Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods

. 2023 Jan 04 ; 12 (2) : . [epub] 20230104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36678948

Grantová podpora
MUNI/A/1325/2021 Ministry of Education, Youth and Sports of the Czech Republic

Trifolium medium L. is a wild polyploid relative of the agriculturally important red clover that possesses traits promising for breeding purposes. To date, T. medium also remains the only clover species with which agriculturally important red clover has successfully been hybridized. Even though allopolyploid origin has previously been suggested, little has in fact been known about the T. medium karyotype and its origin. We researched T. medium and related karyotypes using comparative cytogenomic methods, such as fluorescent in situ hybridization (FISH) and RepeatExplorer cluster analysis. The results indicate an exceptional karyotype diversity regarding numbers and mutual positions of 5S and 26S rDNA loci and centromeric repeats in populations of T. medium ecotypes and varieties. The observed variability among T. medium ecotypes and varieties suggests current karyotype instability that can be attributed to ever-ongoing battle between satellite DNA together with genomic changes and rearrangements enhanced by post-hybridization events. Comparative cytogenomic analyses of a T. medium hexaploid variety and diploid relatives revealed stable karyotypes with a possible case of chromosomal rearrangement. Moreover, the results provided evidence of T. medium having autopolyploid origin.

Zobrazit více v PubMed

Taylor N.L., Quesenberry K.H. Red Clover Science. Kluwer Academic; Dordrecht, The Netherland: 1996. p. 28.

Kintl A., Elbl J., Lošák T., Vaverková M., Nedělník J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen. Sustainability. 2018;10:3367. doi: 10.3390/su10103367. DOI

Hyslop M.G., Kemp P.D., Hodgson J. Vegetatively reproductive red clovers (Trifolium pratense L.): An overview. Proc. N. Z. Grassl. Assoc. 1999:121–126. doi: 10.33584/jnzg.1999.61.2343. DOI

Řepková J., Nedělník J. Modern methods for genetic improvement of trifolium pratense. Czech J. Genet. Plant Breed. 2014;50:92–99. doi: 10.17221/139/2013-CJGPB. DOI

Abberton M.T. Interspecific hybridization in the genus trifolium. Plant Breed. 2007;126:337–342. doi: 10.1111/j.1439-0523.2007.01374.x. DOI

Řepková J., Jungmannová B., Jakešová H. Identification of barriers to interspecific crosses in the genus trifolium. Euphytica. 2006;151:39–48. doi: 10.1007/s10681-006-9126-3. DOI

Řepková J., Jungmannová B., Jakešová H. Interspecific hybridisation prospects in the genus trifolium. Czech J. Genet. Plant Breed. 2003;39:306–308.

Dluhošová J., Řepková J., Jakešová H., Nedělník J. Impact of interspecific hybridization of T. pratense × T. medium and backcrossing on genetic variability of progeny. Czech J. Genet. Plant Breed. 2016;52:125–131. doi: 10.17221/115/2016-CJGPB. DOI

Jakešová H., Řepková J., Hampel D., Čechová L., Hofbauer J. Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech J. Genet. Plant Breed. 2011;47:28–36. doi: 10.17221/2/2011-CJGPB. DOI

Jakešová H., Hampel D., Řepková J., Nedělník J. Evaluation of feeding characteristics in variety Pramedi–interspecific hybrid Trifolium pratense × Trifolium medium. Úroda. 2014;12:183–186.

Isobe S., Sawai A., Yamaguchi H., Gau M., Uchiyama K. Breeding potential of the backcross progenies of a hybrid between Trifolium medium × T. pratense to T. pratense. Can. J. Plant Sci. 2002;82:395–399.

Renny-Byfield S., Wendel J.F. Doubling down on genomes: Polyploidy and crop plants. Am. J. Bot. 2014;101:1711–1725. doi: 10.3732/ajb.1400119. PubMed DOI

Dluhošová J., Ištvánek J., Nedělník J., Řepková J. Red clover (Trifolium pratense) and zigzag clover (T. medium)–A picture of genomic similarities and differences. Front. Plant Sci. 2018;9:724. doi: 10.3389/fpls.2018.00724. PubMed DOI PMC

Vižintin L., Javornik B., Bohanec B. Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 2006;170:859–866. doi: 10.1016/j.plantsci.2005.12.007. DOI

Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y., Kaneko T., Sakurai N., Okumura K., Klimenko I., et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.) DNA Res. 2005;12:301–364. doi: 10.1093/dnares/dsi018. PubMed DOI

Kataoka R., Hara M., Kato S., Isobe S., Sato S., Tabata S., Ohmido N. Integration of linkage and chromosome maps of red clover (Trifolium pratense L.) Cytogenet. Genome. Res. 2012;137:60–69. doi: 10.1159/000339509. PubMed DOI

Ištvánek J., Jaroš M., Křenek A., Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae) Am. J. Bot. 2014;101:327–337. doi: 10.3732/ajb.1300340. PubMed DOI

De Vega J.J., Ayling S., Hegarty M., Kudrna D., Goicoechea J.L., Ergon Å., Rognli O.A., Jones C., Swain M., Geurts R., et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait Improvement. Nature. 2015;5:17394. doi: 10.1038/srep17394. PubMed DOI PMC

Salimpour F., Sharifnia F., Mostafavi G., Hajrasoliha S., Ukhneh E. Chromosome counts and determination of ploid levels in Iranian species of Trifolium. Chromosome Bot. 2008;3:53–63. doi: 10.3199/iscb.3.53. DOI

Ellison N.W., Liston A., Steiner J.J., Williams W.M., Taylor N.L. Molecular phylogenetics of the clover genus (Trifolium—Leguminosae) Mol. Phylogenet. Evol. 2006;39:688–705. doi: 10.1016/j.ympev.2006.01.004. PubMed DOI

Vozárová R., Macková E., Vlk D., Řepková J. Variation in ribosomal DNA in the genus Trifolium (Fabaceae) Plants. 2021;10:1771. doi: 10.3390/plants10091771. PubMed DOI PMC

Chromosome Counts Database. [(accessed on 10 October 2022)]. Available online: http://ccdb.tau.ac.il/

Kobayashi T., Ganley A.R.D. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science. 2005;309:1581–1584. doi: 10.1126/science.1116102. PubMed DOI

Raskina O., Barber J.C., Nevo E., Belyayev A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI

Rosato M., Moreno-Saiz J.C., Galián J.A., Rosselló J.A. Evolutionary site-number changes of ribosomal DNA loci during speciation: Complex scenarios of ancestral and more recent polyploid events. AoB Plants. 2015;7:135. doi: 10.1093/aobpla/plv135. PubMed DOI PMC

Su D., Chen L., Sun J., Zhang L., Gao R., Li Q., Han Y., Li Z. Comparative chromosomal localization of 45S and 5S rDNA sites in 76 purple-fleshed sweet potato cultivars. Plants. 2020;9:865. doi: 10.3390/plants9070865. PubMed DOI PMC

He J., Zhao Y., Zhang S., He Y., Jiang J., Chen S., Fang W., Guan Z., Liao Y., Wang Z., et al. Uneven levels of 5S and 45S rDNA site number and loci variations across wild chrysanthemum accessions. Genes. 2022;13:894. doi: 10.3390/genes13050894. PubMed DOI PMC

Yue M., Gautam M., Chen Z., Hou J., Zheng X., Hou H., Li L. Histone acetylation of 45S rDNA correlates with disrupted nucleolar organization during heat stress response in Zea mays L. Physiol. Plant. 2021;172:2079–2089. doi: 10.1111/ppl.13438. PubMed DOI

Macháčková P., Majeský Ľ., Hroneš M., Bílková L., Hřibová E., Vašut R.J. New insights into ribosomal DNA variation in apomictic and sexual Taraxacum (Asteraceae) Bot. J. Linn. Soc. 2022;199:790–815. doi: 10.1093/botlinnean/boab094. DOI

Huang M., Li H., Zhang L., Gao F., Wang P., Hu Y., Yan S., Zhao L., Zhang Q., Tan J., et al. Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PLoS ONE. 2012;7:e35139. doi: 10.1371/journal.pone.0035139. PubMed DOI PMC

Hanson R.E., Nurul Islam-Faridi M., Percival E.A., Crane C.F., Ji Y., McKnight T.D., Stelly D.M., Price H.J. Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma. 1996;105:55–61. doi: 10.1007/BF02510039. PubMed DOI

Breda E., Wolny E., Hasterok R. Intraspecific polymorphism of ribosomal DNA loci number and morphology in Brachypodium pinnatum and Brachypodium sylvaticum. Cell. Mol. Biol. 2012;17 doi: 10.2478/s11658-012-0025-4. PubMed DOI PMC

Chung M.-C., Lee Y.-I., Cheng Y.-Y., Chou Y.-J., Lu C.-F. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 2008;116:745–753. doi: 10.1007/s00122-007-0705-z. PubMed DOI PMC

Pedrosa A., Vallejos C., Bachmair A., Schweizer D. Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor. Appl. Genet. 2003;106:205–212. doi: 10.1007/s00122-002-1138-3. PubMed DOI

Lan T., Albert V.A. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a Lady’s Slipper Orchid. BMC Plant Biol. 2011;11:126. doi: 10.1186/1471-2229-11-126. PubMed DOI PMC

Shcherban A.B., Sergeeva E.M., Badaeva E.D., Salina E.A. Analysis of 5S rdna changes in synthetic allopolyploids Triticum × Aegilops. Mol. Biol. 2008;42:536–542. doi: 10.1134/S0026893308040080. PubMed DOI

Książczyk T., Taciak M., Zwierzykowski Z. Variability of ribosomal DNA sites in festuca pratensis, lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J. Appl. Genet. 2010;51:449–460. doi: 10.1007/BF03208874. PubMed DOI

Malinska H., Tate J.A., Matyasek R., Leitch A.R., Soltis D.E., Soltis P.S., Kovarik A. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol. Biol. 2010;10:291. doi: 10.1186/1471-2148-10-291. PubMed DOI PMC

Garrido-Ramos M. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC

Ávila Robledillo L., Neumann P., Koblížková A., Novák P., Vrbová I., Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol. Biol. Evol. 2020;37:2341–2356. doi: 10.1093/molbev/msaa090. PubMed DOI PMC

Lee H.-R., Zhang W., Langdon T., Jin W., Yan H., Cheng Z., Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc. Natl. Acad. Sci. USA. 2005;102:11793–11798. doi: 10.1073/pnas.0503863102. PubMed DOI PMC

Lermontova I., Sandmann M., Demidov D. Centromeres and kinetochores of Brassicaceae. Chromosome Res. 2014;22:135–152. doi: 10.1007/s10577-014-9422-z. PubMed DOI

Yu F., Dou Q., Liu R., Wang H. A Conserved repetitive DNA element located in the centromeres of chromosomes in Medicago genus. Genes Genom. 2017;39:903–911. doi: 10.1007/s13258-017-0556-1. DOI

Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC

Macas J., Novák P., Pellicer J., Čížková J., Koblížková A., Neumann P., Fuková I., Doležel J., Kelly L.J., Leitch I.J. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE. 2015;10:e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC

Ávila Robledillo L., Koblížková A., Novák P., Böttinger K., Vrbová I., Neumann P., Schubert I., Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci. Rep. 2018;8:5838. doi: 10.1038/s41598-018-24196-3. PubMed DOI PMC

Gong Z., Wu Y., Koblížková A., Torres G.A., Wang K., Iovene M., Neumann P., Zhang W., Novák P., Buell C.R., et al. repeatless and repeat-based centromeres in potato: Implications for centromere evolution. Plant Cell. 2012;24:3559–3574. doi: 10.1105/tpc.112.100511. PubMed DOI PMC

Huang Y., Ding W., Zhang M., Han J., Jing Y., Yao W., Hasterok R., Wang Z., Wang K. The formation and evolution of centromeric satellite repeats in Saccharum species. Plant J. 2021;106:616–629. doi: 10.1111/tpj.15186. PubMed DOI

Iwata-Otsubo A., Radke B., Findley S., Abernathy B., Vallejos C.E., Jackson S.A. Fluorescence In Situ Hybridization (FISH)-based karyotyping reveals rapid evolution of centromeric and subtelomeric repeats in common bean (Phaseolus vulgaris) and Relatives. G3-Genes Genom. Genet. 2016;6:1013–1022. doi: 10.1534/g3.115.024984. PubMed DOI PMC

Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

Kirov I.V., Van Laere K., Van Roy N., Khrustaleva L.I. Towards a FISH-based karyotype of Rosa L. (Rosaceae) Comp. Cytogenet. 2016;10:543–554. doi: 10.3897/compcytogen.v10i4.9536. PubMed DOI PMC

Wang G., He Q., Macas J., Novák P., Neumann P., Meng D., Zhao H., Guo N., Han S., Zong M., et al. Karyotypes and distribution of tandem repeat sequences in Brassica Nigra determined by fluorescence in Situ Hybridization. Cytogenet. Genome Res. 2017;152:158–165. doi: 10.1159/000479179. PubMed DOI

Kadluczka D., Grzebelus E. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae) BMC Genomics. 2021;22:508. doi: 10.1186/s12864-021-07853-2. PubMed DOI PMC

Zhao H., Li S., Yang C., Li G., Wang Y., Peng J., Yan Z., Li R., Wang Y., Zhang L. FISH-based karyotype analyses of four Dracaena species. Cytogenet. Genome Res. 2021;161:272–277. doi: 10.1159/000516897. PubMed DOI

Borowska-Zuchowska N., Senderowicz M., Trunova D., Kolano B. Tracing the evolution of the angiosperm genome from the cytogenetic point of view. Plants. 2022;11:784. doi: 10.3390/plants11060784. PubMed DOI PMC

Rosato M., Galián J.A., Rosselló J.A. Amplification, contraction and genomic spread of a satellite DNA family (E180) in Medicago (Fabaceae) and allied genera. Ann. Bot.-Lond. 2012;109:773–782. doi: 10.1093/aob/mcr309. PubMed DOI PMC

Pellerin R.J., Waminal N.E., Kim H.H. FISH mapping of rDNA and telomeric repeats in 10 Senna Species. Hortic. Environ. Biote. 2019;60:253–260. doi: 10.1007/s13580-018-0115-y. DOI

Nguyen T.H., Waminal N.E., Lee D.S., Pellerin R.J., Ta T.D., Campomayor N.B., Kang B.Y., Kim H.H. Comparative triple-color FISH mapping in eleven Senna species using rDNA and telomeric repeat probes. Hortic. Environ. Biotechnol. 2021;62:927–935. doi: 10.1007/s13580-021-00364-9. DOI

Du P., Li L., Zhang Z., Liu H., Qin L., Huang B., Dong W., Tang F., Qi Z., Zhang X. Chromosome painting of telomeric repeats reveals new evidence for genome evolution in peanut. J. Integ. Agr. 2016;15:2488–2496. doi: 10.1016/S2095-3119(16)61423-5. DOI

She C.-W., Wei L., Jiang X.-H. Molecular cytogenetic characterization and comparison of the two cultivated Canavalia species (Fabaceae) Comp. Cytogenet. 2017;11:579–600. doi: 10.3897/compcytogen.v11i4.13604. PubMed DOI PMC

Susek K., Bielski W.K., Hasterok R., Naganowska B., Wolko B. A first glimpse of wild lupin karyotype variation as revealed by comparative cytogenetic mapping. Front. Plant Sci. 2016;7:1152. doi: 10.3389/fpls.2016.01152. PubMed DOI PMC

Yurkevich O.Y., Samatadze T.E., Levinskikh M.A., Zoshchuk S.A., Signalova O.B., Surzhikov S.A., Sychev V.N., Amosova A.V., Muravenko O.V. Molecular Cytogenetics of Pisum sativum L. grown under spaceflight-related stress. BioMed Res. Int. 2018;2018:1–10. doi: 10.1155/2018/4549294. PubMed DOI PMC

Li W., Challa G.S., Zhu H., Wei W. Recurrence of chromosome rearrangements and reuse of DNA breakpoints in the evolution of the Triticeae genomes. G3-Genes Genom. Genet. 2016;6:3837–3847. doi: 10.1534/g3.116.035089. PubMed DOI PMC

Garcia S., Wendel J.F., Borowska-Zuchowska N., Aïnouche M., Kuderova A., Kovarik A. The utility of graph clustering of 5s ribosomal dna homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants. Front. Plant Sci. 2020;11:41. doi: 10.3389/fpls.2020.00041. PubMed DOI PMC

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Lysák M.A., Mandáková T. Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. 2013;990:13–24. PubMed

Kirov I., Divashuk M., Van Laere K., Soloviev A., Khrustaleva L. An easy “steamdrop” method for high quality plant chromosome preparation. Mol. Cytogenet. 2014;7:21. doi: 10.1186/1755-8166-7-21. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace