Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1325/2021
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36678948
PubMed Central
PMC9866396
DOI
10.3390/plants12020235
PII: plants12020235
Knihovny.cz E-zdroje
- Klíčová slova
- 26S rDNA, 5S rDNA, centromeric repeat, clover, fluorescent in situ hybridization, polyploidy, zigzag clover,
- Publikační typ
- časopisecké články MeSH
Trifolium medium L. is a wild polyploid relative of the agriculturally important red clover that possesses traits promising for breeding purposes. To date, T. medium also remains the only clover species with which agriculturally important red clover has successfully been hybridized. Even though allopolyploid origin has previously been suggested, little has in fact been known about the T. medium karyotype and its origin. We researched T. medium and related karyotypes using comparative cytogenomic methods, such as fluorescent in situ hybridization (FISH) and RepeatExplorer cluster analysis. The results indicate an exceptional karyotype diversity regarding numbers and mutual positions of 5S and 26S rDNA loci and centromeric repeats in populations of T. medium ecotypes and varieties. The observed variability among T. medium ecotypes and varieties suggests current karyotype instability that can be attributed to ever-ongoing battle between satellite DNA together with genomic changes and rearrangements enhanced by post-hybridization events. Comparative cytogenomic analyses of a T. medium hexaploid variety and diploid relatives revealed stable karyotypes with a possible case of chromosomal rearrangement. Moreover, the results provided evidence of T. medium having autopolyploid origin.
Department of Experimental Biology Faculty of Sciences Masaryk University 611 37 Brno Czech Republic
Zobrazit více v PubMed
Taylor N.L., Quesenberry K.H. Red Clover Science. Kluwer Academic; Dordrecht, The Netherland: 1996. p. 28.
Kintl A., Elbl J., Lošák T., Vaverková M., Nedělník J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen. Sustainability. 2018;10:3367. doi: 10.3390/su10103367. DOI
Hyslop M.G., Kemp P.D., Hodgson J. Vegetatively reproductive red clovers (Trifolium pratense L.): An overview. Proc. N. Z. Grassl. Assoc. 1999:121–126. doi: 10.33584/jnzg.1999.61.2343. DOI
Řepková J., Nedělník J. Modern methods for genetic improvement of trifolium pratense. Czech J. Genet. Plant Breed. 2014;50:92–99. doi: 10.17221/139/2013-CJGPB. DOI
Abberton M.T. Interspecific hybridization in the genus trifolium. Plant Breed. 2007;126:337–342. doi: 10.1111/j.1439-0523.2007.01374.x. DOI
Řepková J., Jungmannová B., Jakešová H. Identification of barriers to interspecific crosses in the genus trifolium. Euphytica. 2006;151:39–48. doi: 10.1007/s10681-006-9126-3. DOI
Řepková J., Jungmannová B., Jakešová H. Interspecific hybridisation prospects in the genus trifolium. Czech J. Genet. Plant Breed. 2003;39:306–308.
Dluhošová J., Řepková J., Jakešová H., Nedělník J. Impact of interspecific hybridization of T. pratense × T. medium and backcrossing on genetic variability of progeny. Czech J. Genet. Plant Breed. 2016;52:125–131. doi: 10.17221/115/2016-CJGPB. DOI
Jakešová H., Řepková J., Hampel D., Čechová L., Hofbauer J. Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech J. Genet. Plant Breed. 2011;47:28–36. doi: 10.17221/2/2011-CJGPB. DOI
Jakešová H., Hampel D., Řepková J., Nedělník J. Evaluation of feeding characteristics in variety Pramedi–interspecific hybrid Trifolium pratense × Trifolium medium. Úroda. 2014;12:183–186.
Isobe S., Sawai A., Yamaguchi H., Gau M., Uchiyama K. Breeding potential of the backcross progenies of a hybrid between Trifolium medium × T. pratense to T. pratense. Can. J. Plant Sci. 2002;82:395–399.
Renny-Byfield S., Wendel J.F. Doubling down on genomes: Polyploidy and crop plants. Am. J. Bot. 2014;101:1711–1725. doi: 10.3732/ajb.1400119. PubMed DOI
Dluhošová J., Ištvánek J., Nedělník J., Řepková J. Red clover (Trifolium pratense) and zigzag clover (T. medium)–A picture of genomic similarities and differences. Front. Plant Sci. 2018;9:724. doi: 10.3389/fpls.2018.00724. PubMed DOI PMC
Vižintin L., Javornik B., Bohanec B. Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 2006;170:859–866. doi: 10.1016/j.plantsci.2005.12.007. DOI
Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y., Kaneko T., Sakurai N., Okumura K., Klimenko I., et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.) DNA Res. 2005;12:301–364. doi: 10.1093/dnares/dsi018. PubMed DOI
Kataoka R., Hara M., Kato S., Isobe S., Sato S., Tabata S., Ohmido N. Integration of linkage and chromosome maps of red clover (Trifolium pratense L.) Cytogenet. Genome. Res. 2012;137:60–69. doi: 10.1159/000339509. PubMed DOI
Ištvánek J., Jaroš M., Křenek A., Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae) Am. J. Bot. 2014;101:327–337. doi: 10.3732/ajb.1300340. PubMed DOI
De Vega J.J., Ayling S., Hegarty M., Kudrna D., Goicoechea J.L., Ergon Å., Rognli O.A., Jones C., Swain M., Geurts R., et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait Improvement. Nature. 2015;5:17394. doi: 10.1038/srep17394. PubMed DOI PMC
Salimpour F., Sharifnia F., Mostafavi G., Hajrasoliha S., Ukhneh E. Chromosome counts and determination of ploid levels in Iranian species of Trifolium. Chromosome Bot. 2008;3:53–63. doi: 10.3199/iscb.3.53. DOI
Ellison N.W., Liston A., Steiner J.J., Williams W.M., Taylor N.L. Molecular phylogenetics of the clover genus (Trifolium—Leguminosae) Mol. Phylogenet. Evol. 2006;39:688–705. doi: 10.1016/j.ympev.2006.01.004. PubMed DOI
Vozárová R., Macková E., Vlk D., Řepková J. Variation in ribosomal DNA in the genus Trifolium (Fabaceae) Plants. 2021;10:1771. doi: 10.3390/plants10091771. PubMed DOI PMC
Chromosome Counts Database. [(accessed on 10 October 2022)]. Available online: http://ccdb.tau.ac.il/
Kobayashi T., Ganley A.R.D. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science. 2005;309:1581–1584. doi: 10.1126/science.1116102. PubMed DOI
Raskina O., Barber J.C., Nevo E., Belyayev A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI
Rosato M., Moreno-Saiz J.C., Galián J.A., Rosselló J.A. Evolutionary site-number changes of ribosomal DNA loci during speciation: Complex scenarios of ancestral and more recent polyploid events. AoB Plants. 2015;7:135. doi: 10.1093/aobpla/plv135. PubMed DOI PMC
Su D., Chen L., Sun J., Zhang L., Gao R., Li Q., Han Y., Li Z. Comparative chromosomal localization of 45S and 5S rDNA sites in 76 purple-fleshed sweet potato cultivars. Plants. 2020;9:865. doi: 10.3390/plants9070865. PubMed DOI PMC
He J., Zhao Y., Zhang S., He Y., Jiang J., Chen S., Fang W., Guan Z., Liao Y., Wang Z., et al. Uneven levels of 5S and 45S rDNA site number and loci variations across wild chrysanthemum accessions. Genes. 2022;13:894. doi: 10.3390/genes13050894. PubMed DOI PMC
Yue M., Gautam M., Chen Z., Hou J., Zheng X., Hou H., Li L. Histone acetylation of 45S rDNA correlates with disrupted nucleolar organization during heat stress response in Zea mays L. Physiol. Plant. 2021;172:2079–2089. doi: 10.1111/ppl.13438. PubMed DOI
Macháčková P., Majeský Ľ., Hroneš M., Bílková L., Hřibová E., Vašut R.J. New insights into ribosomal DNA variation in apomictic and sexual Taraxacum (Asteraceae) Bot. J. Linn. Soc. 2022;199:790–815. doi: 10.1093/botlinnean/boab094. DOI
Huang M., Li H., Zhang L., Gao F., Wang P., Hu Y., Yan S., Zhao L., Zhang Q., Tan J., et al. Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PLoS ONE. 2012;7:e35139. doi: 10.1371/journal.pone.0035139. PubMed DOI PMC
Hanson R.E., Nurul Islam-Faridi M., Percival E.A., Crane C.F., Ji Y., McKnight T.D., Stelly D.M., Price H.J. Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma. 1996;105:55–61. doi: 10.1007/BF02510039. PubMed DOI
Breda E., Wolny E., Hasterok R. Intraspecific polymorphism of ribosomal DNA loci number and morphology in Brachypodium pinnatum and Brachypodium sylvaticum. Cell. Mol. Biol. 2012;17 doi: 10.2478/s11658-012-0025-4. PubMed DOI PMC
Chung M.-C., Lee Y.-I., Cheng Y.-Y., Chou Y.-J., Lu C.-F. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 2008;116:745–753. doi: 10.1007/s00122-007-0705-z. PubMed DOI PMC
Pedrosa A., Vallejos C., Bachmair A., Schweizer D. Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor. Appl. Genet. 2003;106:205–212. doi: 10.1007/s00122-002-1138-3. PubMed DOI
Lan T., Albert V.A. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a Lady’s Slipper Orchid. BMC Plant Biol. 2011;11:126. doi: 10.1186/1471-2229-11-126. PubMed DOI PMC
Shcherban A.B., Sergeeva E.M., Badaeva E.D., Salina E.A. Analysis of 5S rdna changes in synthetic allopolyploids Triticum × Aegilops. Mol. Biol. 2008;42:536–542. doi: 10.1134/S0026893308040080. PubMed DOI
Książczyk T., Taciak M., Zwierzykowski Z. Variability of ribosomal DNA sites in festuca pratensis, lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J. Appl. Genet. 2010;51:449–460. doi: 10.1007/BF03208874. PubMed DOI
Malinska H., Tate J.A., Matyasek R., Leitch A.R., Soltis D.E., Soltis P.S., Kovarik A. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol. Biol. 2010;10:291. doi: 10.1186/1471-2148-10-291. PubMed DOI PMC
Garrido-Ramos M. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
Ávila Robledillo L., Neumann P., Koblížková A., Novák P., Vrbová I., Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol. Biol. Evol. 2020;37:2341–2356. doi: 10.1093/molbev/msaa090. PubMed DOI PMC
Lee H.-R., Zhang W., Langdon T., Jin W., Yan H., Cheng Z., Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc. Natl. Acad. Sci. USA. 2005;102:11793–11798. doi: 10.1073/pnas.0503863102. PubMed DOI PMC
Lermontova I., Sandmann M., Demidov D. Centromeres and kinetochores of Brassicaceae. Chromosome Res. 2014;22:135–152. doi: 10.1007/s10577-014-9422-z. PubMed DOI
Yu F., Dou Q., Liu R., Wang H. A Conserved repetitive DNA element located in the centromeres of chromosomes in Medicago genus. Genes Genom. 2017;39:903–911. doi: 10.1007/s13258-017-0556-1. DOI
Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC
Macas J., Novák P., Pellicer J., Čížková J., Koblížková A., Neumann P., Fuková I., Doležel J., Kelly L.J., Leitch I.J. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE. 2015;10:e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC
Ávila Robledillo L., Koblížková A., Novák P., Böttinger K., Vrbová I., Neumann P., Schubert I., Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci. Rep. 2018;8:5838. doi: 10.1038/s41598-018-24196-3. PubMed DOI PMC
Gong Z., Wu Y., Koblížková A., Torres G.A., Wang K., Iovene M., Neumann P., Zhang W., Novák P., Buell C.R., et al. repeatless and repeat-based centromeres in potato: Implications for centromere evolution. Plant Cell. 2012;24:3559–3574. doi: 10.1105/tpc.112.100511. PubMed DOI PMC
Huang Y., Ding W., Zhang M., Han J., Jing Y., Yao W., Hasterok R., Wang Z., Wang K. The formation and evolution of centromeric satellite repeats in Saccharum species. Plant J. 2021;106:616–629. doi: 10.1111/tpj.15186. PubMed DOI
Iwata-Otsubo A., Radke B., Findley S., Abernathy B., Vallejos C.E., Jackson S.A. Fluorescence In Situ Hybridization (FISH)-based karyotyping reveals rapid evolution of centromeric and subtelomeric repeats in common bean (Phaseolus vulgaris) and Relatives. G3-Genes Genom. Genet. 2016;6:1013–1022. doi: 10.1534/g3.115.024984. PubMed DOI PMC
Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Kirov I.V., Van Laere K., Van Roy N., Khrustaleva L.I. Towards a FISH-based karyotype of Rosa L. (Rosaceae) Comp. Cytogenet. 2016;10:543–554. doi: 10.3897/compcytogen.v10i4.9536. PubMed DOI PMC
Wang G., He Q., Macas J., Novák P., Neumann P., Meng D., Zhao H., Guo N., Han S., Zong M., et al. Karyotypes and distribution of tandem repeat sequences in Brassica Nigra determined by fluorescence in Situ Hybridization. Cytogenet. Genome Res. 2017;152:158–165. doi: 10.1159/000479179. PubMed DOI
Kadluczka D., Grzebelus E. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae) BMC Genomics. 2021;22:508. doi: 10.1186/s12864-021-07853-2. PubMed DOI PMC
Zhao H., Li S., Yang C., Li G., Wang Y., Peng J., Yan Z., Li R., Wang Y., Zhang L. FISH-based karyotype analyses of four Dracaena species. Cytogenet. Genome Res. 2021;161:272–277. doi: 10.1159/000516897. PubMed DOI
Borowska-Zuchowska N., Senderowicz M., Trunova D., Kolano B. Tracing the evolution of the angiosperm genome from the cytogenetic point of view. Plants. 2022;11:784. doi: 10.3390/plants11060784. PubMed DOI PMC
Rosato M., Galián J.A., Rosselló J.A. Amplification, contraction and genomic spread of a satellite DNA family (E180) in Medicago (Fabaceae) and allied genera. Ann. Bot.-Lond. 2012;109:773–782. doi: 10.1093/aob/mcr309. PubMed DOI PMC
Pellerin R.J., Waminal N.E., Kim H.H. FISH mapping of rDNA and telomeric repeats in 10 Senna Species. Hortic. Environ. Biote. 2019;60:253–260. doi: 10.1007/s13580-018-0115-y. DOI
Nguyen T.H., Waminal N.E., Lee D.S., Pellerin R.J., Ta T.D., Campomayor N.B., Kang B.Y., Kim H.H. Comparative triple-color FISH mapping in eleven Senna species using rDNA and telomeric repeat probes. Hortic. Environ. Biotechnol. 2021;62:927–935. doi: 10.1007/s13580-021-00364-9. DOI
Du P., Li L., Zhang Z., Liu H., Qin L., Huang B., Dong W., Tang F., Qi Z., Zhang X. Chromosome painting of telomeric repeats reveals new evidence for genome evolution in peanut. J. Integ. Agr. 2016;15:2488–2496. doi: 10.1016/S2095-3119(16)61423-5. DOI
She C.-W., Wei L., Jiang X.-H. Molecular cytogenetic characterization and comparison of the two cultivated Canavalia species (Fabaceae) Comp. Cytogenet. 2017;11:579–600. doi: 10.3897/compcytogen.v11i4.13604. PubMed DOI PMC
Susek K., Bielski W.K., Hasterok R., Naganowska B., Wolko B. A first glimpse of wild lupin karyotype variation as revealed by comparative cytogenetic mapping. Front. Plant Sci. 2016;7:1152. doi: 10.3389/fpls.2016.01152. PubMed DOI PMC
Yurkevich O.Y., Samatadze T.E., Levinskikh M.A., Zoshchuk S.A., Signalova O.B., Surzhikov S.A., Sychev V.N., Amosova A.V., Muravenko O.V. Molecular Cytogenetics of Pisum sativum L. grown under spaceflight-related stress. BioMed Res. Int. 2018;2018:1–10. doi: 10.1155/2018/4549294. PubMed DOI PMC
Li W., Challa G.S., Zhu H., Wei W. Recurrence of chromosome rearrangements and reuse of DNA breakpoints in the evolution of the Triticeae genomes. G3-Genes Genom. Genet. 2016;6:3837–3847. doi: 10.1534/g3.116.035089. PubMed DOI PMC
Garcia S., Wendel J.F., Borowska-Zuchowska N., Aïnouche M., Kuderova A., Kovarik A. The utility of graph clustering of 5s ribosomal dna homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants. Front. Plant Sci. 2020;11:41. doi: 10.3389/fpls.2020.00041. PubMed DOI PMC
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Lysák M.A., Mandáková T. Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. 2013;990:13–24. PubMed
Kirov I., Divashuk M., Van Laere K., Soloviev A., Khrustaleva L. An easy “steamdrop” method for high quality plant chromosome preparation. Mol. Cytogenet. 2014;7:21. doi: 10.1186/1755-8166-7-21. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI