DOI PMC
Weiss-Schneeweiss H., Tremetsberger K., Schneeweiss G. M., Parker J. S., Stuessy T. F. (2008). Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann. Bot. 101, 909–918. 10.1093/aob/mcn023 PubMed DOI PMC
Weiss-Schneeweiss H., Leitch A. R., McCann J., Jang T. S., Macas J. (2015). “Employing next-generation sequencing to explore the repeat landscape of the plant genome,” in Next generation sequencing in plant systematics. Eds. Hörandl E., Appelhans M. S. (Germany: Königstein; ), 155–179. 10.14630/000006 DOI
Wendel J. F., Schnabel A., Seelanan T. (1995. a). Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. U.S.A. 92, 280–284. 10.1073/pnas.92.1.280 PubMed DOI PMC
Wendel J. F., Schnabel A., Seelanan T. (1995. b). An unusual ribosomal DNA-sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phylogenet. Evol. 4, 298–313. 10.1006/mpev.1995.1027 PubMed DOI
Wendel J. F., Lisch D., Hu G. J., Mason A. S. (2018). The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49, 1–7. 10.1016/j.gde.2018.01.004 PubMed DOI
Wendel J. F. (1989). New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 86, 4132–4136. 10.1073/pnas.86.11.4132 PubMed DOI PMC
Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. Am. J. Bot. 102, 1753–1756. 10.3732/ajb.1500320 PubMed DOI
West C., James S. A., Davey R. P., Dicks J., Roberts I. N. (2014). Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species. Syst. Biol. 63, 543–554. 10.1093/sysbio/syu019 PubMed DOI PMC
Yoo M. J., Liu X. X., Pires J. C., Soltis P. S., Soltis D. E. (2014). Nonadditive gene expression in polyploids. Annu. Rev. Genet. 48, 485–517. 10.1146/annurev-genet-120213-092159 PubMed DOI
Zhu X. Y., Cai D. T., Ding Y. (2008). Molecular and cytological characterization of 5S rDNA in Oryza species: genomic organization and phylogenetic implications. Genome 51, 332–340. 10.1139/G08-016 PubMed DOI
Zonneveld B. J. (2010). New record holders for maximum genome size in eudicots and monocots. J. Bot. article ID 527357. (Hindawi publishing corporation). 10.1155/2010/527357 DOI
Zozomova-Lihova J., Mandakova T., Kovarikova A., Muhlhausen A., Mummenhoff K., Lysak M. A., et al. (2014). When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine x schulzii trigenomic allopolyploid. New Phytol. 203, 1096–1108. 10.1111/nph.12873 PubMed DOI
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol
Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution